Compilation Principle

I 1 I

FA1F: VR (8)
HNUINGE

xianweiz.github.io
DCS290, 4/6/2021

Dyide

https://xianweiz.github.io/

Review Questions (1)

* Why LR(0) is of limited usage?
No lookahead, easy to have shift-reduce and reduce-reduce conflicts

* How does SLR(1) improve LR(0)?

Lookahead using the Follow set when reduce happens

 Why we further use LR(1)?

Follow set is not precise enough, still easy to have conflicts

At high level, how does LR(1) improve SLR(1)?

Splitting Follow set (i.e., splitting states) to enforce reduce to
consider not only the stack top

 How does LR(1) split the states?
Add lookaheads to each item, i.e., LR(1) item=LR(0) item+lookahead

»’vi‘ﬂtﬁ

Review Questions (2)

* How to understand the item [A -> ue, a/b/c]

Reduce only using A -> u, when the next input symbol is a/b/c

* Then, what are the drawbacks of LR(1)?
More states because of the splitting, further much larger parse table

 What is LALR(1)?
LookAhead LR. A compromise between LR(1) and LR(0)/SLR(1)
* How does LALR(1) improve LR(1)?

Merge similar states to reduce table rows
e LR(0) -> SLR(1) -> LR(1), what is trend of improvement?

Reduce action is more and more precise

»‘vlﬂ?

State Mergingpiras &3+

* Merge states with the same core[[A].(»]
— Core: LR(1) items minus the lookahead (i.e., LR(O) items)
— All items are identical except lookahead

l5: lg: l56:
X = aX a/b X->aX S X > a-X, a/b/s
X = .aX, a/b X > .aX, S X > .aX, a/b/S
X = -b, a/b X->:b,S X > b, a/b/S
|, |: 47
X - b, a/b X->b,S X = b+, a/b/S
lg: lgq:
X > aX:, S X = aX:, a/b/S

»‘vlﬂ?

State Merging (cont.)

State ACTION GOTO

a b S S X
0 s3 s4 1 2
1 acc
2 S6 s/ 5
3 s3 s4 8
4 r3 r3
5 rl
6 s6 s/ 9
7 r3
8 r2 r2
9 r2

LR(1)

State ACTION GOTO

a b S X

0 s36 | s47 2
acc

2 s36 | s47 5

36 | s36 | s47 89
47 r3 r3 r3
5 rl
89 r2 r2 r2
LALR(1)

ME?

Merge Effects

* Merging of states can introduce conflicts[5]| A\ #%]

— Cannot introduce shift-reduce (s-r) conflicts

o i.e., a s-r conflict cannot exist in a merged set unless the conflict was
already present in one of the original LR(1) sets

— Can introduce reduce-reduce (r-r) conflicts

o LR was introduced to split the Follow set on reduce action
o Merging reverts the splitting

 Detection of errors may be delayed[#iR 5= 1R 7]

— On error, LALR parsers will not perform shifts beyond an LR
parser, but may perform more reductions before finding error

- We’'ll see an example

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Merge Conflict: Shitt-Reduce

* Shift-reduce conflicts are not introduced by merging

* Suppose
Sij: [A->a-, a] reduce on input a
[B ->B.ao, b] shift on input a
Formed by merging Si and Sj

* Cores must be the same for Si and Sj, and thus one of
them must contain [A -> a-, a] and [B -> B.ag, b]

- Shift-reduce conflicts were already present in either Si and Sj
(or both) and not newly introduced by merging

@tuxs 7 IR

Merge Conflict: Reduce-Reduce

* Reduce-reduce conflicts can be introduced by merging

S'—>S
S—>aBc | bCc | aCd | bBd
B—>e

C—>e
S'-> §, § I:
S->eaBg, $
S->+bCc, $
S->-+aCd, $
S-> +bBd, $
I4:
S'-> S, %
I5:
S->a*Bg, $
S ->a+Cd, $ 'Ie
B->r9e,C I
C-> e, d L = —
I7:
fuxs

lgo:
C > e, c/d
B->e:d/c

S->b+Cc, $
S->b*Bd, $
C-> e, C
B->r+e, d

S->aBec, $

Reduce to B or C when
next tokeniscord

I[11: S->aCde-, $

Example: Error Delay

(0)S’->S state » Sg
(1) S->XX Input: aab$ symbol > S aab$
(2) X->ax e
(3) X->b state » SpS;3
ACTION GOTO symbol = 5@ ab>
State 3 b $ S X state > 509353
0 | 53 | s4 1 | 2 | symbol-%aa bS
1 acc state » 5593535, <—
2 | 6 | 57 g | symbol-Saab 7 B
3 s3 s4 8
4 r3 r3
5 rl
6 s6 s/ 9
7 r3
8 r2 r2
9 r2 ? IR

Example: Error Delay (cont.)

(0)S’->S state » Sg
(1) S->XX Input: aab$ symbol > S aab$
(2) X->aX
(3) X->b state > 20536 "
symbol » 9 4d a
Stat ACTION GOTO | il T, ss s
date »>
5 b $ S X Stc';tel SO 36236 8
symbol » d d
0 |s36]| s47 T R e ——
Sstate » SOS3GS36S47
— ol > Sa ab S
symbol +
2 s36 | s47 5 | LAl ss. s s
36 | s36 | s47 89 St‘:el ’ SO a36 a36)?9 s
47 | 3 | r3 | r3 AT cc o T
5 r1 Stzte| > SO 36 X89 ¢
> d
89 | r2 | r2 | r2 R
state > SpSye—
symbol + S X =S

LALR Table Construction[f#tr 344

* LALR(1) parsing table is built from the configuration sets
in the same way as LR(1)[[FIFE 77544 2 i) 15 H 4E]
- The lookaheads determine where to place reduce actions

- If there are no mergable states, the LALR(1) table will be
identical to the LR(1) table and we gain nothing

— Usually, there will be states that can be merged and the LALR
table will thus have fewer rows than LR

e LALR(1) table have the same #states (rows) with SLR(1)
and LR(0), but have fewer reduce actions[[E]%¢% H FIIRES,
{H DL B 1]

- Some reductions are not valid if we are more precise about the
lookahead

- Some conflicts in SLR(1) and LR(0) are avoided by LALR(1)

LALR Table Construction (cont.)

e Brute force[# /175 1]
— Construct LR(1) states, then merge states with same core
- If no conflicts, you have a LALR parser

- Inefficient: building LR(1) items are expensive in time and space
o We need a better solution

e Efficient way[E %07 1]
— Avoid initial construction of LR(1) states

- Merge states on-the-fly (step-by-step merging)
o States are created as in LR(1)
o On state creation, immediately merge if there is an opportunity

@tuxs IR

LALR(1) Grammars

* For a grammar, if the LALR(1) parse table has no conflicts,
then we say the grammar is LALR(1)

— No formal definition of a set of rules

e LALR(1) is a subset of LR(1) and a superset of SLR(1)
- A SLR(1) grammar is definitely LALR(1)
- A LR(1) grammar may or may not be LALR(1)

o Depends on whether merging introduces conflicts

- A non-SLR(1) grammar may be LALR(1)

o Depends on whether the more precise lookaheads resolve the SLR(1)
conflicts

* LALR(1) reaches a good balance between the lookahead
power and the table size

— Most used variant of the LR family

LL vs. LR Parsing (LL < LR)

 LL(k) parser, each expansion A -> a is decided based on

— Current non-terminal at the top of the stack
o Which LHS to produce

- k terminals of lookahead at beginning of RHS
o Must guess which RHS by peeking at first few terminals of RHS

* LR(k) parser, each production A -> o is decided based on

— RHS at the top of the stack

o Can postpone choice of RHS until entire RHS is seen
o Common left factor is OK — waits until entire RHS is seen anyway
o Left recursion is OK — does not impede forming RHS for reduction

- k terminals of lookahead beyond RHS
o Can decide on RHS after looking at entire RHS plus lookahead

@tuxs IR

Hierarchy of Grammars[3i%E %]

r Unambiguous Grammars

LALR(1)

Ambiguous
Grammars

_/

15

»

SRR T (1)

o« iEYESTHT(Syntax analysis) A& 2 3R 1 58 — NI EX
- F N RS M A AR I token [A
— B M (parse tree) B FH G 1E VM (abstract syntax tree
,AST)
e iE¥EFE B (Syntax specification)
— JVES AT FHIIRE/FARIE BE ST AN (e.g., TRE S5 1)
- 75 B S0 (grammar), JUHEE B 3CJe R 3 (context-
free grammar, CFG)
o« R X AT, N, s, 0}
- T%:tﬁrrginal symbols[£ 45 1F] = 1aVA 70 AT token, 73 B i
HA
— N: non-terminal symbols[AEZ S5 45551, 23 H B Y A 35715 A
— s: start symbol[UG 7F 5]
- o: set of productions[FZ 4], 2 Z: LHS -> RHS

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

S ERVR T (2)

« £ 5 (Derivation)
- XA A TSR (DALHS2IRHS)
o MOOVEHIRRT 5 2% R (input string)
« IHZJ(Reduce)
- HE S FE (M RHSELHS)
o MBI (input string) B 4677 5
o 3 HT ¥ (Parse tree)
- M FHEIEA RS, B8 TS = A A8 I

o If W 3C¥E(Ambiguous grammar)
— FEAN] 508 B 22 A (B A Bt AT) 93 BT AR

- WL FR e P A (precedence) A1 45 & 4 (associativity) K IS
SR LA BR B

17 G
/ i Yﬂnl\;ﬁuﬁ } ' ih L{

)évﬂ 1n/ \ﬁ? (3)

TSR AL LA SO A T 1
gt — > LA M) Bldh A VAN 3R IR =
- TR T (Top-down): MR i3 R B+ i, BPHIE
o BN FEA L5 AT 7
o A58 FH MRS = A 2R 2 4 2
- HJE A _E(Bottom-up): A1 s 5] EIAR T 45
o VH &S A tokenil /& H %) ?
o RIS = A R IF 297

Parser

4
| I

Top-down parser Bottom-up parser

+
| |
RD-backtrack Predictive
parser parser

x E ‘ e r E
iyﬁ!ﬂvﬁtﬁ wi Hh UZ

» 1.

S ERE T (4)

* Top-down7J 17
- 1B H T P9 M1 (Recursive descent): 145 -> 7] (backtracking)
o VH Bk - 3% U (Left recursion)
— W 43 #7 (Predictive): TR, TG 7 [B]3
o VHERACIEH, UL ILH T (Left factoring)

o RIKFIHILL(L) 73 M %

- VU397 : input buffer, stack, parse table, parser driver
- 3T <stack top, current token>>K K HU 21 (expand or match)
- MM RAT NOOEWI AR A S RT . HINSOER A 5775 RS

o BLICRAF I — P A e

o A% e (e Bl FirstFl Follow2E SR A4) 2 1

() F 19 S
\"' / i YAT-an&E:s?% }' ih L{

/'é'vn 1n/*/*ﬁ (5)

* Bottom-up 3 #T
- FEAH LI (Shift)F1H 2 (Reduce) I B 1E
- SEEL b E LR AT A
o R"AEIXE), ERL

o RIXBNHILR AT 4%
- VU397 : input buffer, stack, parse table, parser driver
- TR R R HURAE (shift or reduce)
o BRARIEIRES P FI A A RS R SGEFT 5
- fENT R AL E ActionFllGoto i T3

o XA IR B SCVE R A BE I H 45 K e Hi(i.e., DFA)
o LR(0) -> SLR(1) -> LR(1) -> LALR(1)

‘ im:l:mﬁnﬁ 20 }& GG L{

Compilation Principle

% % JE I8

FA1PE: 15 XA (1)
i NGE

xianweiz.github.io
DCS290, 4/6/2021

Dyide

https://xianweiz.github.io/

Compilation Phases 4B

Source Code

, l N
/ N
/ \
! v
! 1
1
'
1

Lexical Analysis

. Token Stream]

Front End

Syntax Analysi
ynax Ananysis (Analysis)

Syntax Tree"

Semantic Analysis

Syntax Tree

Intermediate
Code Generation
IR

\ 4
Optimization . Back End
IR . (Synthesis)

\ 4

Code Generation

v

Target Code

¥ X & 22

SUN YAT-SEN UNIVERSITY

Compilation Phases (cont.)

e Lexical analysis[iaiE4#7]
— Source code — tokens
— Detects inputs with illegal tokens
- Is the input program lexically well-formed?

* Syntax analysis[i& %717
— Tokens — parse tree or abstract syntax tree (AST)
— Detects inputs with incorrect structure
- Is the input program syntactically well-formed?

* Semantic analysis[iZ& X 73 #7]
— AST — (modified) AST + symbol table
- Detects semantic errors (errors in meaning)
— Does the input program has a well-defined meaning?

4

’Gli

Example

#include <iostream>

base class not defined

using namespace std;

0 S N WU B WN

//Derived class
class Child : public
string myInteger; Wrong type
void doSomethin
10 int X[] =
1 [5] = .
2 3 AL 1) y variable not declared
:; void{doSomething() J{ 2) cannot mUItIpIe d String
16 cannot redefine functions
17 int getSum(int n) {

ZE return PoSomethinag() + n

19} —\

20 }; . .
cannot add void to int

no main() function

A

o) T # 24 Dhtge

Why Semantic Analysis?[i& 4 #7]

* Because programs use symbols (a.k.a. identifiers)
— |ldentifiers require context to figure out the meaning

* Consider the English sentence: “He ate it”
— This sentence is syntactically correct

— But it makes sense only in the context of a previous sentence:
“Sam bought a pizza.”

* Semantic analysis

- Associates identifiers with objects they refer to[F<Hx]
o "He” --> “Sam”
o “it” --> “pizza”

— Checks whether identifiers are used correctly[f& 2]

o “He” and “it” refer to some object: def-use check
o “it” is a type of object that can be eaten: type check

25 G
/ i Yﬂnl\;ﬁuﬁ } ' ih L{

Why Semantic Analysis (cont.)

* Semantics of a language is much more difficult to
describe than syntax[i& X bt 512 5 HE iR]
— Syntax: describes the proper form of the programs

- Semantics: defines what the programs means (i.e., what each
program does when it executes)

* Context cannot be analyzed using a CFG parser[CFGARE4y

fr B R UE B
— Associating IDs to objects require expressing the pattern:
{wew | w € (a|b)*}
o The first w represents the definition of a ID
o The c represents arbitrary intervening code
o The second w represents the use of the ID

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Semantic Analysis

* Deeper check into the source program[% f2% i — 4 70 4]
- Last stage of the front end
— Compiler’s last chance to reject incorrect programs

— Verify properties that aren’t caught in earlier phases
o Variables are declared before they’re used[4 = B f5 18]
o Type consistency when using IDs[Z% & 287 —3(]
o Expressions have the right types[#iA IS]

* Gather useful info about program for later phases[i£E)5
SLESY
- Determine what variables are meant by each identifier
- Build an internal representation of inheritance hierarchies
— Count how many variables are in scope at each point

() N

Semantic Analysis: Implementation

* Attribute grammars|)& 3012

— One-pass compilation
o Semantic analysis is done right in the middle of parsing
— Augment rules to do checking during parsing

— Approach suggested in the Compilers book

 AST walk[iE % 1 7]
— Two-pass compilation

o First pass digests the syntax and builds a parse tree

o The second pass traverses the tree to verify that the program respects
all semantic rules

— Strict phase separation of Syntax Analysis and Semantic Analysis

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Syntax Directed Translation[i&vE #5113

Source Code

. l N
/ N
! \
! v
|

Lexical Analysis

Token Stream"

Syntax Analysis

Syntax Tree"

- [SemanticAnalysisT| . Syntax Directed Translation
“\\Syntax Tree —/,'l . . SR EL B 22
== ~— Semantic Translation (1A il 80)

/ ntermediate y) A

Code Generation | | (15 ><Aﬁﬂ]ﬁz)

IR

\ 4
Optimization
IR

\ 4

Code Generation

v

Target Code

29 Dhige

