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Compilation Phases[编译阶段]
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Syntax Analysis[语法分析]

• Second phase of compilation[第二阶段]
− Also called as parser

• Parser obtains a string of tokens from the lexical analyzer
− Lexical analyzer reads the chars of the source program, groups 

them into lexically meaningful units called lexemes
− and produces as output tokens representing these lexemes

p Token: <token name, attribute value>
− Token names are used by parser for syntax analysis

p tokens à parse tree/AST

• Parse tree[分析树]
− Graphically represent the syntax structure of the token stream
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Parsing Example
• Input: if(x==y) … else …[源程序输入]

• Parser input (Lexical output)[语法分析输入]

• Parser output[语法分析输出]
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KEY(IF) ‘(‘ ID(x) OP(‘==‘) ID(y) ‘)’ … KEY(ELSE) …



Parsing Example (cont.)
• Example: <id, x> <op, *> <op, %>

− Is it a valid token stream in C language? 
− Is it a valid statement in C language (x *% )?

• Not every string of tokens are valid
− Parser must distinguish between valid and invalid token strings

• We need a method to describe what is valid string?
− To specify the syntax of a programming language
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How to Specify Syntax?
• How can we specify a syntax with nested structures? 

− Is it possible to use RE/FA? 
− L(Regular Expression) ≡ L(Finite Automata)

• RE/FA is not powerful enough

• Example: matching parenthesis: # of ‘(‘ == # of ‘)’
− (x+y)*z
− ((x+y)+y)*z
− (...(((x+y)+y)+y)...)
− ((x+y)+y)+y)*z

6

✓
✓
✓
✗



RE/FA is NOT Powerful Enough
• L = {anbn | n≥1} is NOT a Regular Language

− Suppose L were the language defined by regular expression
− Then we could construct a DFD D with k states to accept L
− Since D has only k states, for an input beginning with more than k a’s, 

D must enter some state twice, say si
− Suppose that the path from si back to itself is labeled with aj-I

− Since aibi is in L, there must be a path labeled bi from si to an 
accepting state f

− But, there is also a path from s0 through si to f labelled ajbi

− Thus, D also accepts ajbi, which is not in L, contradicting the 
assumption that L is the language accepted by D
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RE/FA is NOT Powerful Enough(cont.)
• L = {anbn | n≥1} is not a Regular Language

− Proof à Pumping Lemma (泵引理)
− FA does not have any memory (FA cannot count)

p The above L requires to keep count of a’s before seeing b’s

• Matching parenthesis is not a RL
• Any language with nested structure is not a RL

− if … if … else … else

• Regular Languages
− Weakest formal languages that are widely used

8



What Language Do We Need?
• C-language syntax: Context Free Language (CFL)[上下文无
关语言]

− A broader category of languages that includes languages with 
nested structures

• Before discussing CFL, we need to learn a more general 
way of specifying languages than RE, called Grammars[文
法]

− Can specify both RL and CFL
− and more ...

• Everything that can be described by a regular expression 
can also be described by a grammar

− Grammars are most useful for describing nested structures
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Concepts
• Language[语言]

− Set of strings over alphabet
p String: finite sequence of symbols
p Alphabet: finite set of symbols

• Grammar[文法]
− To systematically describe the syntax of programming language 

constructs like expressions and statements

• Syntax[语法]
− Describes the proper form of the programs
− Specified by grammar
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Grammar[文法]

• Formal definition[形式化定义]: 4 components {T, N, s, δ}
• T: set of terminal symbols[终结符]

− Basic symbols from which strings are formed
− Essentially tokens - leaves in the parse tree

• N: set of non-terminal symbols[非终结符]
− Each represents a set of strings of terminals – internal nodes
− E.g.: declaration, statement, loop, ...

• s: start symbol[开始符号]
− One of the non-terminals

• 𝜎: set of productions[产生式]
− Specify the manner in which the terminals and non-terminals 

can be combined to to form strings
− “LHS → RHS”: left-hand-side produces right-hand-side
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Grammar (cont.)
• Usually, we can only write the 𝜎[简写]

• Merge rules sharing the same LHS[规则合并]
− ⍺à β1, ⍺à β2 , …, ⍺à βn

− ⍺à β1 | β2 | … | βn
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G = ({id, +, *, (, )} , {E}, E, P )
P = { E à E + E,

E à E * E,
E à (E),
E à id }

G:  E à E + E,
E à E * E,
E à (E),
E à id }

E à E + E | E * E | (E) | id



Production Rule and Derivation[推导]

• Production rule: LHS → RHS
− Aliases: LHS ≡ head, RHS ≡ body
− Meaning: LHS can be constructed (or replaced) with RHS

• Derivation: a series of applications of production rules
− Corresponds to the construction of a parse tree

• β ⇒ ⍺
− Meaning: string ⍺ is derived from β
− β ⇒ ⍺: derives one step
− β ⇒* ⍺: derives in zero or more steps
− β ⇒+ ⍺: derives in one or more steps

• Example: A ⇒ 0A ⇒ 00B ⇒ 000
− A ⇒* 000
− A ⇒+ 000
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Derivation[推导]

• If S ⇒* ⍺, where S is the start symbol of grammar G

• ⍺: sentential form of G[句型]
− A sentential form may contain both terminals and non-

terminals (and can be empty)

• ⍺: sentence of G[句子]
− A sentential form with no non-terminals

• Language[语言] generated by a grammar
− L(G) = {w: S ⇒ *w, w ∈ VT* }
− A string of terminal w is in L(G), iff w is a sentence of G (or S ⇒* 

w)
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Example
• Grammar G = {T, N, s, δ}

− T = {0, 1}
− N = {A, B}
− s = A
− δ = { A→ 0A | 1A | 0B, B→ 0 }

• Derivation: from grammar to language
− A ⇒ 0A ⇒ 00B ⇒ 000
− A ⇒ 1A ⇒ 10B ⇒ 100
− A ⇒ 0A ⇒ 00A ⇒ 000B ⇒ 0000
− A ⇒ 0A ⇒ 01A ⇒...
− … …
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Language Classification: Chomsky 
• Language classification based on form of grammar rules
• Four types of grammars:

− Type 0 — unrestricted grammar
p 0型文法 –无限制文法

− Type 1 — context sensitive grammar(CSG)
p 1型文法 –上下文有关文法

− Type 2 — context free grammar (CFG)
p 2型文法 –上下午无关文法

− Type 3 — regular grammar
p 3型文法 –正则文法

• Regular Grammar ⊆ CFG ⊆ CSG ⊆ Unrestricted Grammar
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Type 0: Unrestricted Grammar
• Form of rules α→β

− where α ∈ (N ∪ T)+, β ∈ (N ∪ T)∗

• Implied restrictions:
− LHS: no ε allowed

• Example:
− aB → aCD: LHS is shorter than RHS
− aAB → aB : LHS is longer than RHS
− A → ε: ε-productions are allowed

• Computational complexity: unbounded
− Derivation strings may contract and expand repeatedly (Since 

LHS may be longer or shorter than RHS)
− Unbounded number of productions before target string
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Type 1: Context Sensitive Grammar
• Form of rules: αAβ → αγβ

− where A ∈ N, α, β ∈ (N ∪ T )∗, γ ∈ (N ∪ T )+

• Replace A by γ only if found in the context of α and β 
• Implied restrictions: 

− LHS: shorter or equal to RHS
− RHS: no ε allowed 

• Example:
− aAB→aCB: replace A with C when in between a and B
− A → C: replace A with C regardless of context 

• Computational complexity: likely NP-Complete
− Derivation strings may only expand 
− Bounded number of derivations before target string 
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Type 2: Context Free Grammar
• Form of rules: A→γ

− where A ∈ N, γ ∈ (N ∪ T)+

• Replace A by γ (no context can be specified) 
• Implied restrictions: 

− LHS: a single non-terminal
− RHS: no ε allowed

p Sometimes relaxed to simplify grammar but rules can always be 
rewritten to exclude ε-productions 

• Example:
− A → aBc: replace A with aBc regardless of context 

• Computational complexity:
− Polynomial O(n2.3728639), but most real world CFGs are O(n) 
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Type 3: Regular Grammar
• Form of rules A→α,or A→αB

− where A,B ∈ N, α ∈ T

• In terms of FA: Move from state A to state B on input α
• Implied restrictions:

− LHS: a single non-terminal
− RHS: a terminal or a terminal followed by a non-terminal 

• Example: A → 1A | 0
• Computational complexity:

− Linear O(n)
− Derivation string length increases by 1 at each step
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In Practice[实际中]

• Every regular language is a context-free language

• If PLs are context-sensitive, why use CFGs for parsing?
− CSG parsers are provably inefficient
− Most PL constructs are context-free

p if-stmt, declarations
− The remaining context-sensitive constructs can be analyzed at 

the semantic analysis stage
p e.g. def-before-use, matching formal/actual parameters

• In PLs
− Regular language for lexical analysis
− Context-free language for syntax analysis
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Grammar and Derivation
• Grammar is used to derive string or construct parser

• A derivation is a sequence of applications of rules
− Starting from the start symbol
− S⇒... ⇒... ⇒... ⇒ (sentence)

• Leftmost and Rightmost derivations[最左和最右推导]
− At each derivation step, leftmost derivation always replaces the 

leftmost non-terminal symbol
− Rightmost derivation always replaces the rightmost one
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Example
• Two derivations of string “id * id + id * id” using grammar: 

E→E*E | E+E | (E) | id

• Leftmost derivation
− E ⇒ E + E ⇒ E * E + E ⇒ id * E + E ⇒ id * id + E ⇒ ... ⇒ id * id + 

id * id

• Rightmost derivation
− E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id ⇒ ... ⇒ id * id + 

id * id

• Derivations can be summarized as a parse tree
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Parse Trees[分析树]

• Both previous derivations result in the same parse tree:

• A parse tree is a graphical representation of a derivation 
− But filters out the order in which productions are applied to 

replace non-terminals
− Each interior node represents the application of a production

p Labeled with the non-terminal in the LHS of production
− Leaves are labeled by terminals or non-terminals

p Constitutes a sentential form (read from left to right)
p Called the yield[产出] or frontier[边缘] of the tree
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Parse Trees (cont.)
• Derivations and parse trees: many-to-one relationship

− Leftmost derivation order: builds tree left to right
− Rightmost derivation order: builds tree right to left
− Different parser implementations choose different orders
− One-to-one relationships between parse trees and either 

leftmost or rightmost derivations[最左或最右推导与分析树具
有一对一对应关系]

• Program structure does not depend on order of rule 
application, instead it depends on what production rules 
are applied

− Grammar must define unambiguously set of rules applied
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Different Parse Trees
• Grammar E→E*E | E+E | (E) | id is ambiguous

− String id * id + id * id can result in 3 parse trees (and more) 

• Grammar can apply different rules to derive same string
− Meaning of parse tree 1: (id * id) + (id * id)
− Meaning of parse tree 2: id * (id + (id * id))
− Meaning of parse tree 3: id * ((id + id) * id)
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Ambiguity[二义性]

• grammar G is ambiguous if
− It produces more than one parse tree some sentence
− i.e., there exist a string str ∈ L(G) such that
− more than one parse tree derives str

≡ more than one leftmost derivation derives str
≡ more than one rightmost derivation derives str

• Unambiguous grammars are preferred for most parsers
− If not, we cannot uniquely determine which parse tree to select 

for a sentence
− In minor cases, it is convenient to use carefully chosen 

ambiguous grammars, together with disambiguating rules that 
“throw away” undesirable parse trees, leaving only one tree for 
each sentence
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