
Compilation Principle
编译原理

第12讲：语义分析(2)
张献伟

xianweiz.github.io
DCS290, 4/8/2021

https://xianweiz.github.io/

Review Questions (1)
• How does LALR(1) improve LR(1)?

• How to merge states?

• What are the side effects of state merging?

• Why reduce-reduce conflict can happen in merging?

• What are the advantages of LALR(1)?

2

Introduce conflicts, delay error detection

Merge similar states to reduce space.

Higher parsing power than SLR(1), smaller parse table than LR(1)

Merging is the reverse of splitting, thus hurting LR(1) capability

Merge states with same core: all items are identical except lookahead

Review Questions (2)
• What are LL and LR?

• At high level, why LR is easier or more powerful than LL?

• Why context analysis is not performed in parsing stage?

• Give some examples of semantic analysis.

3

Def-before-use, no redefinition, same type, scoping …

LR acts after seeing the entire RHS + lookahead, LR only guess with
first few lookahead terminals of RHS

Parsing relies on CFG, which is context free.

LL=top-down (leftmost derivation)
LR=bottom-up (reverse of rightmost derivation)

LALR的一些解释
• LALR(1)是LR(1)和SLR(1)的平衡

−文法范围：LR > LALR > SLR
−状态数目：LR > LALR = SLR

•假如一个文法G是LR而非SLR
−依靠Follow集进行归约不够精确 --> SLR产生了冲突

p 而LR通过精确的lookahead解决了冲突
− LALR对LR进行相似状态合并

p 若合并后出现了冲突 --> 不是LALR文法
p 若合并后没有冲突 --> 是LALR文法

• LALR可以解析文法G，也即解决了SLR原有的冲突
• 实际上LALR的状态数是SLR相同，但归约动作减少了（也即，对SLR解
析表而言，多个移进/归约动作的单元格中的归约被消除了）

p 如果没有相似状态，则LALR=LR

•假如一个文法G是SLR
−那么G一定也是LR和LALR文法
− LR的Follow集细分是不必要的，因此LALR合并回了SLR

4

Syntax Directed Translation[语法制导翻译]

5

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Semantic Translation
(语义翻译)

Syntax Directed Translation
(语法制导翻译)

Syntax Directed Translation[语法制导翻译]

• To translate based on the program’s syntactic structure[语
法结构]

− Syntactic structure: structure of a program given by grammar
− The parsing process and parse trees are used to direct semantic

analysis and the translation of the program
p i.e., CFG-driven translation [CFG驱动的翻译]

• How? Augment the grammar used in parser:
− Attach semantic attributes[语义属性] to each grammar symbol

p The attributes describe the symbol properties
p An attribute has a name and an associated value: a string, a number, a

type, a memory location, an assigned register …
− For each grammar production, give semantic rules or

actions[语义规则或动作]
p The actions describe how to compute the attribute values associated

with each symbol in a production

6

Attributes[语义属性]

• Attributes can represent anything depending on the task[
属性可以表示任意含义]

− If computing expression: a number (value of expression)
− If building AST: a pointer (pointer to AST for expression)
− If generating code: a string (assembly code for expression)
− If type checking: a type (type for expression)

• Format: X.a (X is a symbol, a is one of its attributes)
• For Project 2 – Syntax Analysis

− Semantic attributes
p intg: string table index of integer constant value
p tptr: “tree pointer” of a non-terminal symbol

− Semantic actions
p { … $$=makeTree(ProgramOp, leftChild, rightChild); …}

7

How to Specify Syntax Directed Translation

• Syntax Directed Definitions (SDD)[语法制导定义]
− Attributes + semantic rules[语义规则]for computing them

p Attributes for grammar symbols[文法符号和语义属性关联]
p Semantic rules for productions[产生式和语义规则关联]

− Example rules for computing the value of an expression
E -> E1 + E2 RULE: {E.val = E1.val + E2.val}
E -> id RULE: {E.val = id.lexval}

• Syntax Directed Translation scheme (SDT)[语法制导翻译方
案]

− Attributes + semantic actions[语义动作] for computing them
− Example actions for computing the value of an expression

E -> E1 + E2 {E.val = E1.val + E2.val}
E -> id {E.val = id.lexval}

8

SDD vs. SDT
• SDD[语法制导定义]: 是CFG的推广，翻译的高层次规则说明

− A CFG grammar together with attributes and semantic rules
p A subset of them are also called attribute grammars[属性文法]

− Semantic rules imply no order to attribute evaluation

• SDT[语法制导翻译方案]: SDD的补充，具体翻译实施方案
− An executable specification of the SDD

p Fragments of programs are attached to different points in the
production rules

− The order of execution is important

9

D -> T L
T -> int
T -> float
L -> L1, id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh

D -> T { L.inh = T.type } L
T -> int { T.type = int }
T -> real { T.type = float }
L -> { L1.inh = L.inh }L1, id

Grammar SDD SDT

SDD vs. SDT (cont.)
• Syntax: A -> ⍺ {action1} β {action2} 𝛾 …
• Actions are executed ”at that point” in the RHS

− action1 executes after ⍺ have been produced but before β
− action2 executes after ⍺, action1, β but before 𝛾

• Semantic rule vs. action[语义规则 vs. 语义动作]
− Semantic rules are not associated with locations in RHS

p SDD doesn’t impose any order other than dependences
− Location of action in RHS specifies when it should occur

p SDT specifies the execution order and time of each action

10

SDD[语法制导定义]

• SDD has two types of attributes[两种属性]
− For a non-terminal A at a parse-tree node N

• Synthesized attribute[综合属性]
− Defined by a semantic rule associated with the production at N

p The production must have A as its head (i.e., A -> …)
− A synthesized attribute of node N is defined only by attribute

values at N’s children and N itself[子节点或自身]
• Inherited attribute[继承属性]

− Defined by a semantic rule associated with the production at
the parent of N

p The production must have A as a symbol in its body (i.e., … -> …A…)
− An inherited attributed at node N is defined only by attribute

values at N’s parent, N itself, and N’s siblings [父节点、自身或
兄弟节点]

11

P

C1 C2 C3

• Synthesized attribute for non-terminal A of parse-tree
node N [非终结符的综合属性]

− Only defined by N’s children and N itself
p Passed up the tree

− P.syn_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals can have synthesized attributes[终结符综合属性]
− Lexical values supplied by the lexical analysis
− Thus, no semantic rules in SDD for terminals

Synthesized Attribute[综合属性]

12

E.val

E1.val + T.val

E.val = E1.val + T.val

• Inherited attribute for non-terminal A of parse-tree node
N[非终结符继承属性]

− Only defined by N’s parent, N’s siblings and N itself
p Passed down a parse tree

− C2.inh_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals cannot have inherited attributes[终结符无继承属
性]

− Only synthesized attributes from lexical analysis

Inherited Attribute[继承属性]

13

P

C1 C2 C3

D

T.type L.inh

D -> T L (L.inh = T.type)

SDD[语法制导定义]

• Attribute dependencies in a production rule[产生式中的属
性依赖]

• SDD has rule of the form for each grammar production
b = f(A.attrs, ⍺.attrs, β.attrs, 𝛾.attrs)

• b is either an attribute in LHS (an attribute of A)
− In which case b is a synthesized attribute
− Why?

• Or, b is an attribute in RHS (e.g., of β)
− In which case b is an inherited attribute
− Why?

14

A -> ⍺ β 𝛾

Inherited

Synthesized

From A’s perspective ⍺, β, 𝛾 are children

From β’s perspective A, ⍺, 𝛾 are parent or siblings

Example: Synthesized Attribute[综合]

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

15

SDD:

Arithmetic expressions with + and *
(1) Print the numerical value of the entire expression
(2) Compute value of summation
(3) Value copy
(4) Compute value of multiplication
(5) Value copy
(6) Value Copy

Each non-terminal has a single
synthesized attribute val
Terminal digit has a synthesized
attribute lexval

Example: Synthesized Attribute[综合]

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

16

SDD:

Input:
3 * 5 + 4

E.val = 19

E.val = 15 + T.val = 4

T.val = 15 F.val = 4

digit.lexval = 4T.val = 3 * F.val = 5

digit.lexval = 5F.lexval = 3

digit.lexval = 3

LSide effect (副作用)

Annotated parse tree (标注分析树)

Example: Inherited Attribute[继承]

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

17

SDD:

Variable declaration of type int/float followed by a list of IDs:
(1) Declaration: a type T followed by a list of L identifiers
(2) Evaluate the synthesized attribute T.type (int)
(3) Evaluate the synthesized attribute T.type (float)
(4) Pass down type, and add type to symbol table entry for the identifier
(5) Add type to symbol table

T has synthesized attribute type
L has inherited attribute inh

Pointing to a symbol-table object

Example: Inherited Attribute[继承]

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

18

SDD:

Input:
float a, b, c

L.inh = float id.lexeme = c

D

L.inh = float

,

L.inh = float id.lexeme = b,

id.lexeme = a

T.type = float

float

type depends on child
inh depends on sibling or parent

The Concepts
• Side effect[副作用]

−一般属性值计算（基于属性值或常量进行的）之外的功能
−例如：code generation, print results, modify symbol table …

• Attribute grammar[属性文法]
−一个没有副作用的SDD
− The rules define the value of an attribute purely in terms of the

value of other attributes and constants[属性文法的规则仅仅
通过其他属性值和常量来定义一个属性值]

• Annotated parse-tree[标注分析树]
−每个节点都带有属性值的分析树

p A parse tree showing the value(s) of its attribute(s)
− a.k.a., attribute parse tree[属性分析树]

19

Dependence Graph[依赖图]

• Dependence relationship[依赖关系]
− Before evaluating an attribute at a node of a parse tree, we

must evaluate all attributes it depends on

• Dependency graph[依赖图]
− While the annotated parse tree shows the values of attributes,

a dependency graph helps determine how those values can be
computed[依赖图决定属性值的计算]

− Depicts the flow of info among the attribute instances in a
particular parse tree[描绘了分析树的属性信息流]

p Directed graph where edges are dependence relationships between
attributes

p For each parse-tree node X, there’s a graph node for each attr of X
p If attr X.a depends on attr Y.b, then there’s one directed edge from X.a

to Y.b

20

Example: Dependency Graph

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

21

SDD:

Input:
float a, b, c

L id

D

L

,

L id,

id

T

float

lexeme

entryinh

inh entry

entryinhtype

lexeme

lexeme

‘entry’ is dummy attribute for the addtype()

Evaluation Order[属性值计算顺序]

• Ordering the evaluation of attributes[计算顺序]
− Dependency graph characterizes possible orders in which we

can evaluate the attributes at the various nodes of a parse-tree

• If the graph has an edge from node M to node N, then the
attribute associated with M must be evaluated before N[
用图的边来确定计算顺序]

− Thus, the only allowable orders of evaluation are those
sequences of nodes N1, N2, …, Nk such that if there is an edge of
the graph from Ni to Nj, then i < j

− Such an ordering embeds a directed graph into a linear order,
and is called a topological sort[拓扑排序] of the graph

p If there’s any cycle in the graph, then there are no topological sorts, i.e.,
no way to evaluate the SDD on this parse tree

p If there are no cycles, then there is always at least one topological sort

22

Example: Evaluation Order

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.lexeme, L.inh)
addtype(id.lexeme, L.inh)

23

SDD:

Input:
float a, b, c

L id

D

L

,

L id,

id

T

float

lexeme

entryinh

inh entry

entryinhtype

lexeme

lexeme

1

2

3

4
5 6

7 8

9 10

Topological sort:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Evaluation Order (cont.)
• Before evaluating an attribute at a node of a parse tree,

we must evaluate all attributes it depends on [依赖关系]
− Synthesized: evaluate children first, then the node itself

p Any bottom-up order is fine
− For SDD’s with both inherited and synthesized attributes,

there’s no guarantee that there is even one evaluation order
• Difficult to determine whether exist any circularities[非常
难确定是否有循环依赖]

− But, there are useful subclasses of SDD’s that are sufficient to
guarantee that an evaluation order exists

p Such classes do not permit graphs with cycles

24

B

A A.s

B.i

Production
A -> B

Semantic Rules
A.s = B.i;
B.i = A.s + 1;

S-Attributed Definitions[S-属性定义]

• An SDD is S-attributed if every attribute is synthesized[只
具有综合属性]

• If an SDD is S-attributed (S-SDD)
− We can evaluate its attributes in any bottom-up order of the

nodes of the parse-tree[任何自底向上的顺序计算属性值]
− Can be implemented during bottom-up parsing

25

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

