Compilation Principle

I 1 I

F10VF: VAT (7)
HNUINGE

xianweiz.github.io
DCS290, 4/1/2021

Dyid:

https://xianweiz.github.io/

Quiz Questions(1)

* 1. LR(OO)FESLPrRADME A, N4

ANBAT AR RE B (lookahead), HRAIHFRTIE R, o KEMR
* 2. SLR(1)2/EATELR(0)FEAE Bk 2

J& Y (lookahead)— M Atoken: A ZJH] {5 FH Follow£E

« 3. B AFAELR TR, (Closure) #E1E?
H2E “HARE” B X EEMRITUE, XHEHEA SR 45 G e A A WS insgr i 0t ©

* 4. Top-downFBottom-up PN FH T /7 =\, WS HE7E 52 5
2 WIS A AR
Bottom-up, FJ DAAbFHR A 33 VA A0 H: 7] Hif 2%

o 5. B IH T [(Recursive-descent) A (Predictive)
AT, BN ER? N A?
T, FEFlookahead>KHf e ff MR AN = A =0, &40 1 [B] 3

Quiz Questions(2)
* 6. LR(O)fi# 17 3% (Parse Table)fF I N & 244 ?

ActionfllGoto i 1~ 1-3K, Actione Xf A Z5A/FHIBNTER, Gotose AR S5 B FE K

* 7. LL(k) LR (k)) T ZE X il e A4 ?
LR AT T, P ARARES: RIVEERR L, PEREH S

«8.A—> BC- #H4=E?
LR —AN 2 BT H f%ﬁﬁ%i,aéﬁ%Twiﬁmmmm
Al LME A > BCHATIHY

9. VEVE ST B AN AN 3) A4 ?
frN: AE TR E i token A Bt e IEVERY
o 10. B4 M IR SCIIE 42 2 Ik Bl (table-driven), IX

S A7, F5E R e A e 2
i NP X (Input buffer), fi##T3 (Parse Table), #%(Stack), IXzLFE (Driver)

»‘:G%

KR 22020

Alfred Vaino Aho

A.M. TURING AWARD HONORS INNOVATORS WHO
SHAPED THE FOUNDATIONS OF PROGRAMMING
LANGUANGE COMPILERS AND ALGORITHMS

Columbia's Aho and Stanford's Ullman Developed Tools
and Seminal Textbooks Used by Millions of Software
Programmers around the World

ACM named Alfred Vaino Aho and Jeffrey David Ullman recipients
of the 2020 ACM A.M. Turing Award for fundamental algorithms
and theory underlying programming language implementation and
for synthesizing these results and those of others in their highly
influential books, which educated generations of computer
scientists. Aho is the Lawrence Gussman Professor Emeritus of
Computer Science at Columbia University. Ullman is the Stanford
W. Ascherman Professor Emeritus of Computer Science at Stanford
University.

Computer software powers almost every piece of technology with
which we interact. Virtually every program running our world —
from those on our phones or in our cars to programs running on
giant server farms inside big web companies — is written by humans
in a higher-level programming language and then compiled into

4 Bl

AR 222018&2017&2014

- YANN LECUN £

United States — 2018

Input Hidden Output
b,

CITATION
For conceptual and engineering breakthroughs that have made deep neural

networks a critical component of computing.

Q - Q

SHORT ACM TURING RESEARCH
ANNOTATED AWARD SUBJECTS
BIBLIOGRAPHY LECTURE VIDEO

yirth: July 8, 1960 in Soisy-sous-
Montmorency, France.

DAVID PATTERSON {i

E United States — 2017
CITATION

For pioneering a systematic, quantitative approach to the design and
evaluation of computer architectures with enduring impact on the

microprocessor industry.

) 0)

SHORT ACM TURING RESEARCH

ARIMIATATEN AMIADN oLnien~Te

MICHAEL STONEBRAKER {J

United States — 2014

DiDTU

CITATION
For fundamental contributions to the concepts and practices underlying

modern database systems.

Q - - 0 -

SHORT ACM TURING RESEARCH ADDITIONAL VIDEO
ANNOTATED AWARD SUBJECTS MATERIALS INTERVIEW

PostgreSQL. ..

October 11, 1943 in Newburyport, Mass.

SLR(1) Parsing

* SLR(1) is a simple improvement over LR(0)

— LR(0) easily get shift/reduce and reduce/reduce conflicts
o Always reduce on a completed item (might be too ambitious)

- SLR(1) uses the same configuration sets (i.e., states), same table
structure and parser operation

- But SLR(1) reduces only if the next input token is in Follow set
o i.e., different table actions from LR(0)

* SLR(1) is capable to determine which action to take as
along as the Follow sets are disjoint

- So, one state can have both shift and reduce items or multiple
reduce items

@ Tux% IR

SLR(1) Grammars[3ci%]

A grammar is SLR(1) if the following two conditions hold
for each configurating set

* (1) For any item A = u-xv in the set, with terminal x, there
is no complete item B - w- in that set with x in Follow(B)
- In the table, this translates no shift-reduce conflict on any state

* (2) For any two complete items A - u- and B - v- in the
set, the follow sets must be disjoint, e.g. Follow(A) N
Follow(B) is empty

— This translates to no reduce-reduce conflict on any state

— If more than one nonterminal could be reduced from this set, it

must be possible to uniquely determine which using only one
token of lookahead

@ Tux% IR

SLR(1) Limitations[/EBE]

* SLR(1) vs. LR(O)
- Adding just one token of lookahead and using the Follow set

— Greatly expands the class of grammars that can be parsed
without conflicts

 When we have a completed item (i.e., dot at the end)
such as X —> u-, we know that it is reducible

- We allow such a reduction whenever the next symbol is in
Follow(X)

- However, it may be that we should not reduce for every symbol
in Follow(X), because the symbols below u on the stack
preclude u being a handle for reduction in this case

- In other words, SLR(1) states only tell us about the sequence on
top of the stack, not what is below it on the stack

. Solutlon consider the context of the state in lookahead
Dhig:

Example

* For input string: id =id, at I,
after having reduced id to L
— Initially, at S,

- Move to S, after shifting id to
stack (Ss is also pushed to stack)

- Reduce, and back to S,, and
further GOTO S,

o S¢ has a completed item, and next
‘="is in Follow(L)

o Sg and id are popped from stack,
and L is pushed onto stack

o GOTO(S,, L) =S,

S'->S
S->L=R
S->R
L->*R
L->id
R->1L

Example (cont.)

* Choices upon seeing = coming up

in the input:
- Action[2, =] =s6

o Move on to find the rest of
assignment

- Action[2, =] =15
o = € Follow(R): S=>L=R=>*R=R
e Shift-reduce conflict

— SLR parser fails to remember
enough info

- Reduce only after seeing * or =

A

(@) Fw*k # 10
%@j

s/ SUN YAT-SEN UNIVERSITY

= - -

SLR(1) Improvement

* We don’t need to see additional symbols beyond the first
token in the input, we have already seen the info that
allows us to determine the correct choice

* Retain a little more of the left context that brought us
here

- Divide an SLR(1) state into separate states to differentiate the
possible means by which that sequence has appeared on the
stack

* Just using the entire Follow set is not discriminating
enough as the guide for when to reduce

— For the example, the Follow set contains symbols that can
follow R in any position within a valid sentence

— But it does not precisely indicate which symbols follow R at this
particular point in a derivation

@ TuxE IR

LR(1) Parsing

* LR parsing adds the required extra info into the state

— By redefining items to include a terminal symbol as an added
component

* General form of LR(1) items[%ii H]
- A—> X X X;p..X; , @
- We have states X;...X,on the stack and are looking to put states
Xi;1.--X; on the stack and then reduce

o But only if the token following X; is the terminal a
o ais called the lookahead of the configuration

* The lookahead only works with completed items[5& i} J]
—A—=>X;.. X e, 2
— All states are now on the stack, but only reduce when next
symbol is a (a is either a terminal or S)

= Multi lookahead symbols: A -> ue, a/b/c

LR(1) Parsing (cont.)

e When to reduce?

- LR(O): if the configuration set has a completed item (i.e., dot at
the end)

— SLR(1): only if the next input token is in the Follow() set
— LR(1): only if the next input token is exactly a (terminal or S)
— Trend: more and more precise

* LR(1) items: LR(0) item + lookahead terminals
- Many differ only in their lookahead components

— The extra lookahead terminals allow to make parsing decisions
beyond the SLR(1) capability, but with a big price
o More distinguished items and thus more sets
o Greatly increased Goto and Action table sizes

@ Tux% IR

LR(1) Construction

* Configuration sets

— Sets construction are essentially the same with SLR, but
differing on Closure() and Goto()
o Because with must respect the lookahead

* Closure()

— For each item [A -> u-By, a] in /, for each production rule B -> w
in G, add [B -> -w, b] to /, if
o b € First(va) and [B -> -w, b] is not already in |
— Lookahead is the First(va), which are what can follow B

o vV can be nullable
lo: lo:

2(1); 2 -_>>xSx A o
$->.5,$ S -> XX, First(€S) S-> XX, S

(2) X ->aX X -> .aX, First(X$) X ->.aX, a/b

(3) X->b X -> .b, First(XS) X ->.b, a/b

3t g

LR(1) Construction (cont.)

e Goto(l, X)
— For item [A -> u-Xy, a] in /, Goto(l, X) = Closure ([A -> uX-v, a])
— Basically the same Goto function as defined for LR(O)
o But have to propagate the lookahead when computing the transitions

* Overall steps
— Start from the initial set Closure([S’ -> -S, S])
— Construct configuration sets following Goto(l, X)
— Repeat until no new sets can be added

l5: l5:

5255 " S->XX,$ S->XX,$
S-> XX, S ,

X -> .aX, First(eS) X->.aX, S
A2 B0 Bl X -> .b, First(eS) X->.b, S
X->.b, a/b Y Y

Example

lo:

S >S5
S>> XX, S

X = -aX, a/b
X > -b, a/b

X = a-X, a/b
X = -aX, a/b
X = -b, a/b

MG%

LR(1) Parse Table

* Shift
— Same as LR(0) and SLR(1)
— Don’t care the lookahead symbols

* Reduce
— Don’t use Follow set (too coarse-grain[¥H i £])
— Reduce only if input matches lookahead for item

 ACTION and GOTO
- If [A->a-aB, b] € S;and goto(S, a) =S;, Actionli, a] = s]
o shift and goto state j if input matches a
o Same as SLR(1)

- If [A->a-, a] €S;, Action[i, a] = r[R]
o Reduce R: A -> a if input matches a
o For SLR, reduced if put input matches Follow(A)

@ FTuxt Dl

Example

(0)S"->S
(1) S -> XX
(2) X->aX
(3) X->b
Iy s |8
>, §->55
S-> XX, $ Is:
X - -aX, a/b l,: X S->XX,$
X-> b, a/b S>XX,$
‘ XéaX,$ a
X->aX$
b L) b X->.aX,$ a
X->b,$
}I4: b
X b, a/b r J
2 b X->b,$
l3: X J
X>aX,ab g
X - -aX, a/b 3 X > aX, a/b
X->-b,a/b .

ACTION GOTO
State
a b S X

0 s3 s4 2

1 acc

2 s6 s/

3 s3 s4 8

4 r3 r3 I
oS _ | L ___ _rl_]

6 s6 s/ 9
- - - 1" - - ~-T- - - - == = — 1

7 r3

8 r2 r2

9 r2

18 IR

LR(1) Grammars

* Every SLR(1) grammar is LR(1), but the LR(1) parser may
have more states than SLR(1) parser
- LR(1) parser splits states based on differing lookaheads, thus it

may avoid conflicts that would otherwise result if using the full
Follow set

* A grammar is LR(1) if the following two conditions hold
for each configurating set
- (1) For any item [A = u-xv, a] in the set, with terminal x, there is
no item in the set of form [B =& v, X]
o In the table, this translates no shift-reduce conflict on any state
- (2) The lookaheads for all complete items within the set must
be disjoint, e.g. set cannot have both [A - u-, a] and [B = v-, 3]
o This translates to no reduce-reduce conflict on any state

@ Tux% IR

LALR(1) Parser

e LR(1) drawbacks

- With state splitting, the LR(1) parser can have many more states
than SLR(1) or LR(O) parser

o One LR(0) item may split up to many LR(1) items
o As many as all possible lookaheads
o In theory can lead to an exponential increase in #states

* LALR (lookahead LR) — compromise LR(1) and SLR(1)

- Reduce the number of states in LR(1) parser by merging similar
states

o Reduces the #states to the same as SLR(1), but still retains the power of
LR(1) lookaheads

— Similar states: have same number of items, the core of each
item is identical, and they differ only in their lookahead sets

@ Tux% IR

The Example

lo: S l,:
>S5 S->-S,S
S—=> XX, S |
X—>-aX,a/b y Iy X S>XX,S
X = b, a/b S > XX, S DRREEEE N Tt ,
. :6' : |9:
ij_zx'ssi»:X%aX,S: X > aX, S
b ’] X>.aX,$ra
,-I-,-------,\;rx»-b,s ;
1'4 [N o
'X > b, a/b, Ilj'}b“]
_________ 1l;: !
i b obys
I|3 [X _________________

——————————

if

P e

’r

——————————

State Merging

* Merge states with the same core
— Core: LR(1) items minus the lookahead (i.e., LR(0O) items)

— All items are identical except lookahead

l5: lg: l56:
X = aX a/b X->aX S X > a-X, a/b/s
X = .aX, a/b X > .aX, S X > .aX, a/b/S
X = -b, a/b X->:b,S X > b, a/b/S
|, |: 47
X - b, a/b X->b,S X = b+, a/b/S
lg: lgq:
X > aX:, S X = aX:, a/b/S

MGLZ

State Merging (cont.)

State ACTION GOTO

a b S S X
0 s3 s4 1 2
1 acc
2 S6 s/ 5
3 s3 s4 8
4 r3 r3
5 rl
6 s6 s/ 9
7 r3
8 r2 r2
9 r2

LR(1)

23

State ACTION GOTO

a b S X

0 s36 | s47 2
acc

2 s36 | s47 5

36 | s36 | s47 89
47 r3 r3 r3
5 rl
89 r2 r2 r2
LALR(1)

MELX

