
Compilation Principle
编译原理

第11讲：语法分析(8)
张献伟

xianweiz.github.io
DCS290, 4/6/2021

https://xianweiz.github.io/

Review Questions (1)
• Why LR(0) is of limited usage?

• How does SLR(1) improve LR(0)?

• Why we further use LR(1)?

• At high level, how does LR(1) improve SLR(1)?

• How does LR(1) split the states?

2

Follow set is not precise enough, still easy to have conflicts

No lookahead, easy to have shift-reduce and reduce-reduce conflicts

Add lookaheads to each item, i.e., LR(1) item=LR(0) item+lookahead

Splitting Follow set (i.e., splitting states) to enforce reduce to
consider not only the stack top

Lookahead using the Follow set when reduce happens

Review Questions (2)
• How to understand the item [A -> u•, a/b/c]

• Then, what are the drawbacks of LR(1)?

• What is LALR(1)?

• How does LALR(1) improve LR(1)?

• LR(0) -> SLR(1) -> LR(1), what is trend of improvement?

3

Merge similar states to reduce table rows

More states because of the splitting, further much larger parse table

Reduce action is more and more precise

LookAhead LR. A compromise between LR(1) and LR(0)/SLR(1)

Reduce only using A -> u, when the next input symbol is a/b/c

State Merging[状态合并]

• Merge states with the same core[同心]
− Core: LR(1) items minus the lookahead (i.e., LR(0) items)
− All items are identical except lookahead

4

I6:
X → a·X, $
X → .aX, $
X → ·b, $

I3:
X → a·X, a/b
X → .aX, a/b
X → ·b, a/b

I36:
X → a·X, a/b/$
X → .aX, a/b/$
X → ·b, a/b/$

I4:
X → b·, a/b

I7:
X → b·, $

I47:
X → b·, a/b/$

I8:
X → aX·, a/b

I9:
X → aX·, $

I89:
X → aX·, a/b/$

State Merging (cont.)

5

State
ACTION GOTO

a b $ S X
0 s3 s4 1 2
1 acc
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

State
ACTION GOTO

a b $ S X
0 s36 s47 1 2
1 acc
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

LR(1)

LALR(1)

Merge Effects
• Merging of states can introduce conflicts[引入冲突]

− Cannot introduce shift-reduce (s-r) conflicts
p i.e., a s-r conflict cannot exist in a merged set unless the conflict was

already present in one of the original LR(1) sets
− Can introduce reduce-reduce (r-r) conflicts

p LR was introduced to split the Follow set on reduce action
p Merging reverts the splitting

• Detection of errors may be delayed[推迟错误识别]
− On error, LALR parsers will not perform shifts beyond an LR

parser, but may perform more reductions before finding error
− We’ll see an example

6

Merge Conflict: Shift-Reduce
• Shift-reduce conflicts are not introduced by merging

• Suppose
Sij: [A -> ⍺·, a] reduce on input a

[B -> β.a𝜎, b] shift on input a
Formed by merging Si and Sj

• Cores must be the same for Si and Sj, and thus one of
them must contain [A -> ⍺·, a] and [B -> β.a𝜎, b]

− Shift-reduce conflicts were already present in either Si and Sj
(or both) and not newly introduced by merging

7

Merge Conflict: Reduce-Reduce
• Reduce-reduce conflicts can be introduced by merging

8

S' –> S
S –> aBc | bCc | aCd | bBd
B –> e
C –> e

I69:
C → e·, c/d
B → e·, d/c

Reduce to B or C when
next token is c or d

Example: Error Delay

9

(0) S’ -> S
(1) S -> XX
(2) X -> aX
(3) X -> b

State
ACTION GOTO

a b $ S X
0 s3 s4 1 2
1 acc
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

Input: aab$
state

symbol
S0
$ aab$

state
symbol

S0S3
$ a ab$

state
symbol

S0S3S3
$ a a b$

state
symbol

S0S3S3S4
$ a a b $

Example: Error Delay (cont.)

10

State
ACTION GOTO

a b $ S X
0 s36 s47 1 2
1 acc
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

(0) S’ -> S
(1) S -> XX
(2) X -> aX
(3) X -> b

Input: aab$
state

symbol
S0
$ aab$

state
symbol

S0S36
$ a ab$

state
symbol

S0S36S36
$ a a b$

state
symbol

S0S36S36S47
$ a a b $

state
symbol

S0S36S36S89
$ a a X $

state
symbol

S0S36S89
$ a X $

state
symbol

S0S2
$ X $

LALR Table Construction[解析表构建]

• LALR(1) parsing table is built from the configuration sets
in the same way as LR(1)[同样方法构建的项目集]

− The lookaheads determine where to place reduce actions
− If there are no mergable states, the LALR(1) table will be

identical to the LR(1) table and we gain nothing
− Usually, there will be states that can be merged and the LALR

table will thus have fewer rows than LR

• LALR(1) table have the same #states (rows) with SLR(1)
and LR(0), but have fewer reduce actions[同等数目的状态，
但更少的规约动作]

− Some reductions are not valid if we are more precise about the
lookahead

− Some conflicts in SLR(1) and LR(0) are avoided by LALR(1)

11

LALR Table Construction (cont.)
• Brute force[暴力方式]

− Construct LR(1) states, then merge states with same core
− If no conflicts, you have a LALR parser
− Inefficient: building LR(1) items are expensive in time and space

p We need a better solution

• Efficient way[高效方式]
− Avoid initial construction of LR(1) states
− Merge states on-the-fly (step-by-step merging)

p States are created as in LR(1)
p On state creation, immediately merge if there is an opportunity

12

LALR(1) Grammars
• For a grammar, if the LALR(1) parse table has no conflicts,

then we say the grammar is LALR(1)
− No formal definition of a set of rules

• LALR(1) is a subset of LR(1) and a superset of SLR(1)
− A SLR(1) grammar is definitely LALR(1)
− A LR(1) grammar may or may not be LALR(1)

p Depends on whether merging introduces conflicts
− A non-SLR(1) grammar may be LALR(1)

p Depends on whether the more precise lookaheads resolve the SLR(1)
conflicts

• LALR(1) reaches a good balance between the lookahead
power and the table size

− Most used variant of the LR family

13

LL vs. LR Parsing (LL < LR)
• LL(k) parser, each expansion A -> ⍺ is decided based on

− Current non-terminal at the top of the stack
p Which LHS to produce

− k terminals of lookahead at beginning of RHS
p Must guess which RHS by peeking at first few terminals of RHS

• LR(k) parser, each production A -> ⍺· is decided based on
− RHS at the top of the stack

p Can postpone choice of RHS until entire RHS is seen
p Common left factor is OK – waits until entire RHS is seen anyway
p Left recursion is OK – does not impede forming RHS for reduction

− k terminals of lookahead beyond RHS
p Can decide on RHS after looking at entire RHS plus lookahead

14

Hierarchy of Grammars[文法层级]

15

总结: 语法分析（1）
•语法分析(Syntax analysis)是编译的第二个阶段

−输入: 词法分析产生的token序列
−输出: 分析树(parse tree)或抽象语法树(abstract syntax tree

,AST)
•语法指定(Syntax specification)

−词法分析使用的RE/FA表达能力不够(e.g., 嵌套结构)
−需要使用文法(grammar), 尤其是上下文无关文法(context-

free grammar, CFG)
•文法形式化定义: {T, N, s, 𝜎}

− T: terminal symbols[终结符] = 词法分析的token, 分析树的叶
子节点

− N: non-terminal symbols[非终结符], 分析树的内部节点
− s: start symbol[开始符号]
− 𝜎: set of productions[产生式], 形式：LHS -> RHS

16

总结: 语法分析（2）
•推导(Derivation)

−对产生式的若干次使用 (从LHS到RHS)
p 从文法开始符号到输入串(input string)

•归约(Reduce)
−推导的逆过程(从RHS到LHS)

p 从输入串(input string)到开始符号

•分析树(Parse tree)
−是推导的图形化表示，略去了推导中产生式的使用顺序

•歧义文法(Ambiguous grammar)
−某个句子对应多个(最左或最右)分析树
−通过指定优先级(precedence)和和结合性(associativity)来改写
文法以消除歧义

17

总结: 语法分析（3）
•语法分析(或解析)就是处理给定文法的输入句子，构
建一个以分析树或抽象语法树表示的推导

−自顶向下(Top-down): 从根节点扩展到叶子节点，每步考虑
p 替换哪个非终结符？

p 使用哪个产生式来替换？

−自底向上(Bottom-up): 从叶子节点回到根节点
p 消耗输入token还是归约？
p 使用哪个产生式来归约？

18

总结: 语法分析（4）
• Top-down分析

−递归下降分析(Recursive descent): 试错->回溯(backtracking)
p 消除左递归(Left recursion)

−预测分析(Predictive): 预测，无需回溯
p 消除左递归，提取左共因子(Left factoring)

•表驱动的LL(1)分析器
−四部分：input buffer, stack, parse table, parser driver
−基于<stack top, current token>来采取操作(expand or match)
−解析表行为文法的非终结符、列为文法的终结符号及$

p 单元格存放一个产生式或空

p 表格是借助First和Follow集来构建的

19

总结: 语法分析（5）
• Bottom-up分析

−主要有移进(Shift)和归约(Reduce)两个动作
−实现上主要是LR类型分析器

p 表格驱动，高效

•表驱动的LR分析器
−四部分：input buffer, stack, parse table, parser driver
−基于栈顶来采取操作(shift or reduce)

p 栈保存状态序列和每个状态关联的文法符号

−解析表包含Action和Goto两个子表
p 表格是通过识别文法的可能项目集及转换(i.e., DFA)
p LR(0) -> SLR(1) -> LR(1) -> LALR(1)

20

Compilation Principle
编译原理

第11讲：语义分析(1)
张献伟

xianweiz.github.io
DCS290, 4/6/2021

https://xianweiz.github.io/

Compilation Phases[编译阶段]

22

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

Compilation Phases (cont.)
• Lexical analysis[词法分析]

− Source code → tokens
− Detects inputs with illegal tokens
− Is the input program lexically well-formed?

• Syntax analysis[语法分析]
− Tokens → parse tree or abstract syntax tree (AST)
− Detects inputs with incorrect structure
− Is the input program syntactically well-formed?

• Semantic analysis[语义分析]
− AST → (modified) AST + symbol table
− Detects semantic errors (errors in meaning)
− Does the input program has a well-defined meaning?

23

Example

24

base class not defined

wrong type

1) y variable not declared
2) cannot multiple a string
cannot redefine functions

cannot add void to int

no main() function

Why Semantic Analysis?[语义分析]

• Because programs use symbols (a.k.a. identifiers)
− Identifiers require context to figure out the meaning

• Consider the English sentence: “He ate it”
− This sentence is syntactically correct
− But it makes sense only in the context of a previous sentence:

“Sam bought a pizza.”

• Semantic analysis
− Associates identifiers with objects they refer to[关联]

p ”He” --> “Sam”
p “it” --> “pizza”

− Checks whether identifiers are used correctly[检查]
p “He” and “it” refer to some object: def-use check
p “it” is a type of object that can be eaten: type check

25

Why Semantic Analysis (cont.)
• Semantics of a language is much more difficult to

describe than syntax[语义比语法更难描述]
− Syntax: describes the proper form of the programs
− Semantics: defines what the programs means (i.e., what each

program does when it executes)

• Context cannot be analyzed using a CFG parser[CFG不能分
析上下文信息]

− Associating IDs to objects require expressing the pattern:
{wcw | w ∊ (a|b)*}
p The first w represents the definition of a ID
p The c represents arbitrary intervening code
p The second w represents the use of the ID

26

Semantic Analysis
• Deeper check into the source program[对程序进一步分析]

− Last stage of the front end
− Compiler’s last chance to reject incorrect programs
− Verify properties that aren’t caught in earlier phases

p Variables are declared before they’re used[先声明后使用]
p Type consistency when using IDs[变量类型一致]
p Expressions have the right types[表达式类型]
p … …

• Gather useful info about program for later phases[收集后
续信息]

− Determine what variables are meant by each identifier
− Build an internal representation of inheritance hierarchies
− Count how many variables are in scope at each point
− …

27

Semantic Analysis: Implementation
• Attribute grammars[属性文法]

− One-pass compilation
p Semantic analysis is done right in the middle of parsing

− Augment rules to do checking during parsing
− Approach suggested in the Compilers book

• AST walk[语法树遍历]
− Two-pass compilation

p First pass digests the syntax and builds a parse tree
p The second pass traverses the tree to verify that the program respects

all semantic rules
− Strict phase separation of Syntax Analysis and Semantic Analysis

28

Syntax Directed Translation[语法制导翻译]

29

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Semantic Translation
(语义翻译)

Syntax Directed Translation
(语法制导翻译)

