
Compilation Principle
编译原理

第14讲：语义分析(4)
张献伟

xianweiz.github.io
DCS290, 4/15/2021

https://xianweiz.github.io/

Review Questions (1)
• How is Semantic Rules differing from Actions?

• What is S-SDD?

• S-SDD is suitable for bottom-up or top-down parsing?

• How to convert an S-SDD into SDT?

• If implementing the SDT of S-SDD in LR parsing, when to
execute the actions?

2

Bottom-up. Natural to evaluate the parent after seeing all children.

Rules are used in SDD, actions are for SDT. Actions are specifically
placed at somewhere of the production body.

Along with reduction.

Place each rule inside ‘{}’ at the end of production.

Synthesized-SDD, with only synthesized attributes.

Review Questions (2)
• Is the SDD a L-SDD?

• Why do we prefer to do semantic analysis during parsing?

• For S-SDD in LR-parsing, how to change parse stack?

• How to convert L-SDD into SDT?

• L-SDD can be implemented in LL- or LR-parsing?

3

Inherited rules: place before the non-terminal; syn: production end.

Skip parse-tree generation, saving time and memory.

Save synthesized attributes into the stack, along with state/symbol.

NO. Z is right to Y, A.s is synthesized attribute.

Both. LL: predictive, recursive-descent; LR

A -> X Y Z Y.i = f(Z.z, A.s)

L-SDD in LL Parsing[非递归预测]

• Extend the parse stack to hold actions and certain data
items needed for attribute evaluation[扩展语法分析栈]

− Action-record[动作记录]: represent the actions to be executed
− Synthesize-record[综合记录]: hold synthesized attributes for

non-terminals
− Typically, the data items are copies of attributes[属性备份]

• Manage attributes on the stack[管理属性信息]
− The inherited attributes of a nonterminal A are placed in the

stack record that represents that terminal[符号位放继承属性]
p Action-record to evaluate these attributes are immediately above A

− The synthesized attributes of a nonterminal A are placed in a
separate synthesize-record that is immediately below A[综合属
性另存放]

4

action
A

A.syn
Inh Attr.
Syn Attr.

Code

L-SDD in LL Parsing (cont.)
• Table-driven LL-parser

− Mimics a leftmost derivation --> stack expansion

• A -> BC, suppose nonterminal C has an inherited attr C.i
− C.i may depend not only on the inherited attr. of A, but on all

the attrs of B
p Extra care should be taken on the attribute values

− Since SDD is L-attributed, surely that the values of the inherited
attrs of A are available when A rises to stack top

p Thus, available to be copied into C
− A’s synthesized attrs remain on the stack, below B and C when

expansion happens

5

action
A

A.syn
Inh Attr.
Syn Attr.

Code

L-SDD in LL Parsing (cont.)
• A -> BC: C.i may depend not only on the inherited attr. of

A, but on all the attrs of B
− Thus, need to process B completely before C.i can be evaluated
− Save temporary copies of all attrs needed by evaluate C.i in the

action-record that evaluates C.i; otherwise, when the parser
replaces A on top of the stack by BC, the inherited attrs of A will
be gone, along with its stack record

−变量展开时（i.e., 变量本身的记录出栈时），若其含有继承
属性，则要将集成属性复制给后面的动作记录

−综合记录出栈时，要将综合属性值复制给后面的动作记录

6

action
A

A.syn

Code

Example

7

(1) T -> F { T’.inh = F.val } T’ { T.val = T’.syn }

(2) T’ -> * F { T1’.inh = T’.inh x F.val } T1’ { T’.syn = T1’.syn }

(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

(1) T -> F { a1 } T’ { a2 }

(2) T’ -> * F { a3 } T1’ { a4 }

(3) T’ -> ε { a5 }
(4) F -> digit { a6 }

a1: T’.inh = F.val
a2: T.val = T’.syn
a3: T1’.inh = T’.inh x F.val
a4: T’.syn = T1’.syn
a5: T’.syn = T’.inh
a6: F.val = digit.lexval

Three kinds of symbols:
1) Terminal
2) Non-terminal
3) Action symbol

Example (cont.)

8

$TsynT

val

Input: 3 * 5

{ a2 }T’synT’{ a1 }FsynF

valinhval=3

{ a6 }digit

lexv=3

Stack top ‘digit’ matches the input ‘3’
- pop ‘digit’, but value copy is needed

d_lexv=3

a6: stack[top-1].val = stack[top].d_lexval

=3 val=3

(1) T -> F { a1 } T’ { a2 }

(2) T’ -> * F { a3 } T1’ { a4 }

(3) T’ -> ε { a5 }
(4) F -> digit { a6 }

a1: T’.inh = F.val
a2: T.val = T’.syn
a3: T1’.inh = T’.inh x F.val
a4: T’.syn = T1’.syn
a5: T’.syn = T’.inh
a6: F.val = digit.lexval

完整步骤见!：MOOC:语法制导翻译-3

https://www.icourse163.org/learn/HIT-1002123007?tid=1463293441

L-SDD in LR Parsing
• What we already learnt

− LR > LL, w.r.t parsing power
p We can do bottom-up every translation that we can do top-down

− S-attributed SDD can be implemented in bottom-up way
p All semantic actions are at the end of productions, i.e., triggered in

reduce

• For L-attributed SDD on an LL grammar, can it be
implemented during bottom-up parsing?

− Problem: semantic actions can be in anywhere of the
production body

9

(1) T -> F { T’.inh = F.val } T’ { T.val = T’.syn }
(2) T’ -> * F { T1’.inh = T’.inh x F.val } T1’ { T’.syn = T1’.syn }
(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

The Problem
• It is not natural to evaluate inherited attributes

− Example: how to get T’.inh

• Claim: inherited attributes are on the stack
− Left attributes guarantee they’ve already been computed
− But computed by previous productions – deep in the stack

• Solution
− Hack the stack to dig out those values

10

(1) T -> F { T’.inh = F.val } T’ { T.val = T’.syn }
(2) T’ -> * F { T1’.inh = T’.inh x F.val } T1’ { T’.syn = T1’.syn }
(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

T’

* F T1’

T

F

digitdigit ε

Solution: hack the stack to dig out those values

Marker
• Given the following SDD, where |⍺| ≠ |β|

A -> X ⍺ { Y.in = X.s } Y | X β { Y.in = X.s } Y
Y -> 𝛾 { Y.s = f(Y.in) }

• Problem: cannot generate stack location for Y.in
− Because X.s is at different relative stack locations from Y

• Solution: insert markers M1, M2 right before Y
A -> X ⍺ M1 Y | X β M2 Y
Y -> 𝛾 { Y.s = f(stack[top -|𝛾|].s) } // Y.s = M1.s or Y.s = M2.s
M1 -> ε { M1.s = stack[top -|⍺|].s } // M1.s = X.s
M2 -> ε { M2.s = stack[top -|β|].s } // M2.s = X.s

11

Modify Grammar with Marker
• Given an L-SDD on an LL grammar, we can adapt the

grammar to compute the same SDD during an LR parse
− Introduce into the grammar a marker nonterminal[标记非终结
符] in place of each embedded action

p Each such place gets a distinct marker, and there is one production for
any marker M, M -> ε [空产生式]

− Modify the action a if marker nonterminal M replaces it in some
production A -> ⍺ { a } β, and associate with M -> ε an action a’
that

p Copies, as inherited attrs of M, any attrs of A or symbols of ⍺ that action
a needs (e.g., M.i = A.i)

p Computes attrs in the same way as a, but makes those attrs be
synthesized attrs of M (e,.g., M.s = f(M.i))

12

A -> { B.i = f(A.i); } B C A -> M B C
M -> ε { M.i = A.i; M.s = f(M.i); }

Example

13

(1) T -> F { T’.inh = F.val } T’ { T.val = T’.syn }
(2) T’ -> * F { T1’.inh = T’.inh x F.val } T1’ { T’.syn = T1’.syn }
(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

(1) T -> F M T’ { T.val = T’.syn }
M -> ε { M.i = F.val; M.s = M.i }

(2) T’ -> * F N T1’ { T’.syn = T1’.syn }
N -> ε { N.i1 = T’.inh; N.i2 = F.val; N.s = N.i1 x N.i2 }

(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

Stack Manipulation[栈操作]

14

(1) T -> F M T’ { stack[top-2].val = stack[top].syn; top = top - 2; }
M -> ε { stack[top+1].T’inh = stack[top].val; top = top + 1; }

(2) T’ -> * F N T1’ { stack[top-3].syn = stack[top].syn; top = top -3; }
N -> ε { stack[top+1].T’inh = stack[top-2].T’inh x stack[top].val; top = top + 1; }

(3) T’ -> ε { stack[top+1].syn = stack[top].T’inh; top = top + 1; }
(4) F -> digit { stack[top].val = stack[top].lexval; }

完整步骤见!：MOOC:语法制导翻译-3

https://www.icourse163.org/learn/HIT-1002123007?tid=1463293441

Semantic Analysis (4)
Symbol Table

15

Compilation Phases[编译阶段]

• Lexical analysis[词法分析]
− Source code → tokens
− Detects inputs with illegal tokens
− Is the input program lexically well-formed?

• Syntax analysis[语法分析]
− Tokens → parse tree or abstract syntax tree (AST)
− Detects inputs with incorrect structure
− Is the input program syntactically well-formed?

• Semantic analysis[语义分析]
− AST → (modified) AST + symbol table
− Detects semantic errors (errors in meaning)
− Does the input program has a well-defined meaning?

16

Overview of Symbol Table
• Symbol table records info of each symbol name in a

program[符号表记录每个符号的信息]
− symbol = name = identifier

• Symbol table is created in the semantic analysis phase[语
义分析阶段创建]

− Because it is not until the semantic analysis phase that enough
info is known about a name to describe it

• But, many compilers set up a table at lexical analysis time
for the various variables in the program[词法分析阶段准
备]

− And fill in info about the symbol later during semantic analysis
when more information about the variable is known

• Symbol table is used in code generation to output
assembler directives of the appropriate size and type[后
续代码生成阶段使用]

17

Variable[程序变量]

• What are variables in a program?
− Variables are the names you give to computer memory

locations which are used to store values in a computer program
− Retrieve and update the variables using the names

• Variable declaration and definition[声明和定义]
− Declaration: informs the compiler type and name of a variable[
类型和名字]

− Definition: to assign a memory[内存空间分配]
p Once we assign or initialized a value compiler allocates the memory

18

int X, Y; /* Declaration of X and Y */
int M = 0, N = -1; /* Declaration and definition of X and Y */
X = 7; /* Defining X */
/* In the end Y is still not defined */

Example

19

Binding[绑定]

• Binding: match identifier use with definition[使用-定义]
− Definition: associating an id with a memory location
− Hence, binding associates an id use with a location
− Binding is essential step before machine code generation

• If there are multiple definitions, which one to use?

20

void foo()
{

char x; /* allocated at mem[0x100] */
...
{

int x; /* allocated at mem[0x200] */
…

}
x = x + 1;

}
/* add mem[0x100],1 ? add mem[0x200],1 ?

Scope[作用域]

• Scope: program region where a definition can be bound
− Uses of identifier in the scope is bound to that definition
− For C: auto/local, static, global

• Some properties of scopes
− Use not in scope of any definition results in undefined error
− Scopes for the same identifier can never overlap

p There is at most one binding at any given time

• Two types: static scoping and dynamic scoping
− Depending on how scopes are formed

21

Static Scoping[静态作用域]

• Scopes formed by where definitions are in program text[
一个声明起作用的那段区域]

− Also known as lexical scoping since related to program text
C/C++, Java, Python, JavaScript [也叫词法作用域]

• Rule: bind to the closest enclosing definition

22

void foo()
{

char x;
...
{

int x;
…

}
x = x + 1;

}

Dynamic Scoping[动态作用域]

• Scopes formed by when definitions happen during
runtime[运行时决定]

− Perl, Bash, LISP, Scheme

• Rule: Bind to most recent definition in current execution

23

void foo()
{

(1) char x;
(2) if (...) {
(3) int x;
(4) ...

}
(5) x = x + 1;
}

• Which x’s definition is the most recent?
- Execution (a): ...(1)...(2)...(5)
- Execution (b): ...(1)...(2)...(3)...(4)...(5)

Static vs. Dynamic Scoping
• Most languages that started with dynamic scoping (LISP,

Scheme, Perl) added static scoping afterwards
• Why? With dynamic scoping ...

− All bindings are done at execution time
− Hard to figure out by eyeballing, for both compiler and human

• Pros of static scoping[静态的好处]
− Static scoping leads to fewer programmer errors

p Bindings readily apparent from lexical structure of code
− Static scoping leads to more efficient code

p Compiler can determine bindings at compile time
p Compiler can translate identifier directly to memory location
p Results in generation of efficient code

• For this class, we will discuss static scoping only
24

What is Symbol Table[符号表]

• Symbol: same thing as identifier (used interchangeably)
• Symbol table: a compiler data structure that tracks info about

all program symbols
− Each entry represents a definition of that identifier
− Maintains list of definitions that reach current program point
− List updated whenever scopes are entered or exited
− Used to perform binding of identifier uses at current point
− Built by either...

p Traversing the parse tree in a separate pass after parsing
p Using semantic actions as an integral part of parsing pass

• Usually discarded after generating executable binary
− Machine code instructions no longer contain symbols
− For use in debuggers, symbol tables may be included

p To display symbol names instead of addresses in debuggers
p For GCC, using ‘gcc -g ...” includes debug symbol tables

25

Maintaining Symbol Table[维护]

• Basic idea
int x=0; ... void foo() { int x=0; ... x=x+1; } ... x=x+1 ...

− Before processing foo:
p Add definition of x, overriding old definition of x if any

− After processing foo:
p Remove definition of x, restoring old definition of x if any

• Operations
− enter_scope() start a new nested scope
− exit_scope() exit current scope

− find_symbol(x) find the information about x
− add_symbol(x) add a symbol x to the symbol table
− check_symbol(x) true if x is defined in current scope

26

