
Compilation Principle
编译原理

第16讲：中间代码(1)
张献伟

xianweiz.github.io
DCS290, 5/6/2021

https://xianweiz.github.io/

Compilation Phases[编译阶段]

2

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

• Lexical: source code → tokens
− RE, NFA, DFA, …
− Is the program lexically well-formed?

p E.g., x#y = 1

• Syntax: tokens → AST or parse tree
− CFG, LL(1), LALR(1), …
− Is the input program syntactically well-

formed?
p E.g., x = 1 y = 2

• Semantic: AST → AST +symbol table
− SDD, SDT, typing, scoping, …
− Does the input program has a well-

defined meaning?
p E.g., int x; y = x(1)

正确

效率

Modern Compilers
• Compilation flow [编译流程]

− First, translate the source program to some form of
intermediate representation (IR, 中间表示)

− Then convert from there into machine code

• IR provides advantages [IR的优势]
− Increased abstraction, cleaner separation, and retargeting, etc

3

Different IRs for Different Stages
• Modern compilers use different IRs at different stages

• High-Level IR: close to high-level language
− Examples: Abstract Syntax Tree, Parse Tree
− Language dependent (a high-level IR for each language)
− Purpose: semantic analysis of program

• Low-Level IR: close to assembly
− Examples: Three address code[三地址码], Static Single

Assignment[静态单赋值]
− Essentially an instruction set[指令集] for an abstract machine
− Language and machine independent (one common IR)
− Purpose: compiler optimizations to make code efficient

p All optimizations written in this IR is automatically applicable to all
languages and machines

4

Different IRs for Different Stages (cont.)
• Machine-Level IR

− Examples: x86 IR, ARM IR, MIPS IR
− Actual instructions for a concrete machine ISA
− Machine dependent (a machine-level IR for each ISA)
− Purpose: code generation / CPU register allocation

p (Optional) Machine-level optimizations (e.g. strength reduction: x / 2 →
x » 1)

• Possible to have one IR (AST) — some compilers do
− Generate machine code from AST after semantic analysis
− Makes sense if compilation time is the primary concern (e.g. JIT)

p Skip the IR generation step

• So why have multiple IRs?

5

Why Multiple IRs?
• Why multiple IRs?

− Better to have an appropriate IR for the task at hand [针对性]
p Semantic analysis much easier with AST
p Compiler optimizations much easier with low-level IR
p Register allocation only possible with machine-level IR

− Easier to add a new front-end (language) or back-end (ISA) [易
于扩展]

p Front-end: a new AST → low-level IR converter
p Back-end: a new low-level IR → machine IR converter
p Low-level IR acts as a bridge between multiple front-ends and back-

ends, such that they can be reused

• If one IR (AST), and adding a new front-end ...
− Reimplement all compiler optimizations for new AST
− A new AST → machine code converter for each ISA
− Same goes for adding a new back-end

6

Three-Address Code[三地址码]

• High-level assembly where each operation has at most
three operands. Generic form is X = Y op Z [最多3个操作数]

− where X, Y, Z can be variables, constants, or compiler-generated
temporaries holding intermediate values

• Characteristics [特性]
− Assembly code for an ’abstract machine’
− Long expressions are converted to multiple instructions
− Control flow statements are converted to jumps [控制流->跳转]
− Machine independent

p Operations are generic (not tailored to specific machine)
p Function calls represented as generic call nodes
p Uses symbolic names rather than register names (actual locations of

symbols are yet to be determined)

• Design goal: for easier machine-independent optimization

7

Three-Address Code Example
• For example, x * y + x * y is translated to

t1 = x * y ; t1, t2, t3 are temporary variables
t2 = x * y
t3 = t1 + t2

− Can be generated through a depth-first traversal of AST
− Internal nodes in AST are translated to temporary variables

• Notice: repetition of x * y [重复]
− Can be later eliminated through a compiler optimization called

common subexpression elimination (CSE): [通用子表达式消除]
t1 = x * y
t3 = t1 + t1

− Using 3-address code rather than AST makes it:
p Easier to spot opportunities (just find matching RHSs)
p Easier to manipulate IR (AST is much more cumbersome)

8

Three-Address Statements
• Assignment statement [二元赋值]

x = y op z
where op is an arithmetic or logical operation (binary operation)

• Assignment statement [一元赋值]
x = op y

where op is an unary operation such as -, not, shift

• Copy statement [拷贝]
x = y

• Unconditional jump statement [无条件跳转]
goto L

where L is label

9

Three-Address Statements (cont.)
• CondiYonal jump statement [条件跳转]

if (x relop y) goto L
where relop is a relagonal operator such as =, ̸=, >, < J

• Procedural call statement [过程调用]
param x1, ..., param xn, call Fy, n

As an example, foo(x1, x2, x3) is translated to
param x1
param x2
param x3
call foo, 3

• Procedural call return statement [过程调用返回]
return y

where y is the return value (if applicable)
10

Three-Address Statements (cont.)
• Indexed assignment statement [索引]

x = y[i]
or
y[i] = x

where x is a scalar variable and y is an array variable

• Address and pointer operation statement [地址和指针]
x = & y ; a pointer x is set to address of y
y = * x ; y is set to the value of location

; pointed to by pointer x
*y = x ; location pointed to by y is assigned x

11

Example

i = 1
do {

a[i] = x * 5;
i ++;

} while (i <= 10);

12

i = 1
L: t1 = x * 5

t2 = &a
t3 = sizeof(int)
t4 = t3 * i
t5 = t2 + t4
*t5 = t1
i = i + 1
if i <= 10 goto L

a[i]

Source program Three-address code

Implementation of TAC
• 3 possible ways (and more)

− quadruples [四元式]
− triples [三元式]
− indirect triples [间接三元式]

• Trade-offs between, space, speed, ease of manipulation
• Using quadruples [四元式]

op arg1, arg2, result
− There are four(4) fields at maximum
− arg1 and arg2 are optional, depending on the op
− Examples:

p x = a + b => + a, b, x
p x = - y => - y, , x
p goto L => goto , , L

13

Using Triples[三元式]

• Triple: quadruple without the result field
− Result field is implicitly index of instruction
− Result referred to by index of instructions computing it
− Example: a = b * (-c) + b * (-c)

14

Quadruples
op arg1 arg2 result

(0) - c t1
(1) * b t1 t2
(2) - c t3
(3) * b t3 t4
(4) + t2 t4 t5
(5) = t5 a

Triples
op arg1 arg2
- c
* b (0)
- c
* b (2)
+ (1) (3)
= a (4)

More About Triples
• What if LHS of assignment is not a var but an expression?

− Array location (e.g. x[i] = y)
− Pointer location (e.g. *(x+i) = y)
− Struct field location (e.g. x.i = y)

• Compute memory address of LHS location beforehand
• Example: triples for array assignment statement

x[i] = y
− is translated to

(0): [] x i // Compute address of x[i] location
(1): = (0) y // Assign y to that location

− Complex LHS may require more triples to compute address

15

Using Indirect Triples[间接三元式]

• Problem with triples
− Compiler optimizations often involve moving instructions
− Hard to move instructions because numbering will change, even

for instructions not involved in optimization
− See below CSE performed on the second (-c) * b:

16

Quadruples
op arg1 arg2 result

(0) - c t1
(1) * b t1 t2
(2) - c t3
(3) * b t3 t4
(4) + t2 t4 t5
(5) = t5 a

Triples
op arg1 arg2
- c
* b (0)
- c
* b (2)
+ (1) (3)
= a (4)

t2 (1)(2)
(3) ✗

Using Indirect Triples[间接三元式]

• Problem with triples
− Compiler optimizations often involve moving instructions
− Hard to move instructions because numbering will change, even

for instructions not involved in optimization
− See below CSE performed on second (-c) * b:

17

Quadruples
op arg1 arg2 result

(0) - c t1
(1) * b t1 t2
(2) + t2 t2 t5
(3) = t5 a

Triples
op arg1 arg2
- c
* b (0)
+ (1) (1)
= a (4)

Instruction (3) refers to (4) which is no longer there.

Using Indirect Triples (cont.)
• Triples are stored in a triple ’database’
• IR is a listing of pointers to triples in database

− Can reorder listing without changing numbering in database

• Pointer indirection overhead but allows easy code motion

18

Database
op arg1 arg2

(0) - c
(1) * b (0)
(2) - c
(3) * b (2)
(4) + (1) (3)
(5) = a (4)

Listing
(ptr to triple database)

(0) (0)
(1) (1)
(2) (2)
(3) (3)
(4) (4)
(5) (5)

After CSE Optimization
• After CSE, empty entries in database can be reused

− Code in triple database becomes non-contiguous over time
− That’s fine since the listing is the code, not the database

19

Database
op arg1 arg2

(0) - c
(1) * b (0)
(2) empty
(3) empty
(4) + (1) (1)
(5) = a (4)

Listing
(ptr to triple database)

(0) (0)
(1) (1)
(2) (4)
(3) (5)

Single Static Assignment[静态单赋值]

• Every variable is assigned to exactly once statically
− Give variable different version name on every assignment

p e.g. x → x1, x2, ..., x5 for each static assignment of x
− Now value of each variable guaranteed not to change
− On a control flow merge, φ-function combines two versions

p e.g. x5 = φ(x3, x4): means x5 is either x3 or x4

20

Benefits of SSA
• SSA is an IR that facilitates certain code optimizations

− SSA tells you when an optimization shouldn’t happen
− Suppose compiler performs CSE on previous example:

p Without SSA, (incorrectly) tempted to eliminate second x * 4
p With SSA, x2 * 4 and x5 * 4 are clearly different values

21

Benefits of SSA (cont.)
• SSA is an IR that facilitates certain code optimizations

− SSA tells you when an optimization should happen
− Suppose compiler performs dead code elimination (DCE): (DCE

removes code that computes dead values)

− Without SSA, not clear whether there are dead values
− With SSA, x1 is never used and clearly a dead value

• Why does SSA work so well with compiler optimizations?
− SSA makes flow of values explicit in the IR
− Without SSA, need a separate dataflow graph
− Will discuss more in Compiler Optimization section

22

x = a + b;
x = c - d;
y = x * b;

x1 = a + b;
x2 = c - d;
y1 = x2 * b;

SSA Orthogonal to IR Implementation
• SSA is expressed most commonly as 3-address code
• We learned 3 ways to implement 3-address code

− quadruples
− triples
− indirect triples

• How you implement is orthogonal to SSA representation
− After variable renaming, any 3-address code becomes SSA

• SSA is used widely in modern compilers:
− GCC (GNU C Compiler)
− LLVM (Low Level Virtual Machine) Compiler
− Oracle Java JIT Compiler
− Google Chrome JavaScript JIT Compiler
− PyPy Python JIT Compiler

23

Generating Code
using Syntax Directed Translation

24

Syntax Directed Translation[语法制导翻译]

• Syntax directed translation used again for code
generation

− Since code generation is also dependent on syntax
− Code generation is translating syntactic structures to code

• What language structures do we need to translate?
− Definitions (variables, functions, ...)
− Assignment statements
− Control flow statements (if-then-else, for-loop, ...)
− ...

• We are going to use the following strategy:
− Specify SDD semantic rules (without ordering)
− Convert SDD rules to SDT actions (with ordering)

p In the process, we will discover SDD has non-L-attributes
p We will also discuss what to do with those non-L-attributes

25

Code Generation Overview[代码生成]

• Program code is a collection of functions
− By now, all functions are listed in symbol table

• Goal is to generate code for each function in that list
• Generating code for a function involves two steps:

− Processing variable definitions [变量定义]
p Involves laying out variables in memory

− Processing statements [语句]
p Involves generating instructions for statements

• We will start with processing variable definitions

26

Processing Variable Definitions
• To lay out a variable, both location and width are needed

− Location: where variable is located in memory
− Width: how much space variable takes up in memory

• Attributes for variable definition:
− T V e.g. int x;
− T: non-terminal for type name

p T.type: type (int, float, ...)
p T.width: width of type in bytes (e.g. 4 for int)

− V: non-terminal for variable name
p V.type: type (int, float, ...)
p V.width: width of variable according to type
p V.offset: offset of variable in memory

− But offset from what...?

27

Calculate Variable Location from Offset
• Naive method: reserve a big memory section for all data

− Size data section to be large enough to contain all variables
− Location = var offset + base of data section

• Naive method wastes a lot of memory
− Vars with limited scope need to live only briefly in memory

p E.g. function variables need to last only for duration of call

• Solution: allocate memory briefly for each scope
− Allocate when entering scope, free when exiting scope
− Variables in same scope are allocated / freed together
− Location = var offset + base of scope memory section
− Will discuss more later in Runtime Management

28

Storage Layout of Variables in a Function
• When there are multiple variables defined in a function,

− Compiler lays out variables in memory sequentially
− Current offset used to place variable x in memory

p address(x) ← offset
p offset += sizeof(x.type)

29

void foo() {
int a;
int b;
long long c;
int d;

}

Address
0x0000

0x0004

0x0008

0x000c

0x0010

a
Offset = 0
Addr(a) ← 0

b Offset = 4
Addr(b) ← 4

c Offset = 8
Addr(c) ← 8

c

d Offset = 16
Addr(d) ← 16
Offset = 20

More about Storage Layout
• Allocation alignment[对齐]

− Enforce addr(x) % sizeof(x.type) == 0
− Most machine architectures are designed such that

computation is most efficient at sizeof(x.type) boundaries
p E.g. Most machines are designed to load integer values at integer word

boundaries
p If not on word boundary, need to load two words and shift &

concatenate → inefficient

30

void foo() {
char a; // addr(a) = 0
int b; // addr(b) = 1
int c; // addr(c) = 5
long long d; // addr(d) = 9

}

void foo() {
char a; // addr(a) = 0
int b; // addr(b) = 4
int c; // addr(c) = 8
long long d; // addr(d) = 16

}

More about Storage Layout (cont.)
• Endianness[字节序]

− Big endian: MSB (most significant byte) in lowest address
− Little endian: LSB (least significant byte) in lowest address

31

…
0A
0B
0C
0D
…

0A 0B 0C 0D
a
a+1
a+2
a+3

Memory
31 0

Register

…
0A
0B
0C
0D
…

a
a+1
a+2
a+3

Memory

0D 0C 0B 0A
31 0

Register

Big-endian [大字节序] Little-endian [小字节序]
https://www.geeksforgeeks.org/little-and-big-endian-mystery/

https://www.geeksforgeeks.org/little-and-big-endian-mystery/

