Compilation Principle

Im 17 5 B
vk LS HT(1)
NG

xianweiz.github.io
DCS290, 3/2/2021

Dyid:

https://xianweiz.github.io/

Structure of a Typical Compiler[4i#)

Source Code

, l N
/ N
/ \
! v
! 1
1
'
1

Lexical Analysis

. Token Stream]

Front End

Syntax Analysi
ymax Anatysis (Analysis)

Syntax Tree"

Semantic Analysis

Syntax Tree

Intermediate
Code Generation
IR

\ 4 ;
Optimization . Back End
IR . (Synthesis)

\ 4

Code Generation

v

Target Code

¢ X B 2

SUN YAT-SEN UNIVERSITY

What is Lexical Analysispiaiz 4] ?

* Example: /* simple example */
if (i ==j)
z=0;

* Input: a string of characters[#ijA]
= “if (i==j)\n\t \tz=0; \telse\n\tz=1; \n”

* Goal: partition the string into a set of substrings[H #x]
— Those substrings are tokens

 Steps[V %]
- Remove comments

— ldentify substrings: ‘if” ‘(* I’ ‘==

- ldentify token classes: (keyword, ‘if’), (LPAR, ‘(‘), (id, ')
S tuxs

What is a token[iA?

* Token: a “word” in language (smallest unit with meaning)
— Categorized into classes according to its role in language
— Token classes in English[H A 1E &5]
o Noun, verb, adjective, ...
- Token classes in a programming language[ZRT21E & |
o Number, keyword, whitespace, identifier, ...

* Each token class corresponds to a set of strings
- Numbers: a non-empty string of digits
- Keyword: a fixed set of reserved words (“for”, “if”, “else”, ...)
— Whitespace: a non-empty sequence of blanks, tabs, newlines

- ldentifier: user-defined name of an entity to identify (Q: what
are the rules in C language?)

@ T1x2 Dl

Lexical Analysis: Tokenization[43iil] ?

e Lexical analysis is also called Tokenization (also called
Scanner)[alvE s A R N Hi 2]
— Partition input string into a sequence of tokens

— Classify each token according to roles (token class)
o Lexeme: an instance of the corresponding token class, e.g. 7/, '=*, ‘1’

* Pass tokens to syntax analyzer (also called Parser)[4#T#8]

— Parser relies on token classes to identify roles (e.g., a keyword is
treated differently than an identifier)

<ld, ‘2’>
z=1 <0p, ‘=">
<Num, ‘1’>
Token
Character Lexical Analysis Stream Syntax Analysis
Stream [(Scanner) J [(Parser) J

Token = <class, value>
:/‘ ivﬂzmﬁlﬁﬁ ‘&:GL{

Lexical Analyzer: Design[ialiE s #r 28 i% i1

e Define a finite set of token classes
— Describe all items of interest

- Depends on language, design of parser
= “if (i==j)\n\t \tz=0; \telse\n\tz=1; \n”

o Keyword, identifier, whitespace, integer

* Label which string belongs to which token class

if (i ==lj) '=="or ‘=7?
z=0;

else keyword or identifier?
z=1;

© Dhtge

Lexical Analyzer: Implementation[sz3]

* An implementation must do two things
— Recognize the token class the substring belongs to
— Return the value or lexeme of the token

* A token is a tuple (class, lexeme)[—Jt4]

* The lexer usually discards “non-interesting” tokens that
don’t contribute to parsing[Z 3 o= X iA]]

- e.g., whitespace, comments

* If token classes are non-ambiguous, tokens can be
recognized in a single left-to-right scan of input string

* Problem can occur when classes are ambiguous[; X]

/ Dhtge

Ambiguous Tokens in C++

* C++ template syntax Template <typename T>
T getMax(T x, Ty) {
- Foo<Bar> return (x >y) ? x:v;
e C++ stream syntax }
— cin >> var int main (int argc, char* argv(]) {

getMax<int>(3, 7);
getMax<double>(3.0, 2.0);
getMax<char>(‘g’, ‘¢’);

° Amblgwty return O;
— Foo<Bar<Bar
- cin >>var
- Q: Is >>’" a stream operator or two consecutive brackets?

‘ e (

Look Ahead[/g]

* "look ahead” may be required to resolve ambiguity[& 275
R X]

— Extracting some tokens requires looking at the larger context or
structure

— Structure emerges only at parsing stage with parse tree

- Hence, sometimes feedback from parser needed for lexing
o This complicates the design of lexical analysis
o Should minimize the amount of look ahead

* Usually tokens do not overlap[ifi & & E &]
— Tokenizing can be done in one pass w/o parser feedback
— Clean division between lexical and syntax analyses

@ T1x2 Dl

Summary: Lexer

* Lexical Analysis
— Partition the input string to lexeme
- ldentify the token class of each lexeme

* Left-to-right scan => look ahead may be required
- In reality, lookahead is always needed
— The amount of lookahead should be minimized

/* Simp|e example */ . . If) l(l [- 1 ’ I)I l\nl I\tl (5 (_1¢ / ’ 1’;
f (i ==) =]

7 (7 /(2 () () (__(()
\n’ ‘else \n \t’ 2’ ‘=1

z=0;
z=0;
else
else
Ny z=1; <keyword, if> <LPAR, (), <id, i>, <op,

@ TuxE IR

Token Specification[iE X

* Recognizing token class: how to describe string patterns
— i.e., which set of strings belong to which token class?

— Use regular expressions [1

* Regular Expression is a go

- | 1L 7] to define token class
od way to specify tokens

- Simple yet powerful (able to express patterns)

— Tokenizer implementation

can be generated automatically from

specification (using a translation tool)

— Resulting implementation

is provably efficient

[Token]

[Token Class] [

Lexeme]

String patterns

describing the class

»NG?

Language: Definition

* Alphabet S[771}13]: a finite set of symbols
- Symbol: letter, digit, punctuation, ...
- Example: {0, 1}, {a, b, c}, ASCII

 String [/£]: a finite sequence of symbols drawn from >
- Example: aab (length = 3), € (empty string, length = 0)

* Language [1& 5]: a set of strings of the characters drawn
from >

- 5> ={0, 1}, then {}, {01, 10}, {1, 11, 1111, ...} are all languages
over >

- {€}is a language
- @, empty set is also a language

@ Tux% IR

Language: Example

* Examples:

- Alphabet = (set of) English characters
- Language L = (set of) English sentences
- Alphabet 5 = (set of) Digits, +, -

- Language L = (set of) Integer numbers

* Languages are subsets of all possible strings
— Not all strings of English characters are sentences
- Not all sequences of digits and signs are integers

»‘:G%

Regular Expressions & Languages[iE]

* Need a notion to specify strings in a particular language
— More complex languages need more complex notations

* Regular Expression is a simple notation
— Can express simple patterns (e.g., repeating sequences)
— Not powerful enough to express English (or even C)
- But powerful enough to express tokens (e.g., identifiers)

* Languages that can be expressed using regular
expressions are called Regular Languages

* More complex languages and expressions will be covered
later

»NG?

Atomic RES[F 1L]

e Atomic
— Smallest RE that cannot be broken down further

* Epsilon or € character denotes a zero length string
— 8 — {((”}

* Single character denotes a set of one string
— ICI - {I(H}

* Empty setis{} =, not the same as €
- Size(d) =
- Size(g) =
- Length(g) =

@ FTuxt Dl

Compound REs[4H & ik)

 Union[7f]: if A and B are REs, then
A|lB={s|s€Aors€eB}

* Concatenation[i£%] of sets/strings
AB={ab|a€Aandb €B}

e Iteration[1%:14X] (Kleene closure)
A* = U, A'where A' = A...A (i times)
in particular
A* ={e}+ A+ AA+ AAA + ...
A+ = A+ AA + AAA +... = AA*

* (A)=A: AisaRE

Pry

‘GL{

RE and RL

* The regular expressions (REs) over > are the total set of
expressions that can be constructed using components:
— &
- ‘c" wherece)
- A|B where A, B are REs over
— AB where A, B are REs over
- A* where A is a RE over

* The regular languages (RLs) over 5 are the total set of
languages that can be expressed using REs:
- L(e) ={""}
- L(°’¢’) = {"c"}
- L(A|B) = L(A) U L(B)
- L(AB)={ab | a € L(A) and b € L(B) }

_ ~ L(A*)=Uj L(A]) |

Operator Precedencefl st 4k

* RE operator precedence
- (A)
- A*
- AB
- A|B

* Example: ab*c|d
- a(b*)c|d

- (a(b*))c|d
- ((a(b*))c)|d

(&) T X2 18 Mﬂ?

Common REs[# R IE]

At least one: A+ = AA*

* Union: A|B=A+B

* Option: A?=A +¢

e Range: ‘@’ + ‘b’ + ... + 7' = [a-Z]

* Excluded range: complement of [a-z] = [*a-Z]

19 Dhige

RE Examples

Regular Expression

Explanation

9%
a+

(alb)(alb)
(alb)*
(aa]ab|ba|bb)*
[a-zA-Z]

[0-9]

0([0-9])*0
1*(0|e)1*
(0]1)*00(0]1)*

0 or more a’s (g, a, aa, aaa, aaaa, ...)

1 or more a’s (a, aa, aaa, aaaa, ...)

(aa, ab, ba, bb)

all strings of a’s and b’s (including €)
all strings of a’s and b’s of even length
shorthand for “a|b]...z|A|B]...|Z”
shorthand for “0|1]2]...|9”

numbers that start and end with O

binary strings that contain at most one zero

all binary strings that contain ‘00’ as substring

 Q: are (a|b)* and (a*b*)* equivalent?

ME?

More Examples

* Keywords: ‘if’ or ‘else’ or 'then’ or ‘for’ ...
- RE="f +‘e”l"s"’e’ + ... = ‘if’ + ‘else’ + ‘then’ + ...
* Numbers: a non-empty string of digits
- digit="0'+1+2"+3+4+'5+6"+7+'8+9
- integer = digit digit*
- Q:is ‘000’ an integer?

* |dentifier: strings of letters or digits, starting with a letter
—letter=‘a"+b’+.. 2+ N+ B + ...+ 7 =[a-zA-Z]
- RE = letter(letter + digit)*
— Q: is the RE valid for identifiers in C?

* Whitespace: a non-empty sequence of blanks, newline
and tabs

_ (({ + l\nl + \tl)+

(@) Tux% 21 Dyig:

REs In Programming Language

\d Any decimal digit, i.e. [0-9]
\D Any non-digit char, i.e., [*0-9]
\s Any whitespace char, i.e., [\t\n\r\f\v]
\S Any non-whitespace char, i.e., [* \t\n\r\f\v]
\w Any alphanumeric char, i.e., [a-zA-Z0-9]
\W Any non-alphanumeric char, i.e., [*a-zA-Z0-9]
Any char \. Matching “”
[a-f] Char range [*a-f] Exclude range
A Matching string start $ Matching string end
(...) Capture matches

https://docs.python.org/3/howto/regex.html

https://docs.python.org/3/howto/regex.html

Lexical Specification of a Language

* SO: write a regex for the lexemes of each token class
- Numbers = digit+
- Keywords = ‘if’ + ‘else’ + ...
- ldentifiers = letter(letter + digit)*

e S1: construct R, matching all lexemes for all tokens
- R = numbers + keywords + identifiers +... =R1+ R2 + R3 + ...

* S2: let input be X, ... x,,, for 1 <i<n, check x; ... x; € L(R)
* §3: if successful, then we know x; ... x; € L(R;) for some |

* $4: remove X, ... X; from input and go to step S2

MGLZ

Lexical Specification of a Language

* How much input is used?
=Xy .. € L(R), X1 ... ;€ L(R), i #]
- Which one do we want? (e.g., ‘=="or ‘=’
- Maximal match: always choose the longer one[5: £ /L]

* Which token is used if more than one matches?
- X1 ... ;€ L(R) where R=R; +R, +... + R,
-X; .. X, €ELR,), X; ... ;€ L(R,)), m#n
- E.g., keywords = ‘if’, identifier = letter(letter+digit)*
- Keyword has higher priority
— Rule of thumb: choose the one listed first[{XJF]

e What if no rule matches?
- Xq ... X, & L(R) = Error

4

‘GL{

Summary: RE

* We have learnt how to specify tokens for lexical
analysis[E X token]
— Regular expressions
— Concise notations for the string patterns

* Used in lexical analysis with some extensions[i&E# J&]
— To resolve ambiguities
— To handle errors

* REs is only a language specification[R 2 & X TiEF]
— An implementation is still needed

— Next: to construct a token recognizer for languages given by
regular expressions — by using finite automata
@turs Dl

