Compilation Principle

% % JE I8

FA5YE: 15 X7 (5)
i NGE

xianweiz.github.io
DCS290, 4/20/2021

Dyide

https://xianweiz.github.io/

Review Questions (1)

e What are S-SDD and L-SDD?

S-SDD: synthesized-SDD (only syn attributes),
L-SDD: left-attributed SDD (only left-to-right dependency).

* Why S-SDD is natural to be implemented in LR parsing?

Syn attributes: evaluate parent after seeing all children (=reduce).

 Why L-SDD is not natural for LR parsing?

Semantic actions can be in anywhere of the production bodly.

* For L-SDD in LL parsing, how to extend the parse stack?
Action record — symbol (inh) — synthesized record (syn).

* For L-SDD in LL parsing, we add data-items?

When popping symbol or syn-record, attr values should be copied.

»‘vi‘@z

Review Questions (2)

* At high level, why L-SDD can be implemented in LR?

Left-attributed, the needed attribute values must be in the stack.

* Roughly, how do we modify L-SDD for LR parsing?

Add non-terminal markers to make all actions at production end.

* What is symbol table?

A structure to record info of each symbol name in a program.

* Is the symbol table deleted after semantic analysis?
NO. Symbol table is still needed by code generation.
* Why static scoping is better than dynamic?

Fewer programmer errors, more efficient code.

»‘vi‘@z

Maintaining Symbol Table[4t4]

e Basic idea

int x=0; ... void foo() { int x=0; ... x=x+1; } ... x=x+1 ...

— Before processing foo:
o Add definition of x, overriding old definition of x if any

— After processing foo:
o Remove definition of x, restoring old definition of x if any

* Operations
— enter_scope() start a new scope
- exit_scope() exit current scope

- find_symbol(x) find the information about x
- add_symbol(x) add a symbol x to the symbol table
- check_symbol(x) true if x is defined in current scope

@tuxs IR

Symbol Table Structure[4;#)

* Frontend time affected by symbol table access time[ff =
< U7 0] s 1] 5 W) 2 196 117 S 111 R]
- Frontend: lexical, syntax, semantic analyses
- Frequent searches on any large data structure is expensive
- Symbol table design is important for compiler performance

* What data structure to choose?[n] i ¥z 45 #]
— List[Z M35
— Binary tree[. X]
— Hash table['5 75 3]

* Tradeoffs: time vs. space[= [a] A1 &) B AL H]

— Let us first consider the organization w/o scope

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Symbol Table Structure (cont.)

* Array: no space wasted, insert/delete: O(n), search: O(n)

* Linked list: extra pointer space, insert/delete: 0(1),
search:0(n)

— Optimization: move recently used identifier to the head
- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list

info4

infos

[oF

info4

id2

infoo

— But insert/delete/search is O(log n) on balanced tree

- In the worst case, tree may reduce to linked list
o Then insert/delete/search becomes O(n)

Hash Table[d &%)

* hash(id _name) = index
— A hash function decides mapping from identifier to index
— Conflicts resolved by chaining multiple IDs to same index

* Memory consumption from hash table (N << M)
— M: the size of hash table
— N: the number of stored identifiers

* But insert/delete/search in O(1) time
— Can become O(n) with frequent conflicts and long chains

* Most compilers choose hash table for its quick access
time

| idy | infoq id2 | infoz | nil

3 id3 | infos

Y Dige

Adding Scope to Symbol Table

* To handle multiple scopes in a program, [4b ¥ 2 ™ME A5
— Conceptually, need an individual table for each scope
o In order to be able to enter and exit scopes

* Sometimes symbols in scope can be discarded on exit:
if (...) {intv; }/* block scope */

[*Vis no longer valid */ class X { ... void foo() {...} ... } /* class scope */
* Sometimes not: /* foo() is no longer valid */
Xv;

call v.foo(); /* v.foo() is still valid */
* How can scoping be enforced without discarding
symbols?
- Keep a stack of active scopes at a given point
- Keep a list of all reachable scopes in the entire program

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Handle Scopes with Stack

* Organize all symbol tables into a scope stack[{F %]

- An individual symbol table for each scope

o Scope is defined by nested lexical structure, e.g., {C; {C, {C5}} {C,}}

— Stack holds one entry for each open scope
o Innermost scope is stored at the top of the stack

* Stack push/pop happen when entering/exiting a scope

Parsinghere - - - - 4=l- - - — - = - - — — — 1 .

IC4 C,’s Symbol Table

Symbol tables

A

Scope stack
AL

Handle Scopes with Stack (cont.)

* Operations

— When entering a scope
o Create a new symbol table to hold all variables declared in that scope
o Push a pointer to the symbol table on the stack

— Pop the pointer to the symbol table when exiting scope
— Search from the top of the stack

C,
C, C;’s Symbol Table
Parsing here G
g C,’s Symbol Table |
IC4 C,’s Symbol Table [<
Symbol tables Scope stack

10

P

Handle Scopes with Stack (cont.)

* Operations
— When entering a scope

o Create a new symbol table to hold all variables declared in that scope

o Push a pointer to the symbol table on the stack

— Pop the pointer to the symbol table when exiting scope
— Search from the top of the stack

G

Ic2

11

C,’s Symbol Table

C;’s Symbol Table

C,’s Symbol Table

C,’s Symbol Table

Symbol tables

Scope stack
AL

Handle Scopes using Chaining

 Cons of stacking symbol tables[# /7 2 1k &]

— Inefficient searching due to multiple hash table lookups

o All global variables will be at the bottom of the stack

- Inefficient use of memory due to multiple hash tables
o Must size hash tables for max anticipated size of scope

* Solution: single symbol table for all scopes using chaining

- Insert: insert (ID, current nesting level) at front of chain

— Search: fetch ID at the front of chain
— Delete: when exiting level k, remove all symbols with level k

o For efficient deletion, IDs for each level maintained in a list

h(k) -

info4

nesting level = 2

infos

nesting level = 1

nil

i | infos

nesting level = 2

Dige

Handle Scopes using Chaining (cont.)

* Note: symbol table only maintains current

y active scopes

— All entries with the closing scope are deleted upon exiting

* Note: does not maintain list of all reachable scopes
— Cannot refer back to old scopes that have been exited
— Still useful for block scopes that are discarded on exit

* Usages

— Unsuitable for class scopes (only block scopes)

— Exiting scopes is slightly more expensive
o Requires traversing the entire symbol table

— Lookup requires only a single hash table access
— Savings in memory due to single large hash table

»‘vi‘@z

Info Storec

in Symbol Table

* Entry in symbo

table

— String: the name of identifier

— Kind: function,

variable, struct type, class type

string

kind | attributes

* Attributes vary with the kind of symbols
— variable: type, address of variable
— function: prototype, address of function body
— struct type: field names, field types
— class type: symbol table for class

14

Dige

Attribute List in Symbol Table

* Type info can be arbitrarily complicated
— Type can be an array with multiple dimensions

char arr[20][20]; struct Point {
— Type can be a struct with multiple fields float x;
. . . . float y;
e Store all type info in an attribute list } point; Y
— Entry for an array variable with 2 dimensions
id |array variable | base type | —+——{ 1st dimension size 2nd dimension size
— Entry for a struct variable
id |struct variable | —— point to struct type entry
— Entry for a struct type with 2 fields
id |struct type |total size field, id | type | size field, id | type | size

15 INCE

Use Type InformationZ5#i{z 8]

e Each variable or function entry contains type info

 Type info is used in later code generation stage[fChSAE %]
— To calculate how much memory to allot for a variable

— To translate uses of variables to machine instructions
o Should a’+ on variable be an integer or a floating point add?
o Should a variable assignment be a 4 byte or 8 byte copy?

- To translate calls to functions to machine instructions
o What are the types of arguments passed to the function?
o What is the type of value returned by the function?

* Also used in later code optimization stage[fCAZ L {k]
— To help compiler understand semantics of program

* Also used in semantic analysis stage for Type Checking
- Uses types to check semantic correctness of program

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Semantic Analysis (5)

Type Checking

17 Dhige

Type and Type Checking

* Type: a set of values + a set of operations on these values
— int/double: same memory storage

» Type checking: verlfymg type consistency across program|
I alehare

— A program is sald to be type consistent if all operators are
consistent with the operand value types

- Much of what we do in semantic analysis is type checking

* Some type checking examples:
— Given char *str = “Hello”;
o str[2] is consistent: char™ type allows [] operator
o str/2 is not: char* type does not allow / operator
- Givenint pi = 3;
o pi/2 is consistent: int type allows / operator

o pi=3.14 is not: = operator not allowed on different types
* Compiler must type convert implicitly to make it consistent

4

Static Type Checking[# &2 246 75

* Static type checking: at compile time[i{##s: ZRiFEHT]
- Infers program is type consistent through code analysis

o Collect info via declarations and store in symbol table
o Check the types involved in each operation

- E.g.,inta, b, c;a=Db+c; can be proven type consistent because
the addition of two ints is an int

* Difficult for a language to only do static type checking

— Some type errors usually cannot be detected at compile time
o E.g., a and b are of type int, a * b may not in the valid range of int

o Typecasting can be pretty risky thing to do (Basically, typecast suspends
type checking)

* unsigned a; (int)a;

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Dynamic Type Checking[#h&#]

* Dynamic type checking: at execution time[zjzs: FUATHT]
— Type consistency by checking types of runtime values

- Include type info for each data location at runtime

o E.g., a variable of type double would contain both the actual double
value and some kind of tag indicating “double type”

o The execution of any operation begins by first checking these type tags

o The operation is performed only if everything checks out (otherwise, a
type error occurs and usually halts execution)

- E.g., C++/Java downcasting to a subclass
o Is dynamic_cast<Child*>(parent); type consistent?

— Array bounds check:
o Isint A[10], i; ... A[i] =i; type consistent
e Static type checking is always more desirable. Why?
— Always desirable to catch more errors before runtime
- Dynamic type checking carriers runtime overhead

A \)
(&) T X & 4
SUN YAT-SEN UNIVERSITY ‘ ' ‘

Static vs. Dynamic Typing[&#&-ah35)

e Static typing: C/C++, Java, ...
— Variables have static types - holds only one type of value
o E.g.int x; 2 x can only hold ints
o E.g. char *x; & x can only hold char pointers
- How are types assigned to variables?

o C/C++, Java: types are explicitly defined
o int x; = explicit assignment of type int to x

* Pros / cons of static typing

— More programmer effort

o Programmer must adhere to strict type rules

o Defining advanced types can be quite complex (e.g. classes)
— Less program bugs and execution time

o Thanks to static type checking

PN

e

Static vs. Dynamic Typing (cont.)

* Dynamic Typing: Python, JavaScript, PHP, ...

— Variables have dynamic types = can hold multiple types

var x; /* var declaration without a static type */
x = 1; /* now x holds an integer value */
x = "one"; /* now x holds a string value */

- How are types assigned to variables?

o Type is a runtime property - type tags stored with values
o Dynamic type checking must be done during runtime

* Pros / cons of dynamic typing

— Less programmer effort
o Flexible type rule means program is more malleable
o Absence of types / classes declarations means shorter code
o Makes it suitable for scripting or prototyping languages
— More program bugs and execution time
o Due to dynamic type checking

»»L'G“Z

Type Systems[Z:7I 24

e Static / dynamic typing are type systems
- Type System: types + type rules of a language

* Static / dynamic type checking are methods
- Methods to enforce the rules of the given type system

e Static type checking is not used exclusively for static
typing
— Static type checking also used for dynamic typing

— If certain types can be inferred and checked at compile time
o Can reduce dynamic type checks inserted into code

* Dynamic type checking is not used only for dynamic
typing
- Some features of statically typed languages require it
o e.g. downcasting requires type check of object type tag

ype Systems: Soundness, Completeness

e Static type checking through inference

Inf;rence deducing a conclusion[Z51£] from a set of premises]
]
— What are the premises? Type rules in the type system

— What is the conclusion? Accept / reject after applying rules

* A type system is said to be Sound/[7/ Z£] if:
— Only correct programs are accepted
- Flipside: all incorrect programs are rejected

* A type system is said to be Complete[7= #5] if:
— All correct programs are accepted
— Flipside: only incorrect programs are rejected

* A type system strives to be both sound and complete
— The rules of inference (type rules) should reflect that

() N

Rules of Inference

e What are rules of inference?
— Inference rules have the form
if Precondition is true, then Conclusion is true

— Below concise notation used to express above statement
Precondition

Conclusion
— For example: Given E3 - E1 + E2, a rule may be:
if E1, E2 are type consistent and int types (Precondition),
then E3 is type consistent and is an int type (Conclusion)

* Recursive type checking via inference
— Start from variable and constant types at bottom of tree
o Serves as initial preconditions for the inference

— Apply rules on operator nodes while working up the tree
o Checks type consistency and assigns type to node

A

() F b X % 25
\“‘

Ny 4 SUN YAT-SEN UNIVERSITY

Dhige

BTN

o g i i P
-RESEH (10%) - 54, . Mk
— REEENE (20%) -4REA, FiB
- BT (10%) - PR)
- WIRFER (60%) - [H4

I/I

[EE Y ApERiN Ty,
— Project 1 (25%) - Lexical Analysis
- Project 2 (25%) - Syntax Analysis »
— Project 3 (25%) - Semantic Analysis
- Project 4 (25%) - Code Generation

AN RS (12%)

Project1 (22%)
Project 2 (22%)
Project 3 (22%)
Project4 (22%)

x E ‘ 2 r E
iyﬁ!ﬂvﬁtﬁ wi Hh UZ

