
Compilation Principle
编译原理

第2讲：词法分析(2)
张献伟

xianweiz.github.io
DCS290, 3/4/2021

https://xianweiz.github.io/

Review Questions

2

Q1: input and output of lexical analysis?

<class, lexeme>

even numbers

atomic: ε, {a}
compound: R1|R2, R1R2, R1*

(_letter)(_letter|digit)*

character stream à tokens
Q2: how to denote a token?

Q3: atomic and compound REs?

Q4: (+|-)?([0-9])*(0|2|4|6|8)

Q5: RE of identifiers in C language?

Alphabet Operations[字母表运算]

• Product[乘积]： ∑1 ∑2 = {ab | a ∈ ∑1, b ∈ ∑2}
− E.g., {0, 1}{a, b} = {0a, 0b, 1a, 1b}

• Power[幂]: ∑n = ∑n-1 ∑, n ≥ 1; ∑0 = {ε}
− Set of strings of length n
− {0, 1}3 = {0, 1}{0, 1}{0, 1} = {000, 001, 010, 011, 100, 101, 110,

111}

• Positive Closure[正闭包]: ∑+ = ∑ ∪ ∑2 ∪ ∑3 ∪ …
− {a, b, c}+ = {a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, …}

• Kleene Closure[闭包]: ∑ = ∑0 ∪ ∑+

3

Regular Expressions
• Atomic[原子]

− ε is a RE: L(ε) = {ε}
− If a ∈ ∑, then a is a RE: L(a) = {a}

• Compound[组合]
− If both r and s are REs, corr. to languages L(r) and L(s), then：
− r|s is a RE: L(r|s) = L(r) ∪ L(s)
− rs is a RE: L(rs) = L(r)L(s)
− r* is a RE: L(r*) = (L(r))*
− (r) is a RE: L((r)) = L(r)

4

Different REs of the Same Language
• (a|b)* = ?

− L((a|b)*) = (L(a|b))* = (L(a) ∪ L(b))* = ({a} ∪ {b})* = {a, b}*
− = {a, b}0 + {a, b}1 + {a, b}2 + …
− = {ε, a, b, aa, ab, ba, bb, aaa, …}

• (a*b*)* = ?
− L((a*b*)*) = (L(a*b*))* = (L(a*)L(b*))*
− = L({ε, a, aa, …}{ε, b, bb, …})*
− = L({ε, a, b, aa, ab, bb, …})*
− = ε + {ε, a, b, aa, ab, bb, …} + {ε, a, b, aa, ab, bb, …}2 + {ε, a, b,

aa, ab, bb, …}3 + …

5

Impl. of Lexical Analyzer[实现]

• How do we go from specification to implementation?
− RE à finite automata

• Solution 1: to implement using a tool — Lex (for C), Flex
(for C++), Jlex (for java)

− Programmer specifies tokens using REs
− The tool generates the source code from the given REs

p The Lex tool essentially does the following translation: REs (Specification)
⇒ FAs (Implementation)

• Solution 2: to write the code yourself
− More freedom; even tokens not expressible through REs
− But difficult to verify; not self-documenting; not portable;

usually not efficient
− Generally not encouraged

6

Transition Diagram[转换图]

• REs à transition diagrams
− By hand
− Automatic

• Node[节点]: state
− Each state represents a condition that may occur in the process
− Initial state (Start): only one, circle marked with ‘start à’
− Final state (Accepting): may have multiple, double circle

• Edge[边]: directed, labeled with symbol(s)
− From one state to another on the input

7

Finite Automata[有穷自动机]

• Regular Expression = specification[正则表达是定义]

• Finite Automata = implementation[自动机是实现]

• Automaton (pl. automata): a machine or program
• Finite automaton (FA): a program with a finite number of

states

• Finite Automata are similar to transition diagrams
− They have states and labelled edges
− There are one unique start state and one or more than one final

states

8

FA: Language
• An FA is a program for classifying strings (accept, reject)

− In other words, a program for recognizing a language
− The Lex tool essentially does the following translation: REs

(Specification) ⇒ FAs (Implementation)
− For a given string ‘x’, if there is transition sequence for ‘x’ to

move from start state to certain accepting state, then we say ‘x’
is accepted by the FA

• Language of FA = set of strings accepted by that FA
− L(FA) ≡ L(RE)

9

Example
• Are the following strings acceptable?

− 0
− 1
− 11110
− 11101
− 11100
− 1111110

• What language does the state graph recognize? ∑ = {0, 1}

10

✓

✓

✓

✗

✗
✗

L(FA): all strings of ∑ {a, b}, ending with ‘abb’
L(RE) = (a|b)*abb

Any number of ‘1’s followed by a single 0

DFA and NFA
• Deterministic Finite Automata (DFA): the machine can

exist in only one state at any given time[确定]
− One transition per input per state
− No ε-moves
− Takes only one path through the state graph

• Nondeterministic Finite Automata (NFA): the machine can
exist in multiple states at the same time[非确定]

− Can have multiple transitions for one input in a given state
− Can have ε-moves
− Can choose which path to take

p An NFA accepts if some of these paths lead to accepting state at the end
of input

11

State Graph
• 5 components（∑, S, n, F, 𝛿）

− An input alphabet Σ

− A set of states S

− A start state n ∈ S

− A set of accepting states F ⊆ S

− A set of transitions δ: Sa Sb

12

input

a

Example: DFA
• There is only one possible sequence of moves --- either

lead to a final state and accept or the input string is
rejected

− Input string: aabb

− Successful sequence:

13

Example: NFA
• There are many possible moves: to accept a string, we

only need one sequence of moves that lead to a final
state

− Input string: aabb
− Successful sequence:

− Unsuccessful sequence:

14

Conversion Flow[转换流程]

• Outline: RE à NFA à DFA à Table-driven
Implementation

− Converting DFAs to table-driven implementations
− Converting REs to NFAs
− Converting NFAs to DFAs

15

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

DFA à Table
• FA can also be represented using transition table

1616

0 1

S

T

U

T U
T U

T x

alphabet

state

Q: which is/are accepted?
111
000
001

Discussion
• Implementation is efficient[表格是一种高效实现]

− Table can be automatically generated
− Need finite memory O(S x ∑)

p Size of transition table
− Need finite time O(input length)

p Number of state transitions

• Pros and cons of table[表格实现的优劣]
− Pro: can easily find the transitions on a given state and input
− Con: takes a lot of space, when the input alphabet is large, yet

most states do not have any moves on most of the input
symbols

17

RE à NFA
• NFA can have ε-moves

− Edges labelled with ε
− move from state A to state B without reading any input

• M-Y-T algorithm to convert any RE to an NFA that defines
the same language

− Input: RE r over alphabet ∑
− Output: NFA accepting L(r)

18

RE à NFA (cont.)
• Step 1: processing atomic REs

− ε expression[空]
p i is a new state, the start state of NFA
p f is another new state, the accepting state of NFA

− Single character RE a[单字符]

19

RE à NFA (cont.)
• Step 2: processing compound REs[组合]

− R = R1 | R2

− R = R1R2

20

RE à NFA (cont.)
• Step 2: processing compound REs

− R = R1*

21

Example
• Convert “(a|b)*abb” to NFA

22

Example (cont.)
• Convert “(a|b)*abb” to NFA

23

Example (cont.)
• Convert “(a|b)*abb” to NFA

24

NFA à DFA: Same[等价]

• NFA and DFA are equivalent

25

NFA à DFA: Theory[相关理论]

• Question: is L(NFA) ⊆ L(DFA)?
− Otherwise, conversion would be futile

• Theorem: L(NFA) ≡ L(DFA)
− Both recognize regular languages L(RE)
− Will show L(NFA) ⊆ L(DFA) by construction (NFA à DFA)
− Since L(DFA) ⊆ L(NFA), L(NFA) ≡ L(DFA)

• Resulting DFA consumes more memory than NFA
− Potentially larger transition table as shown later

• But DFAs are faster to execute
− For DFAs, number of transitions == length of input
− For NFAs, number of potential transitions can be larger

• NFA à DFA conversion is done because the speed of DFA
far outweigh its extra memory consumption

26

