Compilation Principle

Im 17 5 B
a6 A1)
NG

xianweiz.github.io
DCS290, 5/6/2021

Dyide

https://xianweiz.github.io/

Compilation Phases 4B

Source Code

Lexical Analysis

. l N
.

.

1

|

- Token Stream |

Syntax Analysis

Syntax Tree"

Semantic Analysis

’ Intermediate
Code Generation

IR
\ 4

Optimization

IR
Y

y

Code Generation

e o o e s e o e e E—

v

\ Target Code

e Lexical: source code - tokens
— RE, NFA, DFA, ...

e — |s the program lexically well-formed?
s o Eg, xiy =1
\ * Syntax: tokens - AST or parse tree
- CFG, LL(1), LALR(1), ...
% - :cz’:rfl]eeidn?put program syntactically well-
(s o Eg,x=1y=2

* Semantic: AST - AST +symbol table
- SDD, SDT, typing, scoping, ...
— Does the input program has a well-
defined meaning?

o E.g.,intx;y=x(1)
. I

Modern Compilers

* Compilation flow [#s iR FE]
- First, translate the source program to some form of
intermediate representation (IR, H [f] 7 7~)

— Then convert from there into machine code

* IR provides advantages [IRF{IL#4]
- Increased abstraction, cleaner separation, and retargeting, etc

Fortran’s Intermediate MIPS

Fortran IR

program — Lexer, Parser, Code Code %?es
and Static Checker Generator Generator

c — Eeier Parser Ig(t)zremedlate R_yCode R <50

program and Static Checker Generator Optimization | °%®
C#'s Intermediate ARM

;(J:::)gram —| Lexer, Parser, and Code R Code %&2
Static Checker Generator Generator

: o X g 3 ‘ E
\ oy S;J*I;YATJ-S‘ENﬁEl:S?% ﬂi ih LZ

Different IRs for Different Stages

 Modern compilers use different IRs at different stages

* High-Level IR: close to high-level language
— Examples: Abstract Syntax Tree, Parse Tree
- Language dependent (a high-level IR for each language)
— Purpose: semantic analysis of program

* Low-Level IR: close to assembly

— Examples: Three address code[—Hi}iEi%], Static Single
Assignment[Ff 2 HL IR E]

—- Essentially an instruction set[f& % %£] for an abstract machine

- Language and machine independent (one common IR)

— Purpose: compiler optimizations to make code efficient

o All optimizations written in this IR is automatically applicable to all
languages and machines

() N

Different IRs for Different Stages (cont.)

 Machine-Level IR
- Examples: x86 IR, ARM IR, MIPS IR
— Actual instructions for a concrete machine ISA
- Machine dependent (a machine-level IR for each ISA)

— Purpose: code generation / CPU register allocation

o (Optional) Machine-level optimizations (e.g. strength reduction: x/ 2 >
X » 1)

* Possible to have one IR (AST) — some compilers do
— Generate machine code from AST after semantic analysis

- Makes sense if compilation time is the primary concern (e.g. JIT)
o Skip the IR generation step

* So why have multiple IRs?

»‘vi‘@z

Why Multiple IRs?

* Why multiple IRs?
— Better to have an appropriate IR for the task at hand [X} {4:]

o Semantic analysis much easier with AST

o Compiler optimizations much easier with low-level IR

o Register allocation only possible with machine-level IR
— Easier to add a new front-end (language) or back-end (ISA) [%

T]

o Front-end: a new AST = low-level IR converter

o Back-end: a new low-level IR = machine IR converter

o Low-level IR acts as a bridge between multiple front-ends and back-
ends, such that they can be reused

* If one IR (AST), and adding a new front-end ...
- Reimplement all compiler optimizations for new AST
— A new AST - machine code converter for each ISA

__ — Same goes for adding a new back-end

Three-Address Code[= -5

* High-level assembly where each operation has at most
three operands. Generic formis X =Y op Z [2 371 #1E %

- where X, Y, Z can be variables, constants, or compiler-generated
temporaries holding intermediate values

 Characteristics [1#]
— Assembly code for an ‘abstract machine’
- Long expressions are converted to multiple instructions
— Control flow statements are converted to jumps [#Z il Ji->Bk 5]

— Machine independent
o Operations are generic (not tailored to specific machine)
o Function calls represented as generic call nodes

o Uses symbolic names rather than register names (actual locations of
symbols are yet to be determined)

* Design goal: for easier machine-independent optimization

»‘vlﬂ?

Three-Address Code Example

* For example, x * y + x * y is translated to
tl=x*vy;tl,t2, t3 are temporary variables
t2=x*y
t3=t1+1t2
— Can be generated through a depth-first traversal of AST
- Internal nodes in AST are translated to temporary variables

* Notice: repetition of x * y [E&H]
— Can be later eliminated through a compiler optimization called
common subexpression elimination (CSE): [if FH T3 1A X IH F&]
tl=x*y
t3=t1+1t1
— Using 3-address code rather than AST makes it:
o Easier to spot opportunities (just find matching RHSs)

o Easier to manipulate IR (AST is much more cumbersome)
@tuxs IR

Three-Address Statements

* Assignment statement [—JoIR{E]
X=Yyopz
where op is an arithmetic or logical operation (binary operation)
* Assignment statement [—JCIR{E]
X=0pY
where op is an unary operation such as -, not, shift

» Copy statement []

X=y
* Unconditional jump statement [&4 Bki%]
goto L

where L is label

@tuxs IR

Three-Address Statements (cont.)

* Conditional jump statement [/ B4
if (x relopy) goto L
where relop is a relational operator such as =,4, >, <

* Procedural call statement [iX 2 1H H]
param xy, ..., param x,, call F, n
As an example, foo(xy, X,, X3) is translated to
param x,
param X,
param X
call foo, 3

* Procedural call return statement [iE #2141 [A]]
returny
where y is the return value (if applicable)
S fure 10 IR

Three-Address Statements (cont.)

* Indexed assignment statement [& 5]]

x = y[i]
or
y[i] = x

where x is a scalar variable and y is an array variable

e Address and pointer operation statement [$tihl F1¥5 %]
X =& y; a pointer x is set to address of y
y = * x; yis set to the value of location
; pointed to by pointer x
*y = x ; location pointed to by y is assigned x

@tuxs IR

Example

=1
=1 L:t;=x*5
do { :-tz = &a :
| — & c I .
alil = x * 5: » :t3 S|z§c?f(|nt) : ali]
. =171 I
ik ts=htl
} while (i <= 10); Hie =iy
i=i+1
if i <=10goto L
Source program Three-address code

12 Dhige

Implementation of TAC

3 possible ways (and more)
— quadruples [J47G]
— triples [= JGT\]
— indirect triples [[A]4% =J62]
* Trade-offs between, space, speed, ease of manipulation

 Using quadruples [53]
op argl, arg2, result
— There are four(4) fields at maximum
— argl and arg2 are optional, depending on the op

- Examples:
oX=a+b =>+a, b, x
o X=-Yy =>-Y,,X
o gotoL =>goto, , L

@tuxs 13 IR

Using Triples|=t=]

* Triple: quadruple without the result field
— Result field is implicitly index of instruction
— Result referred to by index of instructions computing it
- Example:a=b * (-c) + b * (-c)

Quadruples Triples
op argl | arg2 |result| op argl | arg2
(0) - C t1 - C
(1) * b tl t2 * b (0)
(2) - C t3 - C
(3) * b t3 t4 * b (2)
(4) + t2 t4 t5 + (1) (3)
(5) = t5 a = a (4)
) fuxs 14 I

More About Triples

* What if LHS of assignment is not a var but an expression?
— Array location (e.g. x[i] =)
— Pointer location (e.g. *(x+i) = y)
— Struct field location (e.g. x.i = y)

 Compute memory address of LHS location beforehand

* Example: triples for array assignment statement
x[i] =y
- is translated to
(0): [] xi // Compute address of x[i] location
(1):=(0)y // Assign y to that location
— Complex LHS may require more triples to compute address

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Usi

g Inc

irect Triples[ia#: =R

* Pro

0

em wit

N triples

— Compiler optimizations often involve moving instructions
- Hard to move instructions because numbering will change, even

for instructions not involved in optimization

— See below CSE performed on the second (-c) * b:

Quadruples Triples
op argl | arg2 |result| op argl | arg2
(0) - C tl - C

(1) * b t1 t2 > b (0)
I C2 Attt At cints et ~ 3= =T
“-3)-1-"*-1-b-4-"A3-|-tHA- |~ F- b2y
#)2) + t2 t41t2| t5 + (1) (3)1)
(593)] = t5 a = a (4)X

Using Indirect Triples[ia% =t

* Problem with triples
— Compiler optimizations often involve moving instructions

- Hard to move instructions because numbering will change, even
for instructions not involved in optimization

— See below CSE performed on second (-c) * b:

Quadruples Triples
op argl | arg2 |result| op argl | arg2
(0) - C t1 - C
(1) * b tl t2 * b (0)
(2) + t2 t2 t5 + (1) (1)
(3) = t5 a = a (4)

Instruction (3) refers to (4) which is no longer there.

17

Using Indirect Triples (cont.)

* Triples are stored in a triple ‘database’

* [Ris a listing of pointers to triples in database

— Can reorder listing without changing numbering in database

* Pointer indirection overhead but allows easy code motion

Listing

(ptr to triple database)

(0)

(1)

0)
1

S

(2)

i/

(3)

&

(4)

4

S

(5)

(
(
(
(
(
(

5)

,‘
() F b K

),

\ 74 SUN YAT-SEN UNIVERSITY

18

Database
op | argl | arg2

(0) C

(1) * b | (0)
(2) c

(3) * b | (2)
(4) + | (1) | (3)
(5) = a | (4)

Dytge

After CSE Optimization

» After CSE, empty entries in database can be reused
— Code in triple database becomes non-contiguous over time
— That’s fine since the listing is the code, not the database

Listing
(ptr to triple database)
(0) (0)
(1) (1)
(2) (4)
(3) (5)
¢ Tuxs

19

Database
op | argl | arg2
(0) - C
(1) * b | (0)
(2) empty
(3) empty
(4) + | (1) | (1)
(5) = a | (4)

Dhige

Single Static Assignment [& Bt]

* Every variable is assighed to exactly once statically

— Give variable different version name on every assignment
o e.8. X = Xy, X,, ..., Xs fOr each static assignment of x

— Now value of each variable guaranteed not to change

— On a control flow merge, ¢p-function combines two versions
o e.8. Xs = P(X3, X4): means xs is either x5 or x,

X=a+Db;
y=X-C;
X=X-Y,

if (...)

e e

X=X+ 5;

X=X"%*4;

\/

»

20

X1 =a+ Db;
Y1 =X1 -G,
X2 = X1 - Y1,

if (...)

N

X3=X2+5;

X4 = Xo ¥ 4;

\\\\\\,/////

X5 = ¢(X3, X4);
Y2 = X5 * 4,

Benefits of SSA

* SSA is an IR that facilitates certain code optimizations
— SSA tells you when an optimization shouldn’t happen

— Suppose compiler performs CSE on previous example:
o Without SSA, (incorrectly) tempted to eliminate second x * 4
o With SSA, x, * 4 and xs * 4 are clearly different values

X=a+Db;

Yy =X -C;
X=X-Y;

if (...)

_vue Tase

X=X+D5;

X=X"%*4;

21

X1 =a+ Db;
Y1 = X1 - C;
X2 = X1 - Y1

if (...)

S hen

X3=X2+5;

Xq4 = X2 * 4,

\\\\\\(/////

X5 = ¢(X3, Xa);

Y2 = X5 * 4,

Benefits of SSA (cont.)

* SSA is an IR that facilitates certain code optimizations
— SSA tells you when an optimization should happen

— Suppose compiler performs dead code elimination (DCE): (DCE
removes code that computes dead values)

X=a+b; X, =a+b;
X=c-d; » X, =cC-d;
y=Xx*Db; Y1 =X, *b;

— Without SSA, not clear whether there are dead values
— With SSA, x, is never used and clearly a dead value

* Why does SSA work so well with compiler optimizations?
— SSA makes flow of values explicit in the IR
— Without SSA, need a separate dataflow graph
— Will discuss more in Compiler Optimization section

SSA Orthogonal to IR Implementation

e SSA is expressed most commonly as 3-address code

* We learned 3 ways to implement 3-address code
— quadruples
— triples
- indirect triples
* How you implement is orthogonal to SSA representation
— After variable renaming, any 3-address code becomes SSA

e SSA is used widely in modern compilers:
- GCC (GNU C Compiler)
- LLVM (Low Level Virtual Machine) Compiler
— Oracle Java JIT Compiler
— Google Chrome JavaScript JIT Compiler
— PyPy Python JIT Compiler

() T X 2 4
\avys/ SUN YAT-SEN UNIVERSITY " ‘

’ELZ

Generating Code

using Syntax Directed Translation

24 Dhig

Syntax Directed Translation[i&vE #5113

* Syntax directed translation used again for code
generation
— Since code generation is also dependent on syntax
— Code generation is translating syntactic structures to code

* What language structures do we need to translate?
— Definitions (variables, functions, ...)
— Assignment statements
— Control flow statements (if-then-else, for-loop, ...)

* We are going to use the following strategy:
- Specify SDD semantic rules (without ordering)

— Convert SDD rules to SDT actions (with ordering)
o In the process, we will discover SDD has non-L-attributes
o We will also discuss what to do with those non-L-attributes

() N

Code Generation Overview {1t 4 &)

* Program code is a collection of functions
— By now, all functions are listed in symbol table

* Goal is to generate code for each function in that list

* Generating code for a function involves two steps:
— Processing variable definitions [ZF & & Y]
o Involves laying out variables in memory

— Processing statements [1EA]]
o Involves generating instructions for statements

e We will start with processing variable definitions

»‘vlﬂ?

Processing Variable Definitions

* To lay out a variable, both location and width are needed
— Location: where variable is located in memory
— Width: how much space variable takes up in memory

* Attributes for variable definition:
-TV e.g.intx;
— T: non-terminal for type name
o T.type: type (int, float, ...)
o T.width: width of type in bytes (e.g. 4 for int)
— V: non-terminal for variable name

o V.type: type (int, float, ...)
o V.width: width of variable according to type
o V.offset: offset of variable in memory

— But offset from what...?

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Calculate Variable Location from Offset

* Naive method: reserve a big memory section for all data
— Size data section to be large enough to contain all variables
— Location = var offset + base of data section

* Naive method wastes a lot of memory

— Vars with limited scope need to live only briefly in memory
o E.g. function variables need to last only for duration of call

* Solution: allocate memory briefly for each scope
— Allocate when entering scope, free when exiting scope
— Variables in same scope are allocated / freed together
- Location = var offset + base of scope memory section
— Will discuss more later in Runtime Management

Storage Layout of Variables in a Function

 When there are multiple variables defined in a function,
— Compiler lays out variables in memory sequentially

— Current offset used to place variable x in memory
o address(x) ¢ offset
o offset += sizeof(x.type)

Address Offeet <
set =
0x0000 | a Addr(a) < 0
OXOOO4 b Offset =4
void foo() { Addr(b) < 4
it o 0x0008 | ¢ Offset =8
| ’ Addr(c) ¢ 8
int b; 0x000c | ¢
!Ong long c; 0x0010 | Offset = 16
int d; Addr(d) & 16
} Offset = 20

More about Storage Layout

* Allocation alignment[*]5%]
— Enforce addr(x) % sizeof(x.type) ==

— Most machine architectures are designed such that
computation is most efficient at sizeof(x.type) boundaries

o E.g. Most machines are designed to load integer values at integer word
boundaries

o If not on word boundary, need to load two words and shift &
concatenate - inefficient

void foo() { void foo() {
char a; // addr(a) =0 char a; // addr(a) =0
int b; // addr(b) =1 » int b; // addr(b) =4
int c; // addr(c) =5 int c; // addr(c) = 8
long long d; // addr(d) =9 long long d; // addr(d) = 16
} }

“‘ \‘ ‘)
@ turt Dyede

More about Storage Layout (cont.)

e Endianness[¥ 1 7]
- Big endian: MSB (most significant byte) in lowest address
— Little endian: LSB (least significant byte) in lowest address

a+1l
a+2

a+3

Memory " Register
OA |OB [0OC |OD

OA +—

OB

oc

oD

Big-endian [X715 7]

Register Memory
31 0
OD |0C |[0OB |OA
OA a
» OB a+1l
0C a+2
0D a+3
Little-endian [N 7

https://www.geeksforgeeks.org/little-and-big-endian-mystery/ WEE[Z

https://www.geeksforgeeks.org/little-and-big-endian-mystery/

