Compilation Principle

gm VE I
et WEIRIHT(3)
HNUINGE

xianweiz.github.io
DCS290, 3/18/2021

Dyid:

https://xianweiz.github.io/

Review: Ambiguous Grammar

 Grammar E>E*E | E+E | (E) | id E \

— Ambiguous. Why? /

— Two distinct leftmost derivations for r +/ E

the sentence id +id * id
id E * E

e Are the two trees have the same i id
meaning?

- Above: id + (id * id) S ‘E\
- Below: (id + id) * id E_ *
SN
+ E

* The deepest sub-tree is traversed ‘E ‘ d
first, thus higher precedence id id

E

2 Dyid:

Review: Ambiguity Removal

* How to remove the ambiguity?

* Specify precedence

— The higher level of the production, the lower priority of operator
— The lower level of the production, the higher priority of operator

* Specify associativity
- If the operator is left associative, induce left recursion in its production
- If the operator is right associative, induce right recursion in its production

E2>E+E|T E2E+T|T
E>E*E | E+E | (E) | id T2>T*T|F T>T*F|F
F-> (E) | id F->(E) | id
still possible to get Now, can only have more ‘+’ on left
id + (id + id) E: sum of one or more terms (T)
and T: product of one or more factors (F)
(id +id) + id F: an identifier or a /()’ed expr

what if -’ (minus)?
! Dyig:

Review: Top-down and Bottom-up

e Consider a CFG grammar G

S—>AB A—>aC B—>bD D->d C—c
* This language has only one sentence: L(G) = {acbd}
Top-down (Leftmost Derivation) Bottom-up (reverse of
rightmost derivation)

S= AB (1) S= AB(5)

= aCB (2) = AbD (4)

= acB (3) = Abd (3)

= acbD (4) = aCbD (2)

= acbd (5) = acbd (1)

S
/\
A B

S
/\
A B
AN | AN |
i 7 I i
a ¢ b d “ a ¢ b d

—w

Mﬂ?

Preview: Bottom-up Steps

e Consider a CFG grammar G

S—>AB A—>aC B—>bD
Stack Input Action
S acbdS | Shift
Sa cbdS | Shift
Sac bdS | Reduce
SaC bdS
SA bdS | Reduce
SAb dsS | Shift
SAbd S | Shift
SAbD S | Reduce
SAB S | Reduce
SS S | Reduce

D—>d C-c

Bottom-up (reverse of
rightmost derivation)

S = AB (5)
= AbD (4)
= Abd (3)
= aCbD (2)

= achd (1)
S

/\
A B
AN |
/C/D
a ¢ b d

—o

Mﬂ?

Recursive Descent[i#IH]

* Recursive descent is a simple and general parsing strategy
— Try and backtrack

— Left-recursion must be eliminated first
o Can be eliminated automatically using some algorithm

 However it is not popular because of backtracking
— Backtracking requires re-parsing the same string
- Which is inefficient (can take exponential time)
— Also undoing semantic actions may be difficult
o E.g. removing already added nodes in parse tree

Parser

4
I I

Top-down parser Bottom-up parser

?
| |
RD-backtrack Predictive

parser parser |
6 WSCCH

Predictive Parsers[iiil 4 #7]

* A parser with no backtracking: predict correct next
production given next input terminal(s)

— If first terminal of every alternative production is unique, then
parsing requires no backtracking

— If not unique, grammar cannot use predictive parsers

A->aBD | bBB
B—>c | bce
D->d

parsing input “abced” requires no backtracking

MG%

Predictive Parsers (cont.)

* A predictive parser chooses the production to apply solely
on the basis of

- Next input symbols
— Current nonterminal being processed

* Patterns in grammars that prevent predictive parsing
— Common prefix[L [F] 5 2%]:
A->af | ay
Given input terminal(s) a, cannot choose between two rules
— Left recursion[£ i% JH]:
A->AB | a
Given input terminal(s) a, cannot choose between two rules

What is the language of the grammar? of*

@tuxt : Dl

Rewrite Grammars for Prediction

o Left factoring[/A [XI-F]: removes common left prefix
— In previous example: A—>af | ay
— can be changed to
A->aA
A>B]y
— Given input a, A’ can can choose between B ory
(Assuming B or y do not start with a)

* Left-recursion removal: same as for recursive descent
— In previous example: A>AB | a
— can be changed to
A->aA
A—>BA | €
— Given input a, A’ can can choose between 3 or €
(Assuming B doesn’t start with a or A" isn’t followed by a)

@ FTuxt Dl

LL(k) Parser / Grammar / Language

 LL(k) Parser

— A predictive parser that uses k lookahead tokens

— L: scans the input from left to right

— L: produces a leftmost derivation

- k: using k input symbols of lookahead at each step to decide

e LL(k) Grammar
— A grammar that can be parsed using an LL(k) parser
- LL(k) < CFG
o Some CFGs are not LL(k): common prefix or left-recursion
* LL(k) Language

- A language that can be expressed as an LL(k) grammar

 Many languages are LL(k) ... in fact many are LL(1)!

4

‘GL{

LL(k) Parser Implementation

* Implemented in a recursive or non-recursive fashion
— Recursive: recursive descent (recursive function calls)
— Non-recursive: explicit stack to keep track of recursion

* Recursive LL(1) parser for: A>B | C, B=>b, C—>c

— Parser consists of small functions, one for each non-terminal

int A() {
int token = peekNext(); // lookahead token
switch(token) {
case 'b’: //’B’ starts with 'b’
return B();
case ’c’: //'C’ starts with ’c’
return C();
default: // Reject
return O;

@ TuxE IR

LL(k) Parser Implementation (cont.)

* Recursive LL(1) parser for: A->B | C, B—>b, C—>c

int A() {
int token = peekNext(); // lookahead token
switch(token) {
case 'b’: //’B’ starts with 'b’
return B();
case ’c’: //'C’ starts with ’c’
return C();
default: // Reject
return O;

}

* |s there a way to express above code more concisely?

- Non-recursive LL(k) parsers use a state transition table (Just like
finite automata)

— Easier to automatically generate a non-recursive parser

@ TuxE IR

Non-recursive LL(1) Parser

* Table-driven parser: amenable to automatic code
generation (just like lexers)
— Input buffer: contains the string to be parsed, followed by S
— Stack: holds unmatched portion of derivation string
— Parse table M[A, b]: an entry containing rule “A->...” or error

— Parser driver (a.k.a., predictive parsing program): next action
based on (stack top, current token)

Input al+|b|S$

Predictive Parsing
Program

|

Parsing Table

M

—= Output

oA N| = X<

MG“X

LL(1) Parse Table: Example
Table int * = () S
E E—>TE E—>TE
E’ E' > +E EYe | EDe
T T2intT T - (E)
T T2>*T| T 2>¢ T—>¢e | T2>c¢

* Implementation with 2D parse table
— First column lists all non-terminals in the grammar
— First row lists all possible terminals in the grammar and $

— A table entry contains one production
o One action for each (non-terminal, input) combination
o It “predicts” the correct action based on one lookahead
o No backtracking required

@) tmx s 14 Dde

LL(1) Parsing Algorithm

* Initial state
— Input tape: input tokens followed by 'S’
— Stack: start symbol followed by ’S’ at bottom

* General idea: repeat one of two actions
— Expand symbol at top of stack by applying a production
- Match terminal symbol at top of stack with input token

* Step-by-step parsing based on (X,a)
- X: symbol at the top of the stack

— a: current input token

o If XET, then
o If X==a==S3, parser halts with “success”
* |f X==a!l=S5, successful match, pop X from stack and advance input head
e |f X I=a, parser halts and input is rejected

o if X €N, then
e if M[X,a] == ‘X—>RHS”, pop X and push RHS to stack
* if M[X,a] == empty, parser halts and input is rejected

Pry

‘GL{

Push RHS in Reverse Order

* For (X, a)
- X: symbol at the top of the stack
- a: current input token

* If M[X,a] = “X - BcD”

= B

c

X D
$ $

* Performs the leftmost derivation: a X = a BcD
— a.: string that has already been matched with input
- B: string yet to be matched, corresponding to the ... above

@) tmx s 16 Dde

Applying LL(1) Parsing to Grammar

* Consider the grammar
E->T+E|T
T - int*T | int | (E)

— No left recursion
- But require left factoring

e After rewriting grammar, we have
E->TE
E'> +E | €
T - intT" | (E)
T'>*T | €

@ 4 17 4
“ iyA’r-sENﬁEﬁ ‘& ¢ k{

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
— T *T | €
j parser driver
E
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E EE>¢e | EE2>c¢
T T2intT T - (E)
T T2>*T| T 2>¢ T—2>e | T2>¢

18

w@ﬂ?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
— T *T | €
| — | parser driver
=
EI
S -—
Table int * + () S
stack
E E->TFE E—>TE
E’ E' > +E EE>¢e | EE2c¢
T T2intT T - (E)
L T2>*T| T >¢ T2>e | T2>¢

19

w@ﬂ?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
— T>*T | ¢
int o parser driver
TI
EI
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E E>e | EDe
T T2intT T - (E)
T T2>*T| T 2>¢ T—2>e | T2>¢

20

ub@@?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
/ T=>*T | €
| | parser driver
TI
EI
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E EE>¢e | EE2>c¢
T T2intT T - (E)
L T"2*T| T >¢ T—2>e | T2>¢

21

w@ﬂ?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int S T = intT’ | (E)
/ T=>*T | €
k «—] .
parser driver
T
EI
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E EE>¢e | EE>c¢
T T2intT T - (E)
T T2>*T| T 2>¢ T—>¢e | T>c¢

22 Dy

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
_— T>*T | ¢
|| parser driver
=
EI
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E EE>¢e | EE2>c¢
T T2intT T - (E)
T T2>*T| T 2>¢ T—2>e | T2>¢

23

w@ﬂ?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
_— T>*T | ¢
int fo—— parser driver
TI
EI
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E E>e | EDe
T T2intT T - (E)
T T2>*T| T 2>¢ T—2>e | T2>¢

24

w@ﬂ?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
_— T>*T | €
{ | parser driver
TI
EI
S -
Table int * + () S
stack
E E->TFE E—->TFE
E’ E' > +E EE>¢e | EE2>c¢
T T2intT T - (E)
L T2>*T| T >¢ T—>e | T 2¢

25

w@ﬂ?

Using the Parse Table

* To recognize “int * int”

E->TE
input E'> +E | €
int * int T - intT" | (E)
" T>*T | ¢
parser driver
Table int *\; () S
E E->TFE E—->TFE
E’ E' 2> +E EE>¢e | EE2¢
T T2intT T - (E)
T T2>*T| T 2>¢ T—>¢e | T>c¢

26

w@ﬂ?

Using the Parse Table

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
_— T>*T | €
. ACCEPT!
parser driver
g / D —
Table int * + () S
stack
E | EDTFE E->TE
E’ E' > +E E>e | EDe
T T2intT T - (E)
T T2>*T| T 2>¢ T—2>e | T2>¢

27

Dyid:

Recognizing Sequence

Stack Input Action
ES int *intS|E->TE
TE'S| int*intS|{T->intT

intT"E’ S int * int S | match

TES *IntS | T > *T
*TE'S *int S | match

TE'S intS|T>intT
intT"E’ S int S | match
TES ST >«
E'S S|E>c¢
S S | Halt and accept

28

E>TE

E'> +E | €

T = intT’ | (E)
T *T | €

e Contents of stack correspond to remaining input

* Actions correspond to productions in leftmost derivation

MG“X

Review Questions (1)

e What is Recursive Descent?

Parsing by trying and backtracking to produce the leftmost derivation

* Why do we prefer to use Predictive Parser?

Requires no backtracking, more efficient

* How to predict the next production to use?

Next input symbol, current nonterminal being processed

* What are the grammar requirements of predictive parse?

No common prefix, no left recursion [FME—4]

* What does LL(k) mean?
L: scans the input from left to right
L: produces a leftmost derivation
K using k input symbols of lookahead

MGLZ

Review Questions (2)

* What is the initial state of the parser? e [[al+ o fs
Input: input tokens followed by $ X&
Stack: start symbol followed by S Y] |Prodictive Pasing L gupuy

* General idea of the table-driven parse? F“T‘

M
Expand on non-terminal, match on terminal

* How do we expand?
If M[X, a] = “X = RHS”, pop X and push RHS to stack

* What are stored in the parsing table?
Actions the parser should take based on input token and stack top

Table int E + () $
E E->TE E->TE
E E' > +E EF>e | EDe
T [TDintT T (F)
T T2* | T2c¢ T2e | T2¢

30 Dhtge

To Construct Parsing Table[# @it)

* The parsing tab
take based on t

* The parsing tab

e stores the actions the parser should
he input token and the stack top

e cah be constructed using two sets

— FIRST(A): set of terminals that begin strings derived from A
o E.g., ¢ € FIRST(A)
o If A=>%*g, theneisalsoin FIRST(A)
— FOLLOW(A): set of terminals that can appear following A
o E.g., a € FOLLOW(A)
o If Ais rightmost of a sentential form, then S is also in FOLLOW(A)

Use FIRST and FOLLOW

* Why do we need FIRST and FOLLOW in parsing?
* FIRST[JT#54E)
- FIRST(a): set of terminals that start strings derived from «a

— Consider A = o B, where FIRST(a) and FIRST(B) are disjoint sets

- We can then choose by looking at the next input symbol a
o since a can be in at most FIRST(a) or FIRST(B), not both

* FOLLOW[)G 4k ££]
— FOLLOW(A): set of terminals that can appear right after A

— If there’s a derivation of A that results in €

o In this case, A could be replace by nothing and the next token would be
the first token of the symbol following A in the sentence being parsed

o Thus, parser needs to consider to choose the path A =* ¢

(&) T X2 32 MG?

Example

Grammar:

S = aBC

B> bC b € FIRST(B)
B> dB d € FIRST(B)
B>«

C—>c c€FOLLOW(B)
C->a a€ FOLLOW(B)
D2>e

Input: ada Input: ade
g 111 S

= dBC = aBC

= adBC = adB

= ad& = ad

= adz'a =

 Both FIRST and FOLLOW should be used to construct the

parsing table

33 Dyid:

FIRST

* Compute FIRST(X) for all grammar symbols X, apply the
following rules until no terminal or € can be added to any
FIRST set

— If X € T, then FIRST(X)={X} [L5 4]
— If X € N and X-> € exists, then add € to FIRST(X) [JEZX 4577, F¥3]

- If X E N and X% Y1Y2Y3...Yk, then

o Add a to FIRST(X), if for some i, a is in FIRST(Y;), and € is in all of FIRST(Y,),
.., FIRST(Y,,), i.e., Y..Y., =* €. E.g.,

e Everything in FIRST(Y,) is surely in FIRST(X)

* If Y, doesn’t derive g, then we add nothing more
 Butif Y1 =%* g, then we add FIRST(Y2), and so on

o Add € to FIRST(X), if € is in FIRST(Y)) for all j=1,2,...k

@ T1x2 Dl

FIRST(cont.)

e Compute FIRST(X) for all grammar symbols X [5]

* Next, we can compute FIRST for any string ot = X, X,...X,[ff
5]
— Add FIRST(X,) all non-g symbols to FIRST(«)
— Add FIRST(X,) - €), 2<i<k, to FIRST(a), if FIRST(X,), .., FIRST(X,_,)
all contain ¢

o Add non-g symbols of FIRST(X,), if € is in FIRST(X,)
o Add non-g symbols of FIRST(X;), if € is in FIRST(X;) and FIRST(X,)

O

— Add € to FIRST(a), if FIRST(X,), ..., FIRST(X,) all contain €

@ T1x2 Dl

FOLLOW

* To compute FOLLOW(A) to all non-terminals A, apply
following rules until no terminal or € can be added to any

FOLLOW set
— Place S in FOLLOW(S), where S is the start symbol

— If there is a production A = aBp, then everything in FIRST(B)
except € is in FOLLOW(B)

— If there is a production A = aB, or a production A = aBB,
where FIRST(B) contains €, then everything in FOLLOW/(A) is in
FOLLOW(B)

@ FTuxt Dl

Example: FIRST and FOLLOW

* FIRST(T) = FIRST(E) = {int, (}

- E has only one production, and its body starts with T

— T doesn’t derive g, E is same with T E-> TE
* FIRST(E’) = {+, €} E'> +E|e
T - intT" | (E)
°) = {*
FIRST(T’) = {*, €} T'>*T|e

* FOLLOW(E) = FOLLOW(E’) ={), S}
— E is start symbol, thus S must be contained; production body (E)
- E’ appears at the ends of E-productions, same as FOLLOW(E)

* FOLLOW(T) = FOLLOW(T’) = {+,), S}
- +: T appears in bodies only followed by E’, thus FIRST(E’)- €

—), S: FIRST(E’) contains €, and E’ is the entire str following T, so
FOLLOW(E’) is in FOLLOW(T)

_— T’ isonly at ends of T-productions, FOLLOW(T’)=FOLLOW(T)

Example: FIRST and FOLLOW (cont.)

Symbol FIRST FOLLOW
E int, (), S
E’ +, €), S
T int, (+,),S
T * € +,),S
A - o (RHS) | FIRST
E—>TE int, (
E"—> +E +
T = intT’ int
T —> (+E) (
T = *T *
C)THXE 38

E->TE

E'—=> +E|¢

T intT’ | (E)
T'>*T|e

MELX

Construct LL(1) Parse Table

* To construct, rule A= a is added to MIA, a] if either:
— For each terminal a in FIRST(a)
- If €isin FIRST(a), or a=g, ais in FOLLOW(A) (Epsilon production)

* If eisin FIRST(at) and S is in FOLLOW(A), add A = a to
M[A, S] as well

* If after performing the above, there is no production at all
in M[A, a], then set M[A, a] to error

— Which is normally represented by an empty entry in the table

() f
‘\/‘ iv:i‘mﬁnﬁ ‘& ‘hm L{

Construct LL(1) Parse Table (cont.)

A > o (RHS) | FIRST E’e TE
E > TE int, (Eéf“Elf
© S +E . Symbol | FIRST roLLow | T = intT” | (E)
i T'>*T|e
T intT’ int E int, (), 9 |
T - (E) (E’ +, €), S
T = *T * T int, (+), %
ESe FOLLOW T 58 +),$
T >e¢ FOLLOW
Table int * + () $
E E->TE E->TE
E’ E' > +E e | EFDe
T T2intT T - (E)
T T2 | T >e¢ T>e | T'>e¢

" r

Use the Table [already examined]

* To recognize “int * int” E->TE
input E'> +E | €
int * int T - intT" | (E)
— T *T | €
+/ parser driver
E
S —
Table int * + () S
stack
E E->TFE E—>TE
E’ E' > +E EE>¢e | EE2c¢
T T2intT T - (E)
T T2>*T| T >¢ T2>e | T2>¢

41

Dyid:

Determine if Grammar is LL(1)

e Observation

- If a grammar is LL(1), then each of its LL(1) table entry contains
at most one rule

— Otherwise, it is not LL(1).

 Two methods to determine if a grammar is LL(1) or not
— Construct LL(1) table, and check if there is a multi-rule entry

— Checking each rule as if the table is getting constructed.

Gis LL(1) iff forarule A - a|B

a FIRST(a) N FIRST(B) = &

o At most one of a and B can derive € }1%%1"@1% EI/J ﬂﬁ*@
o If B derives g, then FIRST(a) N FOLLOW(A) = ¢

42) G
/ i Yﬂnl\;ﬁuﬁ } &ih UZ

Non-LL(1) Grammars

e Suppose a grammar is not LL(1). What then?
e Case-1: the language may still be LL(1).

— Try to rewrite grammar to LL(1) grammar:

o Apply left-factoring
o Apply left-recursion removal

— Try to remove ambiguity in grammar:

o Encode precedence into rules
o Encode associativity into rules

e Case-2: If Case-1 fails, language may not be LL(1)

- Impossible to resolve conflict at the grammar level

- Programmer chooses which rule to use for conflicting entry (if
choosing that rule is always semantically correct)

— Otherwise, use a more powerful parser (e.g. LL(k), LR(1))

@ T1x2 Dl

LL(1) Time and Space Complexity

* Linear time and space relative to length of input

* Time: each input symbol is consumed within a constant
number of steps
- If symbol at top of stack is a terminal:
o Matched immediately in one step

- If symbol at top of stack is a non-terminal:
o Matched in at most N steps, where N = number of rules
o Since no left-recursion, cannot apply same rule twice without
consuming input

e Space: smaller than input (after removing X = €)

— RHS is always longer or equal to LHS
o Derivation string expands monotonically
o Derivation string is always shorter than final input string

— Stack is a subset of derivation string (unmatched portion)

A p
[« z)) l '] K
3.@ 2) |
SUN YAT-SEN UNIVERSITY ‘ & ‘

Some Thoughts ...

e LL(1) table-driven parser is basically DFA + Stack
— Capable to count = CFG is more powerful than RE

* We have studied LL(1), what about LL(0), LL(2) or LL(k)?

* |s LL(0) useful at all?

— Grammar where rules can be predicted with no lookahead
- = That means, there can only be one rule per non-terminal
- = That means, this language can have only one string

* What would prevent LL(2) ... LL(k) from wide usage?
— Size of parse table = O(|N|*|T|¥)

o where N = set of non-terminals, T = set of terminals

@ T1x2 Dl

Summary: Predictive Parser

* FIRST and FOLLOW sets are used to construct predictive
parsing tables

* Intuitively, FIRST and FOLLOW sets guide the choice of
rules

— For non-terminal A and lookahead t, use the production rule A
— o where t € FIRST(a)

OR

— For non-terminal A and lookahead t, use the production rule A
— a where € € FIRST(a) and t € FOLLOW(A)

— There can only be ONE such rule
o Otherwise, the grammar is not LL(1)

@ T1x2 Dl

