
Compilation Principle
编译原理

第4讲：语法分析(1)
张献伟

xianweiz.github.io
DCS290, 3/11/2021

https://xianweiz.github.io/

Compilation Phases[编译阶段]

2

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

Syntax Analysis[语法分析]

• Second phase of compilation[第二阶段]
− Also called as parser

• Parser obtains a string of tokens from the lexical analyzer
− Lexical analyzer reads the chars of the source program, groups

them into lexically meaningful units called lexemes
− and produces as output tokens representing these lexemes

p Token: <token name, attribute value>
− Token names are used by parser for syntax analysis

p tokens à parse tree/AST

• Parse tree[分析树]
− Graphically represent the syntax structure of the token stream

3

Parsing Example
• Input: if(x==y) … else …[源程序输入]

• Parser input (Lexical output)[语法分析输入]

• Parser output[语法分析输出]

4

KEY(IF) ‘(‘ ID(x) OP(‘==‘) ID(y) ‘)’ … KEY(ELSE) …

Parsing Example (cont.)
• Example: <id, x> <op, *> <op, %>

− Is it a valid token stream in C language?
− Is it a valid statement in C language (x *%)?

• Not every string of tokens are valid
− Parser must distinguish between valid and invalid token strings

• We need a method to describe what is valid string?
− To specify the syntax of a programming language

5

YES
NO

How to Specify Syntax?
• How can we specify a syntax with nested structures?

− Is it possible to use RE/FA?
− L(Regular Expression) ≡ L(Finite Automata)

• RE/FA is not powerful enough

• Example: matching parenthesis: # of ‘(‘ == # of ‘)’
− (x+y)*z
− ((x+y)+y)*z
− (...(((x+y)+y)+y)...)
− ((x+y)+y)+y)*z

6

✓
✓
✓
✗

RE/FA is NOT Powerful Enough
• L = {anbn | n≥1} is NOT a Regular Language

− Suppose L were the language defined by regular expression
− Then we could construct a DFD D with k states to accept L
− Since D has only k states, for an input beginning with more than k a’s,

D must enter some state twice, say si
− Suppose that the path from si back to itself is labeled with aj-I

− Since aibi is in L, there must be a path labeled bi from si to an
accepting state f

− But, there is also a path from s0 through si to f labelled ajbi

− Thus, D also accepts ajbi, which is not in L, contradicting the
assumption that L is the language accepted by D

7

s0 si f…path labeled ai
…path labeled bi

path labeled aj-i…

RE/FA is NOT Powerful Enough(cont.)
• L = {anbn | n≥1} is not a Regular Language

− Proof à Pumping Lemma (泵引理)
− FA does not have any memory (FA cannot count)

p The above L requires to keep count of a’s before seeing b’s

• Matching parenthesis is not a RL
• Any language with nested structure is not a RL

− if … if … else … else

• Regular Languages
− Weakest formal languages that are widely used

8

What Language Do We Need?
• C-language syntax: Context Free Language (CFL)[上下文无
关语言]

− A broader category of languages that includes languages with
nested structures

• Before discussing CFL, we need to learn a more general
way of specifying languages than RE, called Grammars[文
法]

− Can specify both RL and CFL
− and more ...

• Everything that can be described by a regular expression
can also be described by a grammar

− Grammars are most useful for describing nested structures
9

Concepts
• Language[语言]

− Set of strings over alphabet
p String: finite sequence of symbols
p Alphabet: finite set of symbols

• Grammar[文法]
− To systematically describe the syntax of programming language

constructs like expressions and statements

• Syntax[语法]
− Describes the proper form of the programs
− Specified by grammar

10

Grammar[文法]

• Formal definition[形式化定义]: 4 components {T, N, s, δ}
• T: set of terminal symbols[终结符]

− Basic symbols from which strings are formed
− Essentially tokens - leaves in the parse tree

• N: set of non-terminal symbols[非终结符]
− Each represents a set of strings of terminals – internal nodes
− E.g.: declaration, statement, loop, ...

• s: start symbol[开始符号]
− One of the non-terminals

• 𝜎: set of productions[产生式]
− Specify the manner in which the terminals and non-terminals

can be combined to to form strings
− “LHS → RHS”: left-hand-side produces right-hand-side

11

Grammar (cont.)
• Usually, we can only write the 𝜎[简写]

• Merge rules sharing the same LHS[规则合并]
− ⍺à β1, ⍺à β2 , …, ⍺à βn

− ⍺à β1 | β2 | … | βn

12

G = ({id, +, *, (,)} , {E}, E, P)
P = { E à E + E,

E à E * E,
E à (E),
E à id }

G: E à E + E,
E à E * E,
E à (E),
E à id }

E à E + E | E * E | (E) | id

Production Rule and Derivation[推导]

• Production rule: LHS → RHS
− Aliases: LHS ≡ head, RHS ≡ body
− Meaning: LHS can be constructed (or replaced) with RHS

• Derivation: a series of applications of production rules
− Corresponds to the construction of a parse tree

• β ⇒ ⍺
− Meaning: string ⍺ is derived from β
− β ⇒ ⍺: derives one step
− β ⇒* ⍺: derives in zero or more steps
− β ⇒+ ⍺: derives in one or more steps

• Example: A ⇒ 0A ⇒ 00B ⇒ 000
− A ⇒* 000
− A ⇒+ 000

13

Derivation[推导]

• If S ⇒* ⍺, where S is the start symbol of grammar G

• ⍺: sentential form of G[句型]
− A sentential form may contain both terminals and non-

terminals (and can be empty)

• ⍺: sentence of G[句子]
− A sentential form with no non-terminals

• Language[语言] generated by a grammar
− L(G) = {w: S ⇒ *w, w ∈ VT* }
− A string of terminal w is in L(G), iff w is a sentence of G (or S ⇒*

w)

14

Example
• Grammar G = {T, N, s, δ}

− T = {0, 1}
− N = {A, B}
− s = A
− δ = { A→ 0A | 1A | 0B, B→ 0 }

• Derivation: from grammar to language
− A ⇒ 0A ⇒ 00B ⇒ 000
− A ⇒ 1A ⇒ 10B ⇒ 100
− A ⇒ 0A ⇒ 00A ⇒ 000B ⇒ 0000
− A ⇒ 0A ⇒ 01A ⇒...
− … …

15

Language Classification: Chomsky
• Language classification based on form of grammar rules
• Four types of grammars:

− Type 0 — unrestricted grammar
p 0型文法 –无限制文法

− Type 1 — context sensitive grammar(CSG)
p 1型文法 –上下文有关文法

− Type 2 — context free grammar (CFG)
p 2型文法 –上下午无关文法

− Type 3 — regular grammar
p 3型文法 –正则文法

• Regular Grammar ⊆ CFG ⊆ CSG ⊆ Unrestricted Grammar

16

Type 0: Unrestricted Grammar
• Form of rules α→β

− where α ∈ (N ∪ T)+, β ∈ (N ∪ T)∗

• Implied restrictions:
− LHS: no ε allowed

• Example:
− aB → aCD: LHS is shorter than RHS
− aAB → aB : LHS is longer than RHS
− A → ε: ε-productions are allowed

• Computational complexity: unbounded
− Derivation strings may contract and expand repeatedly (Since

LHS may be longer or shorter than RHS)
− Unbounded number of productions before target string

17

Type 1: Context Sensitive Grammar
• Form of rules: αAβ → αγβ

− where A ∈ N, α, β ∈ (N ∪ T)∗, γ ∈ (N ∪ T)+

• Replace A by γ only if found in the context of α and β
• Implied restrictions:

− LHS: shorter or equal to RHS
− RHS: no ε allowed

• Example:
− aAB→aCB: replace A with C when in between a and B
− A → C: replace A with C regardless of context

• Computational complexity: likely NP-Complete
− Derivation strings may only expand
− Bounded number of derivations before target string

18

Type 2: Context Free Grammar
• Form of rules: A→γ

− where A ∈ N, γ ∈ (N ∪ T)+

• Replace A by γ (no context can be specified)
• Implied restrictions:

− LHS: a single non-terminal
− RHS: no ε allowed

p Sometimes relaxed to simplify grammar but rules can always be
rewritten to exclude ε-productions

• Example:
− A → aBc: replace A with aBc regardless of context

• Computational complexity:
− Polynomial O(n2.3728639), but most real world CFGs are O(n)

19

Type 3: Regular Grammar
• Form of rules A→α,or A→αB

− where A,B ∈ N, α ∈ T

• In terms of FA: Move from state A to state B on input α
• Implied restrictions:

− LHS: a single non-terminal
− RHS: a terminal or a terminal followed by a non-terminal

• Example: A → 1A | 0
• Computational complexity:

− Linear O(n)
− Derivation string length increases by 1 at each step

20

In Practice[实际中]

• Every regular language is a context-free language

• If PLs are context-sensitive, why use CFGs for parsing?
− CSG parsers are provably inefficient
− Most PL constructs are context-free

p if-stmt, declarations
− The remaining context-sensitive constructs can be analyzed at

the semantic analysis stage
p e.g. def-before-use, matching formal/actual parameters

• In PLs
− Regular language for lexical analysis
− Context-free language for syntax analysis

21

Grammar and Derivation
• Grammar is used to derive string or construct parser

• A derivation is a sequence of applications of rules
− Starting from the start symbol
− S⇒... ⇒... ⇒... ⇒ (sentence)

• Leftmost and Rightmost derivations[最左和最右推导]
− At each derivation step, leftmost derivation always replaces the

leftmost non-terminal symbol
− Rightmost derivation always replaces the rightmost one

22

Example
• Two derivations of string “id * id + id * id” using grammar:

E→E*E | E+E | (E) | id

• Leftmost derivation
− E ⇒ E + E ⇒ E * E + E ⇒ id * E + E ⇒ id * id + E ⇒ ... ⇒ id * id +

id * id

• Rightmost derivation
− E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id ⇒ ... ⇒ id * id +

id * id

• Derivations can be summarized as a parse tree

23

Parse Trees[分析树]

• Both previous derivations result in the same parse tree:

• A parse tree is a graphical representation of a derivation
− But filters out the order in which productions are applied to

replace non-terminals
− Each interior node represents the application of a production

p Labeled with the non-terminal in the LHS of production
− Leaves are labeled by terminals or non-terminals

p Constitutes a sentential form (read from left to right)
p Called the yield[产出] or frontier[边缘] of the tree

24

Parse Trees (cont.)
• Derivations and parse trees: many-to-one relationship

− Leftmost derivation order: builds tree left to right
− Rightmost derivation order: builds tree right to left
− Different parser implementations choose different orders
− One-to-one relationships between parse trees and either

leftmost or rightmost derivations[最左或最右推导与分析树具
有一对一对应关系]

• Program structure does not depend on order of rule
application, instead it depends on what production rules
are applied

− Grammar must define unambiguously set of rules applied

25

Different Parse Trees
• Grammar E→E*E | E+E | (E) | id is ambiguous

− String id * id + id * id can result in 3 parse trees (and more)

• Grammar can apply different rules to derive same string
− Meaning of parse tree 1: (id * id) + (id * id)
− Meaning of parse tree 2: id * (id + (id * id))
− Meaning of parse tree 3: id * ((id + id) * id)

26

Ambiguity[二义性]

• grammar G is ambiguous if
− It produces more than one parse tree some sentence
− i.e., there exist a string str ∈ L(G) such that
− more than one parse tree derives str

≡ more than one leftmost derivation derives str
≡ more than one rightmost derivation derives str

• Unambiguous grammars are preferred for most parsers
− If not, we cannot uniquely determine which parse tree to select

for a sentence
− In minor cases, it is convenient to use carefully chosen

ambiguous grammars, together with disambiguating rules that
“throw away” undesirable parse trees, leaving only one tree for
each sentence

27

