Compilation Principle

Im 17 5 B
2k S H(2)
NG

xianweiz.github.io
DCS290, 3/4/2021

Dyid:

https://xianweiz.github.io/

Review Questions

Q1: input and output of lexical analysis?
character stream = tokens

Q2: how to denote a token?

<class, lexeme>

Q3: atomic and compound REs?
atomic: g, {a}
compound: R1|R2, R1R2, R1*

Q4: (+]-)?([0-9])*(0[2]4|6]8)
even numbers

Q5: RE of identifiers in C language?
(_letter)(_letter|digit)*

4

‘GL{

Alphabet Operations| v F&iz &)

* Product[Zfi]: >,5,={ab|a€ >, b€E>,}
- E.g., {0, 1Ka, b} ={0a, Ob, 13, 1b}

* Power[#]: 3"=3"15 n21; 3°= {€}
— Set of strings of length n

- {0, 1B = {0, 1}{0, 1}0, 1} = {000, 001, 010, 011, 100, 101, 110,
111}

* Positive Closure[IEAE]: Y*=>U>%U >3U ...
-{a, b, c}+ ={a, b, ¢, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...}

* Kleene Closure[FHE]: >=5°0U >*

Regular Expressions

e Atomic[J5F]
- gisaRE: L(g) = {€}
- Ifa € 5, then ais a RE: L(a) = {a}

e Compound[ZH&]
- If both r and s are REs, corr. to languages L(r) and L(s), then:
- r|sisaRE: L(r|s) = L(r) U L(s)
- rsis a RE: L(rs) = L(r)L(s)
- r*isaRE: L(r*) = (L(r))*
— (r) is a RE: L((r)) = L(r)

@) tmx s . Dde

Different REs of the Same Language

(a|b) =7
- L((a|b)*) = (L(a|b))* = (L(a) U L(b))* = ({a} U {b})* = {a, b}*
-={a, b}9+{a, b}' + {a, b}* + ...
- ={g, a, b, aa, ab, ba, bb, aaa, ...}

o (a*b*)* =?
- L((a*b*)*) = (L(a*b*))* = (L(a*)L(b*))*
- =L({g, a, aa, ...Hg, b, bb, .. })*
- =L({g, a, b, aa, ab, bb, ..})*

-=¢g+{g, a, b, aa, ab, bb, ...} +{¢g, a, b, aa, ab, bb, ...}* + {g, a, b,
aa, ab, bb, ..}P + ...

@ FTuxt Dl

Impl. of Lexical Analyzer[sz#i]

* How do we go from specification to implementation?
— RE = finite automata

 Solution 1: to implement using a tool — Lex (for C), Flex
(for C++), Jlex (for java)
— Programmer specifies tokens using REs

— The tool generates the source code from the given REs

o The Lex tool essentially does the following translation: REs (Specification)
= FAs (Implementation)

* Solution 2: to write the code yourself

- More freedom; even tokens not expressible through REs

— But difficult to verify; not self-documenting; not portable;
usually not efficient

- Generally not encouraged

@ Tux% IR

Transition Diagram[#%

R
e

* REs = transition diagrams
- By hand 1

— Automatic ,Q/—\©

* Node[7 5i]: state
— Each state represents a condition that may occur in the process
— Initial state (Start): only one, circle marked with ‘start 2’
- Final state (Accepting): may have multiple, double circle

* Edge[i4]: directed, labeled with symbol(s)

— From one state to another on the input

@ FTuxt Dl

Finite Automatal g s gaahl

* Regular Expression = specification[1F %% & & Y]
* Finite Automata = implementation[[Zh#H1& 92 Fi]

e Automaton (pl. automata): a machine or program

* Finite automaton (FA): a program with a finite number of
states

* Finite Automata are similar to transition diagrams

- They have states and labelled edges

— There are one unique start state and one or more than one final
states

@ T1x2 Dl

FA: Language

* An FA is a program for classifying strings (accept, reject)
- In other words, a program for recognizing a language

- The Lex tool essentially does the following translation: REs
(Specification) = FAs (Implementation)

— For a given string X/, if there is transition sequence for X’ to
move from start state to certain accepting state, then we say x’
is accepted by the FA

* Language of FA = set of strings accepted by that FA
— L(FA) = L(RE)

@ T1x2 Dl

Example

* Are the following strings acceptable? 1
2 X o
-1 X
- 11110 Vv

11101 X

- 11100 X
- 1111110 Vv

* What language does the state graph recognize? > = {0, 1}
Any number of ‘1’s followed by a single O

a

= & N\ b N\ b N
start —> 0) > 1) "2) g -\\3)
- =

J,
b

L(FA): all strings of > {a, b}, ending with ‘abb’
L(RE) = (a|b)*abb
@) tuxt 0 Dl

DFA and NFA

* Deterministic Finite Automata (DFA): the machine can
exist in only one state at any given time[#i €]
— One transition per input per state
— No e-moves
— Takes only one path through the state graph

* Nondeterministic Finite Automata (NFA): the machine can
exist in multiple states at the same time[dE#ffE]
— Can have multiple transitions for one input in a given state
— Can have e-moves

— Can choose which path to take

o An NFA accepts if some of these paths lead to accepting state at the end
of input

@ Tux% IR

State Graph

e 5 components (5,S,n, F &)
- An input alphabet 2

— A set of states S O
— Astartstaten€ S _’O

— A set of accepting states FS S @
d

— A set of transitions 6: SO,MS,, m

@ tuxs 12 Diode

Example: DFA

* There is only one possible sequence of moves --- either
lead to a final state and accept or the input string is
rejected

- Input string: aabb

- Successful sequence: 0O0—=1—>1—+=2—»3

start b final state
state
0= @
start
A DFA accepts (a|b) “abb

13 Dhige

Example: NFA

* There are many possible moves: to accept a string, we
only need one sequence of moves that lead to a final
state

- Input string: aabb
- Successful sequence: 0——0——>1—»2—3

o
ol
o’
»)

o
o}
o’
(®)

- Unsuccessful sequence: g—»0——+»0—+»0—»0

start final state
State

,,—‘%—'O ~(2)—,

An NFA accepts (a|b) "abb
: I
” Dhede

Conversion Flow[#s #3772

e Outline: RE > NFA - DFA - Table-driven
Implementation
— Converting DFAs to table-driven implementations
— Converting REs to NFAs
— Converting NFAs to DFAs

Lexical Specification

/

Table-driven Impl.
of automata

[
|
/
Regular Expression

automatic

Tuxs 15 W

DFA = Table

* FA can also be represented using transition table

0 fTabIe-driven Code:

 DFA() {

state = “S”;

while (!done) {

ch = fetch_input();

state = Table[state][ch];

if (state == “X”)
print(“reject”);

alphabet if (state € F)
printf(“accept”);
else

printf(“reject”);

state

)

Q: which is/are accepted?
111
000

16 16 001

c|c |

- |- |+ |O

X

Discussion

* Implementation is efficient[F#& & —F = R =2
— Table can be automatically generated

- Need finite memory O(S x)
o Size of transition table

- Need finite time O(input length)
o Number of state transitions

* Pros and cons of table[ZFA& SZHL L %51

— Pro: can easily find the transitions on a given state and input

— Con: takes a lot of space, when the input alphabet is large, yet
most states do not have any moves on most of the input
symbols

@ T1x2 Dl

RE = NFA

* NFA can have e-moves
— Edges labelled with €
— move from state A to state B without reading any input

* M-Y-T algorithm to convert any RE to an NFA that defines
the same language

- Input: RE r over alphabet
— Output: NFA accepting L(r)

@) tmx s 18 Dde

RE = NFA (cont.)

* Step 1: processing atomic REs) €
- € expression[Z¥] /'@

o iis a new state, the start state of NFA
o fis another new state, the accepting state of NFA

2o S

~ Single character RE a[5“7 43F]

AD)——®

7O
(&) F w % 2 19
%@j

TN / SUN YAT-SEN UNIVERSITY

MELX

RE = NFA (cont.)

* Step 2: processing compound REs[ZH&]
-R=R; | R,

N; : NFA for R,
N, : NFA for R;

the new and

unique final state
initial state " final state
for Nyand N, for N’l and N,
- R=R,R,
merge : final state of N, :
and initial state of N, ‘
initial state (O NI @ N2 O) _ final state
for ‘,\rl — for J’Vz

@) tuxs 20 Djud:

RE = NFA (cont.)

* Step 2: processing compound REs
-R=R;*

initial state
for N, final state

for .'Vl

N;:NFA for Ry

() I
(&) Tux 2 21 Diode

Example

e Convert “(a|b)*abb” to NFA

a
O = o

b
o @D——e®

@ FTux s 22 ISCE

Example (cont.)

e Convert “(a|b)*abb” to NFA

abb ====>(several steps are omitted)

23 IR

Example (cont.)

e Convert “(a|b)*abb” to NFA

(a b)‘abb ====> £

24 Bhid:

NFA > DFA: Same[Zh]

* NFA and DFA are equivalent

start final state
state "
start b b final state
state
!
start 9"‘\/ b
a
a a

@) fux s 25 Dhige

NFA = DFA: Theory[#<# i)

e Question: is L(NFA) € L(DFA)?

— Otherwise, conversion would be futile
* Theorem: L(NFA) = L(DFA)

- Both recognize regular languages L(RE)

— Will show L(NFA) € L(DFA) by construction (NFA = DFA)
— Since L(DFA) € L(NFA), L(NFA) = L(DFA)

* Resulting DFA consumes more memory than NFA
— Potentially larger transition table as shown later

e But DFAs are faster to execute
— For DFAs, number of transitions == length of input
— For NFAs, number of potential transitions can be larger

 NFA = DFA conversion is done because the speed of DFA
far outweigh its extra memory consumption

ME?

