Compilation Principle

gm VE I
Favr: WEIRI(1)
HNUINGE

xianweiz.github.io
DCS290, 3/11/2021

Dyid:

https://xianweiz.github.io/

Compilation Phases 4B

Source Code

, l N
/ N
/ \
! v
! 1
1
'
1

Lexical Analysis

. Token Stream]

Front End

Syntax Analysi
ynax Ananysis (Analysis)

Syntax Tree"

Semantic Analysis

Syntax Tree

Intermediate
Code Generation
IR

\ 4
Optimization . Back End
IR . (Synthesis)

\ 4

Code Generation

v

Target Code

¢ X B 2

SUN YAT-SEN UNIVERSITY

Syntax Analysis[i& i #]

* Second phase of compilation[Zf — []
— Also called as parser

* Parser obtains a string of tokens from the lexical analyzer

— Lexical analyzer reads the chars of the source program, groups
them into lexically meaningful units called lexemes

— and produces as output tokens representing these lexemes
o Token: <token name, attribute value>

— Token names are used by parser for syntax analysis
o tokens = parse tree/AST

* Parse tree[/> HT]
— Graphically represent the syntax structure of the token stream

@ Tux% IR

Parsing Exarnr

ple

* Input: if(x==y) ... e

se ...[J7

RN

* Parser input (Lexical output)[i& %7 Al

KEY(IF) “(“ ID(x) OP(‘==") ID(y) *)’ ... KEY(ELSE) ...

* Parser output[i&E fri]
IF-STMT

I

STMT STMT

Wh

if

Parsing Example (cont.)

* Example: <id, x> <op, *> <op, %>
- |Is it a valid token stream in C language? YES
- |Is it a valid statement in C language (x *%)? NO

* Not every string of tokens are valid
— Parser must distinguish between valid and invalid token strings

* We need a method to describe what is valid string?
— To specify the syntax of a programming language

>) G
/ i Yﬂnl\;ﬁuﬁ } &ih UZ

How to Specity Syntax?

 How can we specify a syntax with nested structures?
— Is it possible to use RE/FA?
— L(Regular Expression) = L(Finite Automata)

* RE/FA is not powerful enough

 Example: matching parenthesis: # of ‘(“ == # of /)’
- (x+y)*z
- ((x+y)+y)*z v
~ (e ((Oty)ry)4y).) Y
— ((x+y)+y)+y)*z X

@) tmx s 6 Dde

RE/FA is NOT Powerful Enough

e [={a"b" | n>1}is NOT a Regular Language
— Suppose L were the language defined by regular expression
— Then we could construct a DFD D with k states to accept L

— Since D has only k states, for an input beginning with more than k a’s,
D must enter some state twice, say s;

— Suppose that the path from s; back to itself is labeled with o/

- Since a@'b’ is in L, there must be a path labeled b’ from s; to an
accepting state f

— But, there is also a path from s, through s; to f labelled &/b’

— Thus, D also accepts a/b’, which is not in L, contradicting the
assumption that L is the language accepted by D

path labeled al!

. path labeled a') path labeled b .

»‘:G%

RE/FA is NOT Powerful Enough(cont.)

[={a"b" | n>1}is not a Regular Language
— Proof = Pumping Lemma (% 5|)

- FA does not have any memory (FA cannot count)
o The above L requires to keep count of a’s before seeing b’s

* Matching parenthesis is hot a RL

* Any language with nested structure is not a RL
- if ... if ... else ... else

* Regular Languages
— Weakest formal languages that are widely used

@ T1x2 Dl

What Language Do We Need?

* C-language syntax: Context Free Language (CFL)[. NG
KIGF]
— A broader category of languages that includes languages with
nested structures

* Before discussing CFL, we need to learn a more general
way of specifying languages than RE, called Grammars[
A

— Can specify both RL and CFL
- and more ...

* Everything that can be described by a regular expression
can also be described by a grammar
— Grammars are most useful for describing nested structures

@ Tux% IR

Concepts

* Language[it =
— Set of strings over alphabet

o String: finite sequence of symbols
o Alphabet: finite set of symbols

e Grammar[(%]

— To systematically describe the syntax of programming language
constructs like expressions and statements

 Syntax[iZi£]
— Describes the proper form of the programs
- Specified by grammar

@ FTuxt Dl

Grammar[]

* Formal definition[JE=\{t € X]: 4 components {T, N, s, 6}

* T: set of terminal symbols[£454F]
— Basic symbols from which strings are formed
- Essentially tokens - leaves in the parse tree

* N: set of non-terminal symbols[JE£& 45 4F]
— Each represents a set of strings of terminals — internal nodes
- E.g.: declaration, statement, loop, ...

R A/v‘/v‘l:l]

e s: start symbol[H 5555
— One of the non-terminals

* g set of productions[F=4: 1]

- Specify the manner in which the terminals and non-terminals
can be combined to to form strings

= "“LHS - RHS": left-hand-side produces right-hand-side |
@tuxe Dl

Grammar (cont.)

 Usually, we can only write the o[5]

* Merge rules sharing the same LHS[#1 & 3]
-—a=2PB,a=2B,,..,a=2pB,
-~ By | Bl | By

G=({id,+%* ()} {ELE P)

P={EDE+E, G:EQEIE’
' EDE*E, |
E>E*E, E>E+E|E*E|(E)|id
E (),
E> (E) £ id}
E-id}

@ FTuxt Dl

Production Rule and Derivation[# &

* Production rule: LHS - RHS
— Aliases: LHS = head, RHS = body
- Meaning: LHS can be constructed (or replaced) with RHS

* Derivation: a series of applications of production rules
— Corresponds to the construction of a parse tree

[B = 04
— Meaning: string a is derived from 3
- B = «: derives one step

- B =* a: derives in zero or more steps
- B =+ a: derives in one or more steps

* Example: A= 0A = 00B = 000
- A=%*000

~ —-A=+000
@ tuxs IR

Derivation[# 5]

e If S=* a, where S is the start symbol of grammar G

* a: sentential form of G[A]#!]

— A sentential form may contain both terminals and non-
terminals (and can be empty)

e oi: sentence of G[f]]
— A sentential form with no non-terminals

* Language[iZt 5] generated by a grammar
- L(G)={w:S=*w,we V;*}
— A string of terminal wis in L(G), iff w is a sentence of G (or S =*

@ T1x2 Dl

Example

e Grammar G={T, N, s, 6}
- T={0, 1}
- N={A, B}
-s=A
-86={A>0A|1A | 0B,B>0}

* Derivation: from grammar to language
- A= 0A=00B= 000
-A=> 1A= 10B= 100
- A = 0A = 00A = 000B = 0000
-A=>0A=>01A>=...

@) tmx s 15 Dde

Language Classification: Chomsky

* Language classification based on form of grammar rules

* Four types of grammars:

- Type 0 — unrestricted grammar
o OBV — BRI D0k

- Type 1 — context sensitive grammar(CSG)
o 1R0VE - BN SCR ROGE

— Type 2 — context free grammar (CFC
o 2BV - BN RO

- Type 3 — regular grammar
o 3RV — IR0

* Regular Grammar € CFG € CSG € Unrestricted Grammar

»‘:G%

Type O: Unrestricted Grammar

* Form of rules a—>f
- wherea € (NUT),BE(NUT)"

* Implied restrictions:
- LHS: no € allowed

* Example:

— aB - aCD: LHS is shorter than RHS
— aAB - aB : LHS is longer than RHS
- A - €: e-productions are allowed

* Computational complexity: unbounded

— Derivation strings may contract and expand repeatedly (Since
LHS may be longer or shorter than RHS)

- Unbounded number of productions before target string

@ T1x2 Dl

Type 1: Context Sensitive Grammar

* Form of rules: dAB = ayp
~where AEN, o, BE(NUT) ,ye(NUT)"

* Replace A by y only if found in the context of a and 8

* Implied restrictions:
— LHS: shorter or equal to RHS
- RHS: no € allowed

* Example:

— aAB—>aCB: replace A with C when in between a and B
- A = C: replace A with C regardless of context

* Computational complexity: likely NP-Complete
— Derivation strings may only expand
- Bounded number of derivations before target string

@ T1x2 Dl

Type 2: Context Free Grammar

* Form of rules: A-y
—~where AEN,yE(NUT)"

* Replace A by y (no context can be specified)

* Implied restrictions:
— LHS: a single non-terminal

— RHS: no ¢ allowed

o Sometimes relaxed to simplify grammar but rules can always be
rewritten to exclude e-productions

* Example:
- A = aBc: replace A with aBc regardless of context

 Computational complexity:
— Polynomial O(n?3728%39), but most real world CFGs are O(n)

»‘:G%

Type 3: Regular Grammar

 Form of rules A—>a,or A—>oB
- whereABEN,a €T

* In terms of FA: Move from state A to state B on input a

* Implied restrictions:
— LHS: a single non-terminal
- RHS: a terminal or a terminal followed by a non-terminal

* Example:A—> 1A | 0

 Computational complexity:
- Linear O(n)
— Derivation string length increases by 1 at each step

@ FTuxt Dl

In Practice[szfr)

 Every regular language is a context-free language

* If PLs are context-sensitive, why use CFGs for parsing?
— CSG parsers are provably inefficient

— Most PL constructs are context-free
o if-stmt, declarations

— The remaining context-sensitive constructs can be analyzed at
the semantic analysis stage

o e.g. def-before-use, matching formal/actual parameters

* In PLs

- Regular language for lexical analysis
— Context-free language for syntax analysis

@) tmx s 21 Dde

Grammar and Derivation

* Grammar is used to derive string or construct parser

* A derivation is a sequence of applications of rules
— Starting from the start symbol
-S=...=... >... > (sentence)

 Leftmost and Rightmost derivations[& /& fl & 4 # 5]

— At each derivation step, leftmost derivation always replaces the
leftmost non-terminal symbol

— Rightmost derivation always replaces the rightmost one

@ T1x2 Dl

Example

* Two derivations of string “id * id + id * id” using grammar:
E>E*E | E+E | (E) | id

e Leftmost derivation

—ESE+E=2E*E+EDId*E+E=2id*Id+E=...=2id*¥id +
id * id

* Rightmost derivation

~-E=>E+E=>E+E*E=>E+E*id=>E+id*id=>...=2id*id+
id *id

* Derivations can be summarized as a parse tree

23 Dhtge

Parse Trees[4#i#i]

* Both previous derivations result in the same parse tree:

E

/’\

E + E
/’\ /’\
E * E E * E
| | | |
id id id id

* A parse tree is a graphical representation of a derivation

— But filters out the order in which productions are applied to
replace non-terminals
— Each interior node represents the application of a production
o Labeled with the non-terminal in the LHS of production
— Leaves are labeled by terminals or non-terminals

o Constitutes a sentential form (read from left to right)

o Called the yield[/=] or frontier[ZZ£#] of the tree

Parse Trees (cont.)

* Derivations and parse trees: many-to-one relationship
— Leftmost derivation order: builds tree left to right
— Rightmost derivation order: builds tree right to left
- Different parser implementations choose different orders

— One-to-one relationships between parse trees and either
leftmost or rightmost derivations[5x /& B 5% A -5 5 43 i B
A — X — X B 2R R

* Program structure does not depend on order of rule
application, instead it depends on what production rules
are applied

— Grammar must define unambiguously set of rules applied

@ T1x2 Dl

Different Parse Trees

e Grammar E->E*E | E+E | (E) | id is ambiguous

- String id * id + id * id can result in 3 parse trees (and more)

E E E

T T T

E + E E * E E * E
NG TN | | N
E * E E * E id + E id E * E
[N B AN SN
id id id id id * E + id

I I

id id id id

 Grammar can apply different rules to derive same string
- Meaning of parse tree 1: (id * id) + (id * id)
- Meaning of parse tree 2:id * (id + (id * id))

- Meaning of parse tree 3:id * (Z(éd +id) * id)

‘ e (‘
‘ / / s;tmgs‘wﬁtﬁ ‘& Hhﬂ UZ

Ambiguity[=]

e grammar G is ambiguous if
- It produces more than one parse tree some sentence
- i.e., there exist a string str € L(G) such that
— more than one parse tree derives str
= more than one leftmost derivation derives str
= more than one rightmost derivation derives str

* Unambiguous grammars are preferred for most parsers

- If not, we cannot uniquely determine which parse tree to select
for a sentence

— In minor cases, it is convenient to use carefully chosen
ambiguous grammars, together with disambiguating rules that
“throw away” undesirable parse trees, leaving only one tree for
each sentence

@ FTuxt Dl

