
Compilation Principle
编译原理

第20讲：目标代码生成(2)
张献伟

xianweiz.github.io
DCS290, 6/3/2021

https://xianweiz.github.io/

Review Questions
• What is runtime environment?

• For the static memory region, what are placed there?

• What is activation record?

• What are registers $SP and $FP used for?

• What are the schemes reference counting and tracing?

2

$SP points to the top of stack; $FP points to the base of current frame

Code, global and static variables. Composing an executable image

Garbage collection to reclaim unused heap space.

Each execution of a procedure is called activation, and AR is to
manage the info needed by the execution.

The environment where the target program will be executed.

Translating IR to Machine Code
• Machine code generation is machine ISA dependent*

− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions

3

* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166

Instruction Selection[指令选取]

• Code generation is to map the IR program into a code
sequence that can be executed by the target machine [选
择适当的目标机器指令来实现IR]

− ISA of the target machine
p If there is ‘INC’, then for a = a + 1, ‘INC a’ is better than ‘LD a, ADD a, 1’

− Desired quality of the generated code
p Many different generations, naïve translation is usually correct but very

inefficient

4

TAC code:

a = b + c
d = a + e

Target code:

LD R0, b // R0 = b
ADD R0, R0, c // R0 = R0 + c
ST a, R0 // a = R0
LD R0, a // R0 = a
ADD R0, R0, e // R0 = R0 + e
ST d, R0 // d = R0

Register Allocation & Evaluation Order
• Register allocation: a key problem in code generation is

deciding what values to hold in what registers[寄存器分配]
− Registers are the fastest storage unit but are of limited numbers

p Values not held in registers need to reside in memory
p Insts involving register operands are much shorter and faster

− Finding an optimal assignment of registers to variables is NP-
hard

• Evaluation order: the order in which computations are
performed can affect the efficiency of the target code [执
行顺序]

− Some computation orders require fewer registers to hold
intermediate results than others

− However, picking a best order in the general case is NP-hard

5

Stack Machine[栈式计算机]

• A simple evaluation model[一个简单模型]
− No variables or registers
− A stack of values for intermediate results

• Each instruction[指令任务]
− Takes its operands from the top of the stack [栈顶取操作数]
− Removes those operands from the stack [从栈中移除操作数]
− Computes the required operation on them [计算]
− Pushes the result on the stack [将计算结果入栈]

6

Example
• Consider two instructions

− push i - place the integer i on top of the stack
− add - pop two elements, add them and put the result back on

the stack

• A program to compute 7 + 5
− push 7
− push 5
− add

7

Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called
accumulator) [使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation

8

From Stack Machine to MIPS
• The compiler generates code for a stack machine with

accumulator
− The accumulator is kept in MIPS register $t0
− Stack machine instructions are implemented using MIPS

instructions and registers
− We want to run the resulting code on the MIPS processor (or

simulator)
• The stack is kept in memory

− The stack grows towards lower addresses (standard convention)
− The address of next stack location is kept in MIPS register $sp

p The top of the stack is at address $sp + 4
− A block of stack space, called stack frame, is allocated for each

function call
p A stack frame consists of the memory between $fp which points to the

base of the current stack frame, and the $sp
p Before func returns, it must pop its stack frame, and restore the stack

9

MIPS Architecture
• Load/store architecture

− Only load and store instructions can access memory
− All other instructions access only registers

p E.g., all arithmetic and logical operations involve only registers (or constants
that are stored as part of the instructions)

• Word size is 32 bits, all instructions are encoded in a single 32-
bit word format

− Arithmetic
p e.g., add des, src1, src2 // des = src1 + src2

− Comparison
p e.g., sge des, src1, src2 // des ← 1 if src1 ≥ src2, 0 ow

− Branch/jump
p e.g., bge src1, src2, lab // branch to lab if src1 ≥ src2

− Load, store, and data movement
p E.g., lw des, addr // load the word at addr into des
p E.g., move des, src1 // copy the contents of src1 to des

10

MIPS Architecture (cont.)
• 32 registers

− 31 of these are general-purpose that can be used in any of the
instructions

− The last one (zero), is to contain the number zero at all times

• While general-purpose, there are guidelines specifying
how each of the registers should be used

− $0 is always zero, $a0,...,$a4 are for arguments
− $sp saves stack pointer, $fp saves frame pointer

11

Example MIPS Instructions
• la reg1 addr

− Load address into reg1
• li reg imm

− reg ← imm
• lw reg1 offset(reg2)

− Load 32-bit word from address reg2 + offset into reg1
• sw reg1 offset(reg2)

− Store 32-bit word in reg1 at address reg2 + offset
• add reg1 reg2 reg3

− reg1 ← reg2 + reg3
• move reg1 reg2

− reg1 <- reg2
• sge reg1 reg2 reg3

− reg1 ← (reg2 >= reg3)

12

Example MIPS Assembly
• The stack-machine code for 7 + 5 in MIPS:

13

Stack-machine MIPS Comment
acc <- 7 li $t0 7 Load constant 7 into $t0
push acc addi $sp $sp -4

sw $t0 0($sp)
Decrement sp to make space
Copy the value to stack

acc <- 5 li $t0 5 Load constant 5 into $t0
acc <- acc + top_of_stack lw $t1 4($sp)

add $t0 $t0 $t1
Load value from $sp+4 into $t1
Add $t0+$t1 = 5 + 7

pop add $sp $sp 4 Pop constant 7 off stack

A Small Language
• A language with integers and integer operations

• Example: program for computing the Fibonacci numbers:

14

P → D; P | D
D → def id(ARGS) = E;
ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else

fib(x - 1) + fib(x – 2)

Code Generation Considerations
• We used to store values in unlimited temporary variables, but

registers are limited --> must reuse registers[重复使用寄存器]
• Must save/restore registers when reusing them [保存-恢复]

− E.g. suppose you store results of expressions in $t0
− When generating E -> E1 + E2,

p E1 will first store result into $t0
p E2 will next store result into $t0, overwriting E1’s result
p Must save $t0 somewhere before generating E2

• Registers are saved on and restored from the stack
Note: $sp - stack pointer register, pointing to the top of stack

− Saving a register $t0 on the stack:
addiu $sp, $sp, -4 # Allocate (push) a word on the stack
sw $t0, 0($sp) # Store $t0 on the top of the stack

− Restoring a value from stack to register $t0:
lw $t0, 0($sp) # Load word from top of stack to $t0
addiu $sp, $sp, 4 # Free (pop) word from stack

15

Stack Operations[栈操作]

• To push elements onto the stack
− To move stack pointer $sp down to make room for the new data
− Store the elements into the stack

• For example, to push registers $t1 and $t2 onto stack

• Pop elements simply by adjusting the $sp upwards
− Note that the popped data is still present in memory, but data

past the stack pointer is considered invalid

16

sub $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

word 1

word 2$sp
word 1

word 2

$t1

$t2$sp

word 1

word 2

$t1

$t2

$sp

Higher address

Code Generation Strategy
• For each expression e we generate MIPS code that:

− Computes the value of e into $t0
− Preserves $sp and the contents of the stack

• We define a code generation function cgen(e)
− Its result is the code generated for e

• Code generation for constants
− The code to evaluate a constant simply copies it into the

register: cgen(i) = li $t0 i
p Note that this also preserves the stack, as required

17

Code Generation for ALU
• Default

• Possible optimization: put the result of e1 directly in register
$t1?

18

cgen(e1 + e2):
stores result in $t0
cgen(e1)
pushes $t0 on stack
addiu $sp $sp -4
sw $t0 0($sp)
overwrites result in $t0
cgen(e2)
pops value of e1 to $t1
lw $t1 4($sp)
addiu $sp $sp 4
performs addition
add $t0 $t1 $t0

cgen(e1 + e2):
stores result in $t0
cgen(e1)
copy result of $t0 to $t1
move $t1 $t0
stores result in $t0
cgen(e2)
performs addition
add $t0 $t1 $t0

Code Generation for Conditional
• We need flow control

instructions
• New instruction: beq reg1

reg2 label
− Branch to label if reg1 ==

reg2

• New instruction: b label
− Unconditional jump to label

19

cgen(if e1 == e2 then e3 else e4):
cgen(e1)
pushes $t0 on stack
addiu $sp $sp -4
sw $t0 0($sp)
overwrites $t0
cgen(e2)
pops value of e1 to $t1
lw $t1 4($sp)
addiu $sp $sp 4
performs comparison
beq $t0 $t1 true_branch

false_branch:
cgen(e4)
b end_if

true_branch:
cgen(e3)

end_if:

Caller/Callee Conventions
• Important registers should be saved across function calls

− Otherwise, values might be overwritten
• But, who should take the responsibility?

− The caller knows which registers are important to it and should
be saved

− The callee knows exactly which registers it will use and
potentially overwrite

− However, in the typical “block box” programming, caller and
callee don’t know anything about each other’s implementation

• Potential solutions
− Sol1: caller to save any important registers that it needs before

calling a func, and to restore them after (but not all will be
overwritten)

− Sol2: callee saves and restores any registers it might overwrite
(but not all are important to caller)

20

Caller/Callee Conventions (cont.)
• Caller and callee should cooperate

• Caller: save and restore any of the following caller-saved
registers that it cares about

$t0-$t9 $a0-$a3 $v0-$v1
− The callee may freely modify these registers, under the

assumption that the caller already saved them

• Callee: save and restore any of the following callee-saved
registers that it uses

$s0-$s7 $ra
− The caller may assume these registers are not changed by the

callee

21

Detailed Calling Steps
• The caller sets up for the call via these steps[调用者]

− 1) Make space on stack for and save any caller-saved registers
− 2) Pass arguments by pushing them on the stack, one by one,

right to left
− 3) Execute a jump to the function (saves the next inst in $ra)

• The callee takes over and does the following[被调用者]
− 4) Make space on stack for and save values of $fp and $ra
− 5) Configure frame pointer by setting $fp to base of frame
− 6) Allocate space for stack frame (total space required for all

local and temporary variables)
− 7) Execute function body, code can access params at positive

offset from $fp, locals/temps at negative offsets from $fp

22

Detailed Calling Steps (cont.)
• When ready to exit, the callee does following[调用退出]

− 8) Assign the return value (if any) to $v0
− 9) Pop stack frame off the stack (locals/temps/saved regs)
− 10) Restore the value of $fp and $ra
− 11) Jump to the address saved in $ra

• When control returns to the caller, it cleans up from the
call with the steps[调用返回]

− 12) Pop the parameters from the stack
− 13) Restore value of any caller-saved registers, pops spill space

from stack

23

Code Generation for Function Call
• The calling sequence is

the instructions (of both
caller and callee) to set
up a function invocation

• New instruction: jal label
− Jump to label, after

saving address of next
instruction in $ra

24

cgen(f(e1, …, en)):
pushes arguments (reverse order)
cgen(en)
addiu $sp $sp -4
sw $a0 0($sp)
…
cgen(e1)
addiu $sp $sp -4
sw $a0 0($sp)
saves FP
addiu $sp $sp -4
sw $fp 0($sp)
pushes return address
addiu $sp, $sp, -4
sw $ra, 0($sp)
begins new AR in stack
move $fp, $sp
jumps to func entry (update $ra)
jal f_entry

Code Generation for Function Definition
• New instruction: jr reg

− Jump to address in register reg

25

cgen(def f(x1,…,xn) = e):
f_entry: cgen(e)

removes AR from stack
move $sp $fp
pops return address
sw $ra 0($sp)
addiu $sp $sp 4
pops old FP
lw $fp 0($sp)
addiu $sp $sp 4
jumps to return address
jr $ra

Code Generation for Variables
• The “variables” of a function are just its ‘parameters’

− They are all in the AR
− Pushed by the caller

• Problem: because the stack grows when intermediate
results are saved, the variables are not at a fixed offset
from $sp

− Thus, access to locations in the stack frame cannot use $sp-
relative addressing

• Solution: use the frame pointer $fp instead
− Always points to the return address on the stack
− Since it does not move, it can be used to find the variables

26

Example
• Local variables are referenced from an offset from $fp

− $fp is pointing to old $ip (return address)

• For a function def f(x,y) = e the activation and frame
pointer are set up as follows:

27

y
x

Old FP
Old IP

Local variables
Temporaries

…
$sp

$fp

x: +4($fp)
y: +8($fp)
First local variable: -8($fp)

+8($fp)
+12($fp)

-4($fp)

The parameters are pushed right to left by the caller
The locals are pushed left to right by the callee

Example

28

double fun1(int p1, double p2, int p3) {
int i, j;
res = fun2(p1*p2, j);
return res;

}

p3

p2

p1

Old FP

Old IP

i

j$sp

$fp

double fun2(double ar, int ib) {
int i, r1;
double res;
…
return res;

}
$fp

$sp

ib

ar

Old FP

Old IP

i

r1

res

