Compilation Principle

% % JE I8

F143E: 15 X (4)
i NGE

xianweiz.github.io
DCS290, 4/15/2021

Dyide

https://xianweiz.github.io/

Review Questions (1)

* How is Semantic Rules differing from Actions?

Rules are used in SDD, actions are for SDT. Actions are specifically
placed at somewhere of the production body.

* What is S-SDD?
Synthesized-SDD, with only synthesized attributes.

e S-SDD is suitable for bottom-up or top-down parsing?
Bottom-up. Natural to evaluate the parent after seeing all children.

e How to convert an S-SDD into SDT?

Place each rule inside ‘{}’ at the end of production.

* If implementing the SDT of S-SDD in LR parsing, when to

execute the actions?
Along with reduction.

»‘vi‘@z

Review Questions (2)

* |sthe SDD a L-SDD? A->XYZ | Yi=f(Z.z A.s)

NO. Zisrightto Y, A.s is synthesized attribute.

* Why do we prefer to do semantic analysis during parsing?
Skip parse-tree generation, saving time and memory.

* For S-SDD in LR-parsing, how to change parse stack?

Save synthesized attributes into the stack, along with state/symbol.

e How to convert L-SDD into SDT?

Inherited rules: place before the non-terminal; syn: production end.
* L-SDD can be implemented in LL- or LR-parsing?

Both. LL: predictive, recursive-descent; LR

»‘vi‘@z

L-SDD in LL Parsing[dE:#)3 1]

* Extend the parse stack to hold actions and certain data
items needed for attribute evaluation[§ EiE: 7 #r k]

- Action-record[Z]{E1C.3%]: represent the actions to be executed

— Synthesize-record[Z£ 5 1C. 5%]: hold synthesized attributes for
non-terminals

- Typically, the data items are copies of attributes[/& "E 851771

* Manage attributes on the stack[& & 15 5]

— The inherited attributes of a nonterminal A are placed in the
stack record that represents that terminal [5] 5 {37 i 4% 7K J& 2]

o Action-record to evaluate these attributes are immediately above A

— The synthesized attributes of a nonterminal A are placed in a
separate synthesize-record that is immediately below A[Z£ & J&

P 5 ﬁﬁ&] action| Code
A |Inh Attr.
A.syn Syn Attr. Dhig:

L-SDD in LL Parsing (cont.)

* Table-driven LL-parser
— Mimics a leftmost derivation --> stack expansion

* A ->BC, suppose nonterminal C has an inherited attr C.i
- C.i may depend not only on the inherited attr. of A, but on all
the attrs of B
o Extra care should be taken on the attribute values
— Since SDD is L-attributed, surely that the values of the inherited

attrs of A are available when A rises to stack top
o Thus, available to be copied into C

— A’s synthesized attrs remain on the stack, below B and C when
expansion happens

action| Code
A |Inh Attr.

A.syn |Syn Attr.)’"pﬂq

L-SDD in LL Parsing (cont.)

* A->BC: C.i may depend not only on the inherited attr. of
A, but on all the attrs of B

— Thus, need to process B completely before C.i can be evaluated

— Save temporary copies of all attrs needed by evaluate C.i in the
action-record that evaluates C.i; otherwise, when the parser
replaces A on top of the stack by BC, the inherited attrs of A will
be gone, along with its stack record

- R RN (e, BEAGFIILFHEERN) , HHEHE %K
JeE, EDRE SR Al 1 5= A 45 J T i s R il %

- ZRE R AR, ERRZE S B E B 4 s T B s R ik

action| Code
A

A.syn ISCCE

Example

(1) T->F{T.inh=Fval } T {T.val =T".syn }
(2) T ->*F{T,.inh=T".inhxFval } T, {T".syn=T,".syn }

(3)T"->€e{T.syn=T.inh }
(4) F -> digit { F.val = digit.lexval }

Three kinds of symbols:
1) Terminal

2) Non-terminal

3) Action symbol

(1) T->F{a,;}T {a,} a,: T.inh = F.val

a,: Tval =T’ .syn

(2) T ->*F{as;} T, {a,} |as: T,.inh=T.inh x F.val
a,: T'.syn=T,.syn

(3) T"->e{ag} as: T'.syn =T .inh

(4) F ->digit { a¢ } ag: F.val = digit.lexval

ME?

Example (cont.)

(1) T->F{a;} T {a,} a,: T.inh = F.val

a,: Tval =T .syn

(2) T"->*F{a3}T, {a,} |as:T,.inh=T'inh x F.val
a,: T'.syn=T,.syn

(3)T"->e{ag} as: T'.syn=T.inh
(4) F ->digit { a¢ } ag: F.val = digit.lexval
Input: 515 }" 5 Stack top ‘digit’ matches the input ‘3’

- pop ‘digit’, but value copy is needed
ag: stack[top-1].val = stack[top].d _lexval

digit | {ag} | Fsyn |[{a;}| T |T'syn|{a,}| Tsyn S

lexv=3 | d_lexv=3 | val =3| val=3 | inh val val

%55’ & : MOOC:iE VA 5 &1 1%E-3
@) tuxs B

https://www.icourse163.org/learn/HIT-1002123007?tid=1463293441

L-SDD in LR Parsing

* What we already learnt
- LR > LL, w.r.t parsing power
o We can do bottom-up every translation that we can do top-down

— S-attributed SDD can be implemented in bottom-up way

o All semantic actions are at the end of productions, i.e., triggered in
reduce

* For L-attributed SDD on an LL grammar, can it be
implemented during bottom-up parsing?

- Problem: semantic actions can be in anywhere of the
production body

(1) T->F{T.inh=Fval } T' { T.val =T'.syn }

(2) T ->*F{T,inh=T.inhxFval } T, {T.syn=T,.syn}
(3) T"->€{T.syn=T.inh }

(4) F -> digit { F.val = digit./lexval }

(&) F b X % o
/ SUN YAT-SEN UNIVERSITY " ‘

’Gli

The Problem

e It is not natural to evaluate inherited attributes
— Example: how to get T'.inh

e Claim: inherited attributes are on the stack

— Left attributes guarantee they’ve already been computed
- But computed by previous productions — deep in the stack

 Solution
— Hack the stack to dig out those values

(1)T >F{T’1nh Fval}T’{Tva/ T’syn}

10

Marker

 Given the following SDD, where |a| # |B]|
A->Xa{Y.in=Xs}Y | XB{Yin=Xs}Y
Y ->y {Y.s=f(V.in))

* Problem: cannot generate stack location for Y.in
— Because X.s is at different relative stack locations from Y

* Solution: insert markers My, M, right before Y
A->XaM Y| XBM,Y
Y ->y{VY.s="f(stack[top -|y|].s)} //Ys=MysorYs=M,.s
M, -> € {M,.s =stack[top -|a]|].s} //Mis=X.s
M, -> € { M,.s = stack[top -|B|].s} //M,.s=X.s

; E 11 ’ G
iv&m&nﬁ }& ih L{

Modify Grammar with Marker

* Given an L-SDD on an LL grammar, we can adapt the
grammar to compute the same SDD during an LR parse

— Introduce into the grammar a marker nonterminal[#r1c3F & 45
#F] in place of each embedded action
o Each such place gets a distinct marker, and there is one production for
any marker M, M -> € [724 1]
- Modify the action a if marker nonterminal M replaces it in some
production A->a {a } B, and associate with M -> € an action a’
that

o Copies, as inherited attrs of M, any attrs of A or symbols of a that action
a needs (e.g., M.i = A.j)

o Computes attrs in the same way as a, but makes those attrs be
synthesized attrs of M (e,.g., M.s = f(M./))

A->MBC
M -> g { M.i = A.i; M.s = f(M.i); }

() N

A->{B.i=f(A.i); }BC

Example

(1) T->F{T.inh=Fval } T’ { T.val =T'.syn }

(2) T ->*F{T,.inh=T.inhxFval } T, {T.syn=T,.syn}
(3) T"->€{T.syn=T.inh }

(4) F -> digit { F.val = digit.lexval }

(1) T->FMT {T.val =T".syn}
M ->¢€ { M.i =Fval; M.s = M.i }
(2)T->*FENT,” {T.syn=T,"syn}
N -> & {N.i1l =T.inh; N.i2 = Fval; N.s = N.i1 x N.i2 }
(3) T"->€{T.syn=T.inh }
(4) F -> digit { F.val = digit.lexval }

13 Dhige

Stack Manipulation[kfiE]

(1) T->F{T.nh=Fval} T’ {T.val =T ".syn }

()T >*F{T,Minh=T.inhxFval } T, {T'.syn=T,".syn }
(3)T"->e{T.syn=T'inh }

(4) F -> digit { F.val = digit.lexval }

() T>FMT {Tval=T'".syn}
M ->¢e {M.i=Fval; M.s=M.i}
(2T >*FNT, {T'.syn=T,"syn}
N ->g{N.i1=T.inh; N.i2 = Fval; N.s = N.i1 x N.i2 }
(3) T >e{T.syn=T.inh }
(4) F ->digit { F.val = digit.lexval }

(1) T->F M T’ { stack[top-2].val = stack[top].syn; top =top - 2; }
M -> € { stack[top+1].T’inh = stack[top].val; top =top + 1, }
(2) T ->*FNT, {stack[top-3].syn = stack[top].syn; top = top -3; }
N -> € { stack[top+1].T’inh = stack[top-2].T’inh x stack[top].val; top = top + 1; }
(3) T" -> € { stack[top+1].syn = stack[top].T'inh; top = top + 1, }
(4) F -> digit { stack[top].val = stack[top]./exval; }

SEROETR . MOOCHETEH] S -3 [Hil:

https://www.icourse163.org/learn/HIT-1002123007?tid=1463293441

Semantic Analysis (4)

Symbol Table

15 M‘GLZ

Compilation Phases 4B

e Lexical analysis[iaiE4#7]
— Source code — tokens
— Detects inputs with illegal tokens
- Is the input program lexically well-formed?

* Syntax analysis[i& %717
— Tokens — parse tree or abstract syntax tree (AST)
- Detects inputs with incorrect structure
- Is the input program syntactically well-formed?

* Semantic analysis[iZ& X 73 #7]
- AST — (modified) AST + symbol table
- Detects semantic errors (errors in meaning)
— Does the input program has a well-defined meaning?

,‘

@) F w % 16
\f‘ 'g

\ SN / SUN YAT-SEN UNIVERSITY

Dige

Overview of Symbol Table

e Symbol table records info of each symbol name in a
program[fF 5 RIL KBTS G L]
- symbol = name = identifier

. Symbol table is created in the semantic analysis phase[i&
N B]

— Because it is not until the semantic analysis phase that enough
info is known about a name to describe it

* But, many compilers set up a table at lexical analysis time
for the various variables in the program[1]y #TF BX 1

1]

— And fill in info about the symbol later during semantic analysis
when more information about the variable is known

* Symbol table is used in code generation to output
assembler directives of the appropriate size and type[)5

BRI R B)

»‘vi‘@z

Variable[f& 52 &

 What are variables in a program?

— Variables are the names you give to computer memory
locations which are used to store values in a computer program

— Retrieve and update the variables using the names

* Variable declaration and definition[7= B fl15E Y]
— Declaration: informs the compiler type and name of a variable|
HHIRN 4 7]
— Definition: to assign a memory[N 7% 6] 77 L]
o Once we assign or initialized a value compiler allocates the memory

int X, Y; /* Declaration of X and Y */
int M =0, N= -1; /* Declaration and definition of X and Y */
X =7; /* Defining X */

/¥ In the end Y 1s still not defined */

»‘vi’ﬂ”ﬁ

Example

1 #include <stdio.h>
2
3 int g_val;
4
5 int main() {
6 int 1_val;
7 static int s_val;
o)
Q printf("g_val=%d, 1_val=%d, s_val=%d\n", g_val, 1l1_val, s_val);
10
11 return 0;
12}

[xianwei@test>]$ gcc -Wall -g -0 testc testc.c
testc.c:9:52: warning: variable '1_val' is uninitialized when used here [-Wuninitialized]
printf("g_val=%d, 1_val=%d, s_val=%d\n", g_val, l_val, s_val);

testc.c:6:13: note: initialize the variable 'l_val' to silence this warning
int 1_val;
= 0
1 warning generated.
[xianwei@test>]$./testc
g_val=0, 1_val=282353718, s_val=0
[xianwei@test>]$./testc
g_val=0, 1_val=142671926, s_val=0
[xianwei@test>]$./testc
g_val=0, 1_val=227987510, s_val=0

@ tuxs 19 IS

Binding (45

J-EN]

 Binding: match identifier use with definition[{s
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is essential step before machine code generation

* If there are multiple definitions, which one to use?

void foo()

{

charx; /* allocated at mem[0x100] */

{
int x;| /* allocated at mem[0x200] */

x =x + 1; /* add mem[0x100],1 ? add mem[0x200],1 ?

ScopefE k]

* Scope: program region where a definition can be bound
— Uses of identifier in the scope is bound to that definition
— For C: auto/local, static, global

* Some properties of scopes
— Use not in scope of any definition results in undefined error

— Scopes for the same identifier can never overlap
o There is at most one binding at any given time

* Two types: static scoping and dynamic scoping
- Depending on how scopes are formed

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Static Scoping[s &1 F k]

* Scopes formed by where definitions are in program text|
— 5 B AR R A I8 B [X 4]
— Also known as lexical scoping since related to program text
C/C++, Java, Python, JavaScript [t A {a]VEAE A 18]

* Rule: bind to the closest enclosing definition

void foo()

{

char x:

»‘vi‘@z

Dynamic Scoping[ahZs1E H k]

* Scopes formed by when definitions happen during
runtime[iz 17 P E]
— Perl, Bash, LISP, Scheme
e Rule: Bind to most recent definition in current execution

void foo()
{ Which x’s definition is the most recent?
g; _th(ar)x{? - Execution (a): ...(1)...(2)...(5)
IT\... . \
(3) intx - Execution (b): ...(1)...(2)...(3)...(4)...(5
(4) ..
}
(5) x =x+1;
}

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Static vs. Dynamic Scoping

* Most languages that started with dynamic scoping (LISP,
Scheme, Perl) added static scoping afterwards

* Why? With dynamic scoping ...
— All bindings are done at execution time
— Hard to figure out by eyeballing, for both compiler and human

* Pros of static scoping[Ff A B #T-4b]
— Static scoping leads to fewer programmer errors
o Bindings readily apparent from lexical structure of code

— Static scoping leads to more efficient code

o Compiler can determine bindings at compile time
o Compiler can translate identifier directly to memory location
o Results in generation of efficient code

* For this class, we will discuss static scoping only

»‘vi‘@z

What is Symbol Table[#F 5 %]

* Symbol: same thing as identifier (used interchangeably)

* Symbol table: a compiler data structure that tracks info about
all program symbols
— Each entry represents a definition of that identifier
- Maintains list of definitions that reach current program point
— List updated whenever scopes are entered or exited
- Used to perform binding of identifier uses at current point

— Built by either...
o Traversing the parse tree in a separate pass after parsing
o Using semantic actions as an integral part of parsing pass

* Usually discarded after generating executable binary
— Machine code instructions no longer contain symbols

— For use in debuggers, symbol tables may be included
o To display symbol names instead of addresses in debuggers
o For GCC, using ‘gcc-g ...” includes debug symbol tables

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Maintaining Symbol Table[4t4]

e Basic idea
int x=0; ... void foo() { int x=0; ... x=x+1; } ... x=x+1 ...

— Before processing foo:
o Add definition of x, overriding old definition of x if any

— After processing foo:
o Remove definition of x, restoring old definition of x if any

* Operations
- enter_scope() start a new nested scope

- exit_scope() exit current scope

- find_symbol(x) find the information about x
- add_symbol(x) add a symbol x to the symbol table
- check_symbol(x) true if x is defined in current scope

@tuxs IR

