The Golden Age of
Compilers

in an era of Hardware/Software co-design

NN GE
Xianweiz.github.io
DCS290, 06/24/2021

https://xianweiz.github.io/

Compilation Phases 4B

e Lexical: source code - tokens
— RE, NFA, DFA, ...

Source Code

¢ SVntax: tokens - AST or parse tree v"//Lexica|lAna|ysiS-\\‘

- CFG, LL(].), LALR(].), Token Stream} ot End

. Syntax Analysis rcr)]r; s?s

* Semantic: AST - AST +symbol table s | (Analysts)

- SDD, SDT, typing, scoping, ... e
* Int. Code Generation: AST - TAC "ngteeéneqs:;i?on“

- IR, offset, CodeGen, ... R] |

. . . L. Optimization . Back End

* Optimization: TAC - (optimized) TAC R - (Synthesis)

- BB’ CFG’ DAG, Code Ge¢neration |

| Target Code

* Code generation: TAC = Instructions "o
— Instruction, register, stack, ...

Modern Compilersi s Fae]

* Compilation flow [#s iR FE]
- First, translate the source program to some form of
intermediate representation (IR, H [f] 7 7~)

— Then convert from there into machine code

* IR provides advantages [IRF{IL#4]
- Increased abstraction, cleaner separation, and retargeting, etc

Fortran Fortran’s Intermediate IR MIPS MIPS

program — Lexer, Parser, Code Code er
and Static Checker Generator Generator

© — Eeier Parser gé?jremedlate IR_yCode R 11X86 Code] X86

program and Static Checker Generator Optimization | °%¢
C#'s Intermediate ARM

S:)gram — Lexer, Parser, and Code R Code %&2
Static Checker Generator Generator

Opportunities for Compiler?

Outline

* The Trends [75 3K 74

— Application, software, hardware

* The Issues [1% 4t 2 13 1Y) 0] il BT 7E]

— Limitations of classical compilers

* The Solutions [¥&1E 4w i FEH AN T %]
-TVM, MLIR

The Golden Age of Compilers

in an era of Hardware/Software co-design

* Summary

ML Applicationsles=: > v |

* Models are growing and getting more complex

— Model Size: larger models require more multiply accumulate
operations

- Model Complexity: as model complexity increases it becomes
harder to fully utilize hardware

— Much faster than Moore’s law

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

- * AlphaGo Zerg Data ,
—r Algorithms
e Alphalero
[oN Machine Tr
T,E_;; o | chit
é 10 otion ® T17 Dota 1v1
=
j‘_ *Seq2Seq e ResNets
. e Dropout
Compute
00
*DON [1] IR Design for Heterogeneity: Challenges and Opportunities

2014 015 2016 2017 2018 2019 I\ m
Year H"ELZ

https://conf.researchr.org/getImage/CC-2020/orig/IR+Design+for+Heterogeneity+-+Challenges+and+Opportunities.pdf

ML Software Explosion[#l 2 > HE 4]

* Many frameworks

* Many different graph O P)/TOrCh
implementations
@oxnet
 Each framework is
trying to gain a
usability and @ ON NX

19/ PaddlePadd|
performance edge -/~ PaddiePaddle
over each other S

]

MindSpore

High Performance Computing[& 461t 5]

 Larger scale applications
— Climate change, new drug discovery
— Data analytics, modeling and simulation

* Various parallel programming models
— MPI, OpenMP, OpenACC, SYCL/DPC++

OpenACC

| C NVIDIA.
More Science, Less Programmin 9 SYCL . CUDA

OpenMP RAJV #tn 1

@) tuxt 8 Ik

More Hardware... More Complexity...

e Lots of players! (an incomplete list!)
CPU, etc GPGPU, etc. TPU, NPU, efc. FPGA, CPLD, etc. ASIC
B siFie A NVIDIA G.o gle el openiive
AMDZIN AMDE intel -y . ﬂ:
arm arm AMDDl ¢ wsunG
intel intel ‘(ﬁ'i'gx intel i tel

Programmable xPUs

Custom Hardware

Specialization

° Dige

Architecture Trends

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson
> e Current challenges
2020 2025 2030 |
D —— — End of Moore's Law and
- - hardware C) i
speciaizntion Dennard Scaling
— Overlooked security
O Cloud as architecture .. .
innovation abstraction ¢ > ° Futu re Opportunltles IN
. computer architecture
eep - >
integration — Domain-specific
) architectures
-‘:@:? Computing closer ; > . . pe
to phyisics — Domain-specific
languages

% Machine learning L > - O pe Nna rCh |te Ctu res
as key workload

— Agile hardware
development

[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

10 Dige

https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Domain Specific Arch. (47 % H 22 4]

* Achieve higher efficiency by tailoring the architecture to
characteristics of the domain[14 & 45 #)i& Ao T s 4

- Not one application, but a domain of applications
o Different from strict ASIC

— Requires more domain-specific knowledge then general
purpose processors need

* Examples:
— Neural network processors for machine learning
— GPUs for graphics, virtual reality
- Programmable network switches and interfaces

() VNG
‘\/‘ ivﬂnl\‘ﬁnﬁ)' :E i

Domain Specific Arch.(cont.)

* More effective parallelism for a specific domain
- SIMD vs. MIMD
— VLIW vs. Speculative, out-of-order

* More effective use of memory bandwidth
— User controlled versus caches

* Eliminate unneeded accuracy

— |EEE replaced by lower precision FP
— 32-64 bit bit integers to 8-16 bit integers

* Domain specific programming language
— DSAs require targeting of high level operations to the
architecture

- Need matrix, vector, or sparse matrix operations

Domain Specific Languages[4iil® % FHiE =)

* Invent a new language for the specialized HW

— Better exploit application knowledge: directly connecting users
to HW, bypassing the ISA

* OpenCL is such an example

- HW vendors can regularly change GPU ISAs without affecting
user code
o OpenCL is the new contract

* |t can be a bitter experience for programmers

— Rewrite code for new HW
- Not all new languages will survive in the long term

() VNG
‘\/‘ ivﬂnl\‘ﬁnﬁ)' :E i

Outline

* The Trends [5 2K a4

— Application, software, domain specific

* The Issues [7] /8 T 7E]

— Limitations of classical compilers

* The Solutions [¥&1E 4w i FEH AN T %]
-TVM, MLIR

* Summary

14

The Historyil = i1 flzh &)

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 32U K]

* The growth is based on a fundamental contract between
HW and SWI15 2 T~ 4 hE A 2 18] B B]
- HW may change radically “under the hood”
o Old SW can still on new HW (even faster)
- HW looks the same to SW, always speaking the same language

o The ISA, allows the decoupling of SW development from HW dev
* Three-phase compiler design (e.g., LLVM)[=E X415 28]

— One frontend for many backends, one backend for many
frontends

C -»=| C Frontend X86 Backend - XB6

Fortran —=| Fortran Frontend Comanon /

. K PowerPC Backend |—# PowerPC
Optimizer
Ada | Ada Frontend ARM Backend - ARM

The Issue[4 i il i i) 5]

* The contract is breaking

— The end of Moore’s Law forces new design approaches
o Develop specialized HW to gain massive performance
o Program and use the specialized and heterogeneous HWs

e Limitations of LLVM

- “One size fits all” quickly turns into “one size fits none”
o “fits all”: a single abstraction level to interface with the system

— LLVM is: =& CPUs, “just ok” = for SIMT, but -/~ for many
accelerators

— ... is not great for parallel programming models &

* Many problems are better modeled at a higher- or lower-
level abstraction

- e.g. source-level analysis of C++ code is very difficult on LLVM IR

() VNG
‘\/‘ ivﬂnl\‘ﬁnﬁ)' :E i

Issue: Modern Languages|Zifiis 51

* Modern languages pervasively invest in high level IRs[5 5
. HIIR]

— To solve domain-specific problems, like language/library-
specific optimizations, flow-sensitive type checking (e.g., for
linear types)

— To improve the implementation of the lowering process

* Each compiler frontend is creating one or more high level
IR in addition to their AST representations[I JZIR]

C,C++ 0ObjC, _)
CUDA, OpenCL. [Clang AST |

swit —| Swift AST |

Rust—": Rust AST

Juia —[Julia AST |

Fortran —| Flang AST \

Issue: ML Frameworks#l2%2 > HE 4

 Compiler tech is widely deployed in others fields,
including machine learning frameworks

* ML systems typically use “ML graphs” as a domain-
specific abstraction

* TensorFlow is basically a huge compiler ecosystem

— These boxes are all different domain-specific compiler systems:
o Different limitations, challenges, owners, etc
o No unifying theory and infrastructure to support this

Grappler XLA HLO) =i]
@ m N /)
. - /[Tensor RT
B

nGraph

[

TPUIR

Several others

TensorFlow
Graph

_/*[Core ML

] NNAPI
A /\‘[TensorFlow Lite J<[J

Many others

Diege

Next-Gen Compilers & PL are Needed

* We need:
— Hardware abstraction spanning diverse accelerators
— Support for heterogeneous compute platforms
— Domain specific languages and programming models
— Quality, reliability, and scalability of infrastructure

* We see:
- “No one size fits all” compiler

— Shape of the problem is the same, but the accel details always
vary

* This opportunity is beckoning a golden age in compiler
and PL technology!

Dhéde

Outline

* The Trends [5 2K a4

— Application, software, domain specific

* The Issues [1] & FT£E]

— Limitations of classical compilers

* The Solutions [¥1E 2w 1E+5 AN 77 %)
-TVM, MLIR

* Summary

20

TVM

* Bring ML to a wide diversity of hardware devices

— Current frameworks rely on vendor-specific operator libraries
and optimize for a narrow range of server-class GPUs

— Deploying workloads to new platforms — such as mobile
phones, embedded devices, and accelerators (e.g., FPGAs,
ASICs) — requires significant manual effort

 TVM: an end to end ML compiler framework for CPUs,
GPUs and accelerators

— Aims to enable machine learning engineers to optimize and run
computations efficiently on any hardware backend

[1] TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI'2018
[2] Apache TVM,

Dhéde

https://www.usenix.org/system/files/osdi18-chen.pdf
https://tvm.apache.org/

TVM (cont.)

* Execution steps in TVM

- (D) First takes as input a
model from an existing
framework and transforms
it into a computational
graph representation

- (2) Then performs high-
level dataflow rewriting to
generate an optimized
graph

- (3) The operator-level
optimization module must
generate efficient code for
each fused operator in
this graph

22

Frameworks

~f O @ 9D

"

Y

Computational Graph

O

Hi

\J
gh Level Graph Rewriting
Y

@ | Optimized Computational Graph
v

@ Operator-level Optimization and Code Generation
Declarative Hardware-Aware

Tensor Expressions

- yr
Machine Learning Based

Automated Optimizer
¥

Optirnization Primitives

| Optimized Low Level Loop Program

|

P

Y

[Accelerator Backe

nd

|| wwwmir || CUDAMetallOpenCL |

¥

l

Deployable Module

|

TVM (cont.)

* Execution steps in TVM

- (4 TVM identifies a
collection of possible
code optimizations for a
given hardware target’s
operators

o Possible optimizations
form a large space, so we
use an ML-based cost
model to find optimized
operators

- (5 Finally, the system
packs the generated
code into a deployable

module

Frameworks ‘B~ (O 42 @ m Q

@ | Computaticv)nal Graph |
| High Level Gr'aph Rewriting

@, '

@ Operator-level Optimization and Code Generation

Declarative Hardware-Aware

Optimized Computational Graph I
v

Tensor Expressions Optimization Primitives

o e
@ Machine Learning Based
Automated Optimizer
A4
| Optimized Low Level Loop Program |
| Accelerator Backend || LLVMIR || CUDAMetal/OpenCL |
® i
| Deployable Module |

MLIR: Multi-Level Intermediate Representation

* MLIR: Compiler Infra at the End of Moore’s Law
- Joined LLVM, follows open library-based philosophy

— Modular, extensible, general to many domains
o Being used for CPU, GPU, TPU, FPGA, HW, quantum,

— Easy to learn, great for research
— MLIR + LLVM IR + RISC-V CodeGen = %%

https://mlir.llvm.org

24

https://mlir.llvm.org/

MLIR (cont.)

* MLIR is a novel approach to building reusable and
extensible compiler infrastructure

— Addresses software fragmentation, compilation for
heterogeneous hardware

— Significantly reducing the cost of building domain specific
compilers, and connecting existing compilers together

* MLIR is intended to be a hybrid IR which can support
multiple different requirements in a unified infrastructure
— The ability to represent dataflow graphs (such as in TensorFlow)

— Ability to host HPC-style loop optimizations across kernels, and
to transform memory layouts of data

— Ability to represent target-specific operations, e.g. accelerator-
specific high-level operations.

— Quantization and other graph transformations done on a Deep-
Learning graph.

[1] MLIR: Scaling Compiler Infrastructure for Domain Specific Computation, CG0O’2021
[2] Building a Compiler with MLIR, Google’2020

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/85bf23fe88bd5c7ff60365bd0c6882928562cbeb.pdf
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf

Outline

* The Trends [5 2K a4

— Application, software, domain specific

* The Issues [1] & FT£E]

— Limitations of classical compilers

* The Solutions [JEE 4w TR 1T FR]
- TVM, MLIR

* Summary

TmX % 26 ﬂgﬁﬂf}z

Summary

* Compiler/PL tech more important than ever!

- The world is evolving fast at the “End of Moore’s Law”
e Changing assumptions, expanding possibilities

* HW changes require new programming models and
approaches:

— Various models and frameworks

- More high-level semantics

* We need compiler and PL experts to step up!

Dhéde

References

* [1] Chris Lattner, The Golden Age of Compiler Design in an Era of HW/SW Co-
design, Keynote @ International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Apr 2021.

* [2] Albert Cohen, IR Design for Heterogeneity: Challenges and Opportunities,
Keynote @ International Conference on Compiler Construction (CC), Feb 2020.

* [3] John Hennessy and David Patterson, A New Golden Age for Computer
Architecture, Turing Lecture @ The International Symposium on Computer
Architecture (ISCA), June 2018.

* [4] Luis Ceze, Mark D. Hill and Thomas F. Wenisch, Arch2030: A Vision of
Computer Architecture Research over the Next 15 Years, Workshop @ The
International Symposium on Computer Architecture (ISCA), June 2016.

28 Dhg:

https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit
https://conf.researchr.org/getImage/CC-2020/orig/IR+Design+for+Heterogeneity+-+Challenges+and+Opportunities.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://cra.org/ccc/wp-content/uploads/sites/2/2016/12/15447-CCC-ARCH-2030-report-v3-1-1.pdf

Mﬂq E%Eﬁl‘l‘ﬁf‘ M R Ly

L SUPERCOMPUT N GUANGZHOU

The Golden Age of
Compilers

in an era of Hardware/Software co-design

NG
Xianweiz.github.io
DCS290, 06/24/2021

https://xianweiz.github.io/

RISC-V+MLIR: Uniting an Industry

* The free and open RISC instruction set architecture

- Free and open ISA enabling a new era of processor innovation
through open standard collaboration [1J])& H 7]

— RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

CPU, etc. GPGPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC

& XILINX

L RISC V| intel

intel

Programmable xPUs Custom Hardware

Co-design of HW and SW design

* CIRCT: Circuit IR for Compilers and Tools
- LLVM incubator project built on MLIR & LLVM

— Composable toolchain for different aspects of hardware design
/ EDA processes

— To unite HW design tools community and “accelerate” design of
the accelerators

CPU, etc. GPGPU, etc. TPU, NPU, etc. FPGA, CPLD, efc. ASIC

IR
-

{‘ RISC @

Programmable xPUs Custom Hardware 1&2
w SUN YAI-SEN UNIVEKSITY | 4

