Compilation Principle

% % JE I8

129 15 T (2)
i NGE

xianweiz.github.io
DCS290, 4/8/2021

Dyide

https://xianweiz.github.io/

Review Questions (1)

* How does LALR(1) improve LR(1)?

Merge similar states to reduce space.

* How to merge states?

Merge states with same core: all items are identical except lookahead

 What are the side effects of state merging?
Introduce conflicts, delay error detection

 Why reduce-reduce conflict can happen in merging?

Merging is the reverse of splitting, thus hurting LR(1) capability

* What are the advantages of LALR(1)?
Higher parsing power than SLR(1), smaller parse table than LR(1)

»‘vlﬂ?

Review Questions (2)

e What are LL and LR?

LL=top-down (leftmost derivation)
LR=bottom-up (reverse of rightmost derivation)

* At high level, why LR is easier or more powerful than LL?

LR acts after seeing the entire RHS + lookahead, LR only guess with
first few lookahead terminals of RHS

* Why context analysis is not performed in parsing stage?

Parsing relies on CFG, which is context free.

* Give some examples of semantic analysis.
Def-before-use, no redefinition, same type, scoping ...

() N

LALRH) — LL g fE

e LALR(1)#ZLR(1)FHISLR(1)HI~F-4T

~ YVETJEE: LR > LALR > SLR
“IRAFH: LR > LALR =SLR

(B — 3G AE LRIM AESLR

- K EEFollow B AT N A A BERE R > SLRF™= A T 15
o M LRIE A FTlookahead i it 1 158

— LALRXSLRIFFATAHIUIR S &

o BAIFE I T PP > AR LALRSCEE

o Ao EEAEMNE > & LALRVE

o LALRW] DAEMT SC:G, B T SLRIFEA 1) 2

. i%LLALRBﬁH@%&ESLRifBH (HIHL 8RR 7 (R, XFSLRAE
Mraiis, 2 i/ 48 eI ok h i A28 % 1)

o WURIEAAMURAS, NLALR=LR

s un— > VEGESLR
- B4 G—E L AELRFILALR X VA

.~ LRHFollow i 73 2 A B2 1),

HLALRE FE[H] [SLR

Dhige

Syntax Directed Translation[i&vE #5113

Source Code

. l N
/ N
! \
! v
|

Lexical Analysis

Token Stream"

Syntax Analysis

Syntax Tree"

- [SemanticAnalysisT| . Syntax Directed Translation
“._Syntax Tree . . T B 5] 252
== ~— Semantic Translation (1A il 80)

/ ntermediate y) A

Code Generation | | (15 ><§EHHZ)

IR

\ 4
Optimization
IR

\ 4

Code Generation

v

Target Code

’ Dyide

Syntax Directed Translationiz i 5t

* To translate based on the program’s syntactic structure[i&
VAL
— Syntactic structure: structure of a program given by grammar
— The parsing process and parse trees are used to direct semantic
analysis and the translation of the program
o i.e., CFG-driven translation [CFGZX 3/ it &1 1%]

* How? Augment the grammar used in parser:

— Attach semantic attributes[1E X J& 4] to each grammar symbol

o The attributes describe the symbol properties

o An attribute has a name and an associated value: a string, a number, a
type, a memory location, an assigned register ...

— For each grammar production, give semantic rules or
actions[15 XN B B1E]
o The actions describe how to compute the attribute values associated
with each symbol in a production

() N

Attributes[iE X &)

 Attributes can represent anything depending on the task|
J& T Al LRI AR B Y]
- If computing expression: a number (value of expression)
- If building AST: a pointer (pointer to AST for expression)
- If generating code: a string (assembly code for expression)
- If type checking: a type (type for expression)

* Format: X.a (X'is a symbol, a is one of its attributes)

* For Project 2 — Syntax Analysis

— Semantic attributes

o intg: string table index of integer constant value
o tptr: “tree pointer” of a non-terminal symbol

— Semantic actions
o {.. $SS=makeTree(ProgramOp, leftChild, rightChild); ...}

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

How to Specify Syntax Directed Translation

* Syntax Directed Definitions (SDD)[i& i 5 & Y]

— Attributes + semantic rules[i& X # I Jfor computing them

o Attributes for grammar symbols[SVERF 5 FIE X & 1k o< Ex]
o Semantic rules for productions[;= A4 AT TE SO S EER]

— Example rules for computing the value of an expression
E->E,+E, RULE:{E.val =E,.val + E,.val}
E->id RULE: {E.val = id.lexval}

* Syntax Directed Translation scheme (SDT)[i5% | 381 77

%]
— Attributes + semantic actions[i& X Z/J{E] for computing them
— Example actions for computing the value of an expression
E->E,+E, {E.val=E,val+E,.val}
E->id {E.val = id.lexval}

@tuxs IR

SDD vs. SDT
o SDD[EIEHI S5 X RCFGIIHES, BRI 2 U

- A CFG grammar together with attributes and semantic rules
o A subset of them are also called attribute grammars[J& {4 3 %]

— Semantic rules imply no order to attribute evaluation

o SDTHEEH S BN %): SDDIIAN RS, EARE RSt 7 &

— An executable specification of the SDD
o Fragments of programs are attached to different points in the

production rules
— The order of execution is important

Grammar SDD SDT
D->TL L.inh = T.type D->T{L.inh=T.type}L
T->int T.type = int T->int{T.type =int}
T -> float T.type = float T ->real { T.type = float }
L,.inh = L.inh L->{L,.inh =L.inh }L,, id

L->L,id
& Dhig:

SDD vs. SDT (cont.)

* Syntax: A -> a {action,} B {action,} y ...

e Actions are executed "at that point” in the RHS
— action1 executes after a have been produced but before 3
— action2 executes after «, actionl, B but before y

 Semantic rule vs. action[1& X #LN] vs. 1& X B11F]

— Semantic rules are not associated with locations in RHS
o SDD doesn’t impose any order other than dependences

— Location of action in RHS specifies when it should occur
o SDT specifies the execution order and time of each action

»»L'G?

SDD[#E I E X

* SDD has two types of attributes[#)& 4]

— For a non-terminal A at a parse-tree node N

 Synthesized attribute[%: &)& 1]

- Defined by a semantic rule associated with the production at N
o The production must have A as its head (i.e., A->...)

— A synthesized attribute of node N is deflned only by attribute
values at N’s children and N itself[77 & 8% H]

* Inherited attribute[4t & J& 4]
— Defined by a semantic rule associated with the production at
the parent of N
o The production must have A as a symbol in its body (i.e., ... -> ...A...)

— An inherited attributed at node N is defined only by attrlbute
values at \’s parent, N itself, and N’s siblings [% 7 5. H &8k

UV EREp=Y

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Synthesized Attribute[44& &)

e Synthesized attribute for non-terminal A of parse-tree
node N [FFRERGEREME
— Only defined by N’s children and N itself

o Passed up the tree
- P.syn_attr = f(P.attrs, C,.attrs, C,.attrs, C;.attrs)

» Terminals can have synthesized attributes[Z& 45 5545 & &]
— Lexical values supplied by the lexical analysis

— Thus, no semantic rules in SDD for terminals
E.val = E,.val + T.val

E.val

E,.val + T.val

12 Dhige

Inherited Attribute[4t% & 4

* Inherited attribute for non-terminal A of parse-tree node
NEHEZ S5 75 48 7K g PE]
— Only defined by N’s parent, N’s siblings and N itself
o Passed down a parse tree

— C,.inh_attr = f(P.attrs, C,.attrs, C,.attrs, C;.attrs)

* Terminals cannot have inherited attributes[Z 45 & L4k K J&
1]
— Only synthesized attributes from lexical analysis
D->TL(L.inh=T.type)

13 Dhige

SDD[#E I E X

. Attrlbute dependencies in a production rule[f= £ F H) &

i nherite

A-> o B vy

N
Synthesizew

* SDD has rule of the form for each grammar production
b = f(A.attrs, a.attrs, B.attrs, y.attrs)

* b is either an attribute in LHS (an attribute of A)
— In which case b is a synthesized attribute
- Why? From A’s perspective o, B, y are children

* Or, b is an attribute in RHS (e.g., of B)
- In which case b is an inherited attribute
- Why? From B’s perspective A, a, y are parent or siblings

(&) T X2 14 Dud:

Example: Synthesized Attribute|&4&]

SDD:

Production Rules | Semantic Rules

(1) L->E S E] Each non-terminal has a single
(2)E->E, +T E.val = E,.val + T.val synthesized attribute val
(3)E->T E.val = T.val Terminal digit has a synthesized
(4) T -> Tl w F T.Val = Tl.Va/ X F.VCI/ attrlbute IeXVaI

(5) T->F T.val = F.val

(6) F-> (E) F.val = E.val

(7) F -> digit F.val = digit.lexval

Arithmetic expressions with + and *

(1) Print the numerical value of the entire expression
(2) Compute value of summation

(3) Value copy

(4) Compute value of multiplication

(5) Value copy

(6) Value Copy

Example: Synthesized Attribute|&4&]

SDD: Side effect (EI|1EH) "T
. . I
Production Rules /S/em.anhc&les Eval = 19
(1) L->E W <.
(2)E->E, +T E.val=E,.val + T.val /z’TI\
(3) E->T E.val = T.val E.val 2,1’5’ +: Tval=4
(4)T->T,*F T.val = T,.val x F.val A a
(5) T->F T.val = F.val | |
|
(6) F-> (E) . F.val = EVCI/ T.val = 15 F.vgl = 4
(7) F -> digit F.val = digit./lexval IAI~ _ T
/”’ : \\\\ |
Phe [|
Input: T.Va/A= 3 * F.va/i 5 digit./lexval = 4
3*5+4 | |
| |
F.lexval =3 digit./lexval =5
A

. Annotated parse tree (FRyF 77 HT)

digit.lexva/ = MG“Z

Example: Inherited Attribute[g#/#]

SDD:

Production Rules | Semantic Rules

T has synthesized attribute type

(1) D->TL L.inh = T.type _ _ . .
(2) T->int T.type = int L has inherited attribute inh
(3) T -> float T.type = float

(4) L-> Ly, id L,.inh = L.ink Pointing to a symbol-table object
addtyp Linh)
(5) L->id addtype(id-erntry, L.inh)

Variable declaration of type int/float followed by a list of IDs:
(1) Declaration: a type T followed by a list of L identifiers

(2) Evaluate the synthesized attribute T.type (int)

(3) Evaluate the synthesized attribute T.type (float)

(4) Pass down type, and add type to symbol table entry for the identifier
(5) Add type to symbol table

() N

Example: Inherited Attribute[g#/#]

SDD:

Production Rules

Semantic Rules

P

T.type = float L.inh = float

=T

float L.inh=float , id.lexeme=c

”
s
s
”
”

&
L.inh = float » id.lexeme=Db

(1) D->TL L.inh = T.type
(2) T->int T.type = int
(3) T -> float T.type = float
addtype(id.entry, L.inh)
(5) L->id addtype(id.entry, L.inh)
Input:
float a, b, c

id.lexeme = a

type depends on child
inh depends on sibling or parent

»ﬂﬁq

The Concepts

* Side effect[g|1/EH]
- — R EMEETE GETREMEEEE =T /M6
- fli1: code generation, print results, modify symbol table ...
e Attribute grammar[)E M4 1]
- —/MXA RITEFHISDD
— The rules define the value of an attribute purely in terms of the
value of other attributes and constants[& P 32 R AN AY
1 3o A AR AN 5 R e L — N e A
* Annotated parse-tree[FriF: 2 Hr#4]
- TN AR A & TR B A A

o A parse tree showing the value(s) of its attribute(s)

- a.k.a., attribute parse tree[J& £ 73 H1H]

»’vi‘ﬂtﬁ

Dependence Graph(#isi &

* Dependence relationship[# i< F]

— Before evaluating an attribute at a node of a parse tree, we
must evaluate all attributes it depends on

* Dependency graph[{# i 4]

— While the annotated parse tree shows the values of attributes,
a dependency graph helps determine how those values can be
computed [#& Hi B € J& AR P T 5

— Depicts the flow of info among the attribute instances in a
particular parse tree[fi% | 7 A 1Y @ 145 Bt

o Directed graph where edges are dependence relationships between
attributes

o For each parse-tree node X, there’s a graph node for each attr of X

o If attr X.a depends on attr Y.b, then there’s one directed edge from X.a
toY.b

4

Example: Dependency Graph

SDD:

Production Rules | Semantic Rules

(1) D->TL L.inh = T.type

(2) T->int T.type = int

(3) T -> float T.type = float

addtype(id.entry, L.inh)

(5) L->id addtype(id.entry, L.inh)
Input:

float a, b, c

P

T type

|nh L entry

T

float lj\\h Lentry

id lexeme

~
~
~
~

id lexeme

|dIexeme

‘entry’ is dummy attribute for the addtype()

21

Dhige

Evaluation Order[jg 44 i+ & 5T

* Ordering the evaluation of attributes[i1 5 Jlii/7]

- Dependency graph characterizes possible orders in which we
can evaluate the attributes at the various nodes of a parse-tree

* If the graph has an edge from node M to node N, then the

attribute associated with M must be evaluated before N|
FH B Y320 R A 5 T P]

— Thus, the only allowable orders of evaluation are those
sequences of nodes N;, N, ..., N, such that if there is an edge of
the graph from N;to N, then i < |

— Such an ordering embeds a directed graph into a linear order,
and is called a topological sort[#f1 1] of the graph

o If there’s any cycle in the graph, then there are no topological sorts, i.e.,
no way to evaluate the SDD on this parse tree

o If there are no cycles, then there is always at least one topological sort

() N

Example: Evaluation Order

SDD:
Production Rules | Semantic Rules /\
: T type 5 |nh L entry 6
(1) D->TL L.inh = T.type
(2) T->int T.type = int /7\
(3) T -> float Ttype = float float 7 |nh L entry 8 , |d|exem(
(4)L->L,, id L,.inh = L.inh ISR 3
addtype(id.lexeme, L.inh) | .-~ B -
(5)L->id addtype(id.lexeme, L.inh) |inh | entry id lexeme
1% 2
9 r 10
|
|
Input: id lexeme
1
float a, b, c

Togologlcal sort:

(T->™M"->

'1234567'.89'10

_— e - . . - - - - am - -

23 Dhige

Evaluation Order (cont.)

* Before evaluating an attribute at a node of a parse tree,
we must evaluate all attributes it depends on [{k#i5<]

- Synthesized: evaluate children first, then the node itself
o Any bottom-up order is fine

— For SDD’s with both inherited and synthesized attributes,
there’s no guarantee that there is even one evaluation order

e Difficult to determine whether exist any circularities[dF %

RERH RE 2 13 TR HCH]

— But, there are useful subclasses of SDD’s that are sufficient to
guarantee that an evaluation order exists

o Such classes do not permit graphs with cycles @

A.s

Production Semantic Rules < >
A->B A.s = B.i; 9 .
! B.i

B.i=A.s+1;

,‘ b
() F b X % N
SUN YAT-SEN UNIVERSITY " ‘

ik

S-Attributed Definitions[s-J&: & X

 An SDD is S-attributed if every attribute is synthesized[X
HAE 55 E M)

* If an SDD is S-attributed (S-SDD)

- We can evaluate its attributes in any bottom-up order of the
nodes of the parse-tree[{EAf] H J& [7] _E I 115 & 1]

— Can be implemented during bottom-up parsing

Production Rules | Semantic Rules
(1)L->E print(E.val)
(2JE->E +T E.val = E,.val + T.val
(3)E->T E.val = T.val
(4)T->T, *F T.val = T,.val x F.val
(5)T->F T.val = F.val

(6) F-> (E) F.val = E.val

(7) F -> digit F.val = digit.lexval

() N

