
Compilation Principle
编译原理

第10讲：语法分析(7)
张献伟

xianweiz.github.io
DCS290, 4/1/2021

https://xianweiz.github.io/

Quiz Questions(1)
• 1. LR(0)在实际中很少使用，为什么？

• 2. SLR(1)是怎么在LR(0)基础上改进的？

• 3.怎么理解LR分析中的闭包（Closure）操作?

• 4. Top-down和Bottom-up两种解析方式，哪个能覆盖更
多的文法?简要解释。

• 5.递归下降（Recursive-descent）和预测（Predictive）
分析，哪个更高效？为什么?

2

不进行任何展望(lookahead)，只利用栈顶信息，极易发生冲突

展望(lookahead)一个输入token：归约时使用Follow集

归类“期待”意义上等价的项目，对非终结符结合产生式不断添加新的项目

Bottom-up，可以处理左递归和共同前缀

预测，基于lookahead来确定使用哪个产生式，避免了回溯

Quiz Questions(2)
• 6. LR(0)解析表(Parse Table)存放的内容是什么？

• 7. LL(k)和LR(k)的主要区别是什么？

• 8. A → BC·是什么意思?

• 9.语法分析的输入和输出分别是什么？

• 10.语法分析的实现通常是表驱动(table-driven)，这种
实现总体包括哪些模块？

3

Action和Goto两个子表，Action是对终结符的动作表，Goto是非终结符的跳转表

LL(k)是自顶向下，产生最左推导；LR(k)是自底向上，产生最有推导的逆

LR中的一个完成项目，在解析进展上，已经识别了BC生成的token，
可以使用A → BC进行归约

输入：词法分析产生的token序列；输出：语法树

输入缓冲区(Input buffer)，解析表(Parse Table)，栈(Stack)，驱动程序(Driver)

图灵奖’2020

4

图灵奖’2018&2017&2014

5

SLR(1) Parsing
• SLR(1) is a simple improvement over LR(0)

− LR(0) easily get shift/reduce and reduce/reduce conflicts
p Always reduce on a completed item (might be too ambitious)

− SLR(1) uses the same configuration sets (i.e., states), same table
structure and parser operation

− But SLR(1) reduces only if the next input token is in Follow set
p i.e., different table actions from LR(0)

• SLR(1) is capable to determine which action to take as
along as the Follow sets are disjoint

− So, one state can have both shift and reduce items or multiple
reduce items

6

SLR(1) Grammars[文法]

• A grammar is SLR(1) if the following two conditions hold
for each configurating set
• (1) For any item A → u·xv in the set, with terminal x, there

is no complete item B → w· in that set with x in Follow(B)
− In the table, this translates no shift-reduce conflict on any state

• (2) For any two complete items A → u· and B → v· in the
set, the follow sets must be disjoint, e.g. Follow(A) ∩
Follow(B) is empty

− This translates to no reduce-reduce conflict on any state
− If more than one nonterminal could be reduced from this set, it

must be possible to uniquely determine which using only one
token of lookahead

7

SLR(1) Limitations[局限性]

• SLR(1) vs. LR(0)
− Adding just one token of lookahead and using the Follow set
− Greatly expands the class of grammars that can be parsed

without conflicts

• When we have a completed item (i.e., dot at the end)
such as X –> u·, we know that it is reducible

− We allow such a reduction whenever the next symbol is in
Follow(X)

− However, it may be that we should not reduce for every symbol
in Follow(X), because the symbols below u on the stack
preclude u being a handle for reduction in this case

− In other words, SLR(1) states only tell us about the sequence on
top of the stack, not what is below it on the stack

• Solution: consider the context of the state in lookahead
8

Example
• For input string: id = id, at I2

after having reduced id to L
− Initially, at S0

− Move to S5, after shifting id to
stack (S5 is also pushed to stack)

− Reduce, and back to S0, and
further GOTO S2

p S5 has a completed item, and next
‘=‘ is in Follow(L)

p S5 and id are popped from stack,
and L is pushed onto stack

p GOTO(S0, L) = S2

9

Example (cont.)
• Choices upon seeing = coming up

in the input:
− Action[2, =] = s6

p Move on to find the rest of
assignment

− Action[2, =] = r5
p = ∈ Follow(R): S => L=R => *R = R

• Shift-reduce conflict
− SLR parser fails to remember

enough info
− Reduce only after seeing * or =

10

SLR(1) Improvement
• We don’t need to see additional symbols beyond the first

token in the input, we have already seen the info that
allows us to determine the correct choice
• Retain a little more of the left context that brought us

here
− Divide an SLR(1) state into separate states to differentiate the

possible means by which that sequence has appeared on the
stack

• Just using the entire Follow set is not discriminating
enough as the guide for when to reduce

− For the example, the Follow set contains symbols that can
follow R in any position within a valid sentence

− But it does not precisely indicate which symbols follow R at this
particular point in a derivation

11

LR(1) Parsing
• LR parsing adds the required extra info into the state

− By redefining items to include a terminal symbol as an added
component

• General form of LR(1) items[项目]
− A –> X1...Xi•Xi+1...Xj , a
− We have states X1...Xi on the stack and are looking to put states

Xi+1...Xj on the stack and then reduce
p But only if the token following Xj is the terminal a
p a is called the lookahead of the configuration

• The lookahead only works with completed items[完成项]
− A –> X1...Xj •, a
− All states are now on the stack, but only reduce when next

symbol is a (a is either a terminal or $)
− Multi lookahead symbols: A -> u•, a/b/c

12

LR(1) Parsing (cont.)
• When to reduce?

− LR(0): if the configuration set has a completed item (i.e., dot at
the end)

− SLR(1): only if the next input token is in the Follow() set
− LR(1): only if the next input token is exactly a (terminal or $)
− Trend: more and more precise

• LR(1) items: LR(0) item + lookahead terminals
− Many differ only in their lookahead components
− The extra lookahead terminals allow to make parsing decisions

beyond the SLR(1) capability, but with a big price
p More distinguished items and thus more sets
p Greatly increased Goto and Action table sizes

13

LR(1) Construction
• Configuration sets

− Sets construction are essentially the same with SLR, but
differing on Closure() and Goto()

p Because with must respect the lookahead

• Closure()
− For each item [A -> u·Bv, a] in I, for each production rule B -> w

in G’, add [B -> ·w, b] to I, if
p b ∈ First(va) and [B -> ·w, b] is not already in I

− Lookahead is the First(va), which are what can follow B
p v can be nullable

14

(0) S’ -> S
(1) S -> XX
(2) X -> aX
(3) X -> b

S’ -> ·S, $

I0:
S’ -> ·S, $

I0:
S’ -> ·S, $
S -> .XX, $
X -> .aX, a/b
X -> .b, a/b

S -> .XX, First(ε$)
X -> .aX, First(X$)
X -> .b, First(X$)

LR(1) Construction (cont.)
• Goto(I, X)

− For item [A -> u·Xv, a] in I, Goto(I, X) = Closure ([A -> uX·v, a])
− Basically the same Goto function as defined for LR(0)

p But have to propagate the lookahead when computing the transitions

• Overall steps
− Start from the initial set Closure([S’ -> ·S, $])
− Construct configuration sets following Goto(I, X)
− Repeat until no new sets can be added

15

I0:
S’ -> ·S, $
S -> .XX, $
X -> .aX, a/b
X -> .b, a/b

I2:
S -> X.X, $X

I2:
S -> X.X, $
X -> .aX, $
X -> .b, $

X -> .aX, First(ε$)
X -> .b, First(ε$)

Example

16

I0:
S’ → ·S, $
S → ·XX, $
X → ·aX, a/b
X → ·b, a/b

I1:
S’ → ·S, $

I2:
S → X·X, $
X → ·aX, $
X → ·b, $

I3:
X → a·X, a/b
X → ·aX, a/b
X → ·b, a/b

I4:
X → b·, a/b

I5:
S → XX·, $

I6:
X → a·X, $
X → .aX, $
X → ·b, $

I7:
X → b·, $

I9:
X → aX·, $

I8:
X → aX·, a/b

S

X X

a X

a

b

b

X

b
a

b

a

LR(1) Parse Table
• Shift

− Same as LR(0) and SLR(1)
− Don’t care the lookahead symbols

• Reduce
− Don’t use Follow set (too coarse-grain[粗粒度])
− Reduce only if input matches lookahead for item

• ACTION and GOTO
− If [A -> ⍺·aβ, b] ∈ Si and goto(Si, a) = Sj, Action[i, a] = sj

p shift and goto state j if input matches a
p Same as SLR(1)

− If [A -> ⍺·, a] ∈ Si , Action[i, a] = r[R]
p Reduce R: A -> ⍺ if input matches a
p For SLR, reduced if put input matches Follow(A)

17

Example

18

State
ACTION GOTO

a b $ S X
0 s3 s4 1 2
1 acc
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

(0) S’ -> S
(1) S -> XX
(2) X -> aX
(3) X -> b

✓

✓

✓

✓✓

LR(1) Grammars
• Every SLR(1) grammar is LR(1), but the LR(1) parser may

have more states than SLR(1) parser
− LR(1) parser splits states based on differing lookaheads, thus it

may avoid conflicts that would otherwise result if using the full
Follow set

• A grammar is LR(1) if the following two conditions hold
for each configurating set

− (1) For any item [A → u·xv, a] in the set, with terminal x, there is
no item in the set of form [B → v·, x]

p In the table, this translates no shift-reduce conflict on any state
− (2) The lookaheads for all complete items within the set must

be disjoint, e.g. set cannot have both [A → u·, a] and [B → v·, a]
p This translates to no reduce-reduce conflict on any state

19

LALR(1) Parser
• LR(1) drawbacks

− With state splitting, the LR(1) parser can have many more states
than SLR(1) or LR(0) parser

p One LR(0) item may split up to many LR(1) items
p As many as all possible lookaheads
p In theory can lead to an exponential increase in #states

• LALR (lookahead LR) – compromise LR(1) and SLR(1)
− Reduce the number of states in LR(1) parser by merging similar

states
p Reduces the #states to the same as SLR(1), but still retains the power of

LR(1) lookaheads
− Similar states: have same number of items, the core of each

item is identical, and they differ only in their lookahead sets

20

The Example

21

I0:
S’ → ·S, $
S → ·XX, $
X → ·aX, a/b
X → ·b, a/b

I1:
S’ → ·S, $

I2:
S → X·X, $
X → ·aX, $
X → ·b, $

I3:
X → a·X, a/b
X → ·aX, a/b
X → ·b, a/b

I4:
X → b·, a/b

I5:
S → XX·, $

I6:
X → a·X, $
X → .aX, $
X → ·b, $

I7:
X → b·, $

I9:
X → aX·, $

I8:
X → aX·, a/b

S

X X

a X

a

b

b

X

b
a

b

a

State Merging
• Merge states with the same core

− Core: LR(1) items minus the lookahead (i.e., LR(0) items)
− All items are identical except lookahead

22

I6:
X → a·X, $
X → .aX, $
X → ·b, $

I3:
X → a·X, a/b
X → .aX, a/b
X → ·b, a/b

I36:
X → a·X, a/b/$
X → .aX, a/b/$
X → ·b, a/b/$

I4:
X → b·, a/b

I7:
X → b·, $

I47:
X → b·, a/b/$

I8:
X → aX·, a/b

I9:
X → aX·, $

I89:
X → aX·, a/b/$

State Merging (cont.)

23

State
ACTION GOTO

a b $ S X
0 s3 s4 1 2
1 acc
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

State
ACTION GOTO

a b $ S X
0 s36 s47 1 2
1 acc
2 s36 s47 5

36 s36 s47 89
47 r3 r3 r3
5 r1

89 r2 r2 r2

LR(1)

LALR(1)

