Compilation Principle

gm VE I
F8YF: THIRIIHT(S)
HNUINGE

xianweiz.github.io
DCS290, 3/25/2021

Dyid:

https://xianweiz.github.io/

Review Questions (1)

* What are the parts of a table-driven predictive parser?

Input buffer, stack, parse table and a driver

* What are the operations on the stack?

Expand the non-terminal, match the terminal

* How to predict the next production to use?

Next input symbol, current nonterminal being processed

* What does LL(k) mean?

L: scans the input from left to right
L: produces a leftmost derivation
k: using k input symbols of lookahead

* How to build the LL(1) parse table?
Two sets: FIRST, FOLLOW

4

‘GL{

Review Questions (2)

e Which one is typically used, LL(0), LL(1), LL(2) ...? Why not
others?

LL(1). LL(O) is too weak, LL(k) has a too large table

* Which are the key differences between top-down and
bottom-up parsing?

Top-down is based on leftmost derivation;
bottom-up is the reverse of rightmost derivation.

* What are the key operations of bottom-up parsing?
Shift: pushes a terminal on the stack
Reduce: pops RHS and pushes LHS

ME?

Types of Bottom-Up Parsers

* Types of bottom up parsers
- Simple precedence parsers
— Operator precedence parsers
— Recursive ascent parsers
- LR family parsers

* In this course, we will only discuss LR family parsers
— Efficient, table-driven shift-reduce parsers
- Most automated tools for bottom-up parsing generate LR family

@ T1x2 Dl

LR(k) Parser

* LR(k): member of LR family of parsers
- L: scan input from left to right
— R: construct a rightmost derivation in reverse

- k: number of input symbols of lookahead to make decisions
o k=0 or 1 are of particular interests, is assumed to be 1 when omitted

e Comparison with LL(k) parser
— Efficient as LL(k)

o Linear in time and space to length of input (same as LL(k))

— Convenient as LL(k)
o Can generate automatically from grammar — YACC, Bison

— More complex than LL(k)
o Harder to debug parser when grammar causes conflicting predictions
- More powerful than LL(k)

o Handles more grammars: no left recursion removal, left factoring
needed

) o Handles more (and most practical) languages: LL(1) < LR(1)

LR Parser

input string
stack a, |a, a a |$
S X ” .
= - LR Parsing program
Sm-1 Xm1 gp g
Sm-2 Xm-2 A‘
Action GoTo Table
S; 11X
S, -

* The stack holds a sequence of states, sy5;...5, (S, is the top)
— States are to track where we are in a parse
— Each grammar symbol X: is associated with a state s,

* Contents of stack + input (X;X,...X..a....a,) is a right sentential
form

— If the input string is a member of the language
* Uses [S,,, a;] to index into parsing table to determine action

© Dhtge

Parse Table

* LR parsers use two tables: action table and goto table
— The two tables are usually combined
— Action table specifies entries for terminals
— Goto table specifies entries for non-terminals

e Action table[Z1E %]

— Action[s, a] tells the parser what to do when the state on top of
the stack is s and terminal a is the next input token

— Possible actions: shift, reduce, accept, error

* Goto table[Bk#%]

- Gotols, X] indicates the new state to place on top of the stack
after a reduction of the non-terminal X while state s is on top of
the stack

@ T1x2 Dl

Possible Actions[m] g&zh1E]

* Shift

— Transfer the next input symbol onto the top of the stack

* Reduce
- If there’s a rule A & w, and if the contents of stack are qw for
some g (g may be empty), then we can reduce the stack to gA
* Accept

— The special case of reduce: reducing the entire contents of stack
to the start symbol with no remaining input

— Last step in a successful parse: have recognized input as a valid
sentence

* Error

— Cannot reduce, and shifting would create a sequence on the
stack that cannot eventually be reduced to the start symbol

@ Tux% IR

Possible Actions (cont.)

* Grammar
S—>E
ES>T|E+T
T>id | (E)

* Input: (id + id)

— #(id + id)S => (id#+ id)S => (TH+ id)S => (E#+ id)S => (E+id#)S =>
(E+T#)S => (E#)S => (E)#S => T#S => E#S => S#S

* Input: id+)
— #id+)S => id#+)S => TH#+)S => EH+)S => E+#)S ...

(&) T X% 9 Diode

Example: Parse Table

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

* Table entry:

State ACTION GOTO

a b S

0 s3 s4

1 acc

2 s3 s4

3 s3 s4

4 r3 r3 r3

5 rl rl rl

6 r2 r2 r2

— si: shifts the input symbol and moves to state j (i.e., push state on

stack)

- rj: reduce by production numbered j

— acc: accept
— blank: error

10

Example

. Parse Table (cont.)

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

State ACTION GOTO
a b S B
0 s3 s4 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 rl rl rl
6 r2 r2 r2
state » 0 4
symbol S b babs

11

MELX

Example

. Parse Table (cont.)

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

State ACTION GOTO
a b S B
0 s3 s4 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 rl rl rl
6 r2 r2 r2
state » 0 4
symbol =S B abs

12

MELX

Example

. Parse Table (cont.)

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

State ACTION GOTO

a b S B

0 s3 s4 2

1 acc

2 s3 s4 5

3 s3 s4 6

4 r3 r3 r3

5 rl rl rl

6 r2 r2 r2

state 0 2 3 4
symbol »§ B a b abs

MELX

Example

. Parse Table (cont.)

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

State ACTION GOTO

a b S B

0 s3 s4 2

1 acc

2 s3 s4 5

3 s3 s4 6

4 r3 r3 r3

5 rl rl rl

6 r2 r2 r2

state 0 2 3 8
symbol ~$ B a B S

14

MELX

Example: Parse Table (cont.)

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

State ACTION GOTO

a b S B

0 s3 s4 2

1 acc

2 s3 s4 5

3 s3 s4 6

4 r3 r3 r3

5 rl rl rl

6 r2 r2 r2

state 0 2 3 6
symbol »S B 8 B S

15

MELX

Example: Parse Table (cont.)

Grammar:
(1) S - BB
(2) B— aB
(3)B—>Db

String: bab

State ACTION GOTO
a b S B
0 s3 s4 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 rl rl rl
6 r2 r2 r2
state 0 2 5
symbol »S B8 B S

16

MELX

Parser Actions

_ S
Initial 0
S a,a,...3,5
General SoS; S
SXq X, 2:di,1...9,5

* If ACTION([s,,, a;] = sx, then do shift

— Pushes a; on stack
o a, is removed from input 5051 ... SmX

- Enters state x SX1... X2 Qjp1-+-ApS
o i.e., pushes state x on stack

@ FTuxt Dl

Parser Actions (cont.)

. . S
Initial e
S a,a,...3,5
General SoS; S
SXq X, 2:di,1...9,5

* If ACTION[s,, a]] = rx, (i.e., the xt" production: A - X,
1)--Xmm), then do reduce
— Pops k symbols from stack ~ S0%1..5m-k
— Pushes A on stack SXq X A 2:di,1...9,5

- No change on input

- GOTO(S,,, Al =, then SgS1 Sy

SXq X A a:di,1...9,5

@ TuxE IR

Parser Actions (cont.)

. . S
Initial e
S a,a,...3,5
General SoS; S
SXq.. X, 2:d,,1...3,5

* If ACTION[s,, a;] = acc, then parsing is complete

* If ACTION[s,,, a;] = <empty>, then report error and stop

»‘:G%

LR Parsing Program

* Input: input string w and parse table with ACTION/GOTO
* Output: reduction steps w’s bottom-up parse, or error

* Initial: sy on the stack, wS in the input buffer

let a be the first symbol of wS
while (1) { /* repeat forever */
let s be the state on top of the stack;
if (ACTION([s,a] = shift t) {
push t onto the stack;
let a be the next input symbol;
} else if (ACTION[s,a] = reduce A -> B) {
pop |B| symbols off the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A-> f3;
} else if (ACTION[s,a] = accept) break; /* parsing is done */
else call error-recovery routine;

Construct Parse Table

* Construct parsing table: identify the possible states and
arrange the transitions among them

* LR(0) parsing
— Simplest LR parsing, only considers stack to decide shift/reduce
— Weakest, not used much in practice because of its limitations

* LR(1) parsing
— LR parser that considers next token (lookahead of 1)
— Compared to LR(0), more complex alg and much bigger table

e SLR(1) parsing
— Simple LR, lookahead from first/follow rules derived from LR(0)
— Keeps table as small as LR(0)

* LALR(1) parsing
— Lookahead LR(1): fancier lookahead analysis using the same LR(0)
automaton as SLR(1)

@ Tux% IR

ltem[mi B

“o 'y

* An item is a production with a “” somewhere on the RHS
— Dot indicates extent of RHS already seen in the parsing process
- TheonlyitemforX > gis X - -
- Items are often called “LR(0) items” (a.k.a., configuration)

* The items for A - XYZ are
- A > XYZ
o Indicates that we hope to see a string derivable from XYZ next on input
- A > XYZ

o Indicates that we have just seen on the input a string derivable from X
and that we hope next to see a string derivable from YZ

- A > XYZ
- A > XYZ:

o Indicates that we have seen the body XYZ and that it may be time to
reduce XYZ to A

@ FTuxt Dl

State[ik%)]

* Example:

— Suppose we are currently in this position
A - X-YZ
— We have just recognized X and expect the upcoming input to
contain a sequence derivable from YZ (say, Y = u|w)
o Y is further derivable from either u or w
A > X-YZ
Y—>-u
Y>> w
— The above three items can be placed into a set, called as
configuration set of the LR parser

* Parsing tables have one state corresponding to each set

— The states can be modeled as a finite automaton where we
move from one state to another via transitions marked with a
symbol of the CFG

A p
(2)
(B) T K |
SUN YAT-SEN UNIVERSITY ‘ Y

Augmented Grammar#) i)

e We want to start with an item with a dot before the start
symbol S and move to an item with a dot after S

- Represents shifting and reducing an entire sentence of the
grammar

— Thus, we need S to appear on the right side of a production
— Only one ‘acc’ in the table

* Modify the grammar by adding the production
S-S

Grammar: Augmented grammar:
(O)E" > E
(1)E>E+T (1)E>E+T
(2)E->T (2)E->T
(3) T>T*F (3) T>T*F

@ FTuxt Dl

Example

(0)S">S (1)S - BB (2) B> aB (3)B—>b

Initial item S- .BB B—> .aB |
SI 9 .S S 9 B.B B 9 a.B B 9 _b Reduce item
S"—>S. S - BB. B - aB. B->bh.
Accept item

* Closure: the action of adding equivalent items to a set
- Example: S’ = .S S— .BB B->.aB B->.b

* Intuitively, A - o.Bp means that we might next see a
substring derivable from BB (_sub) as input. The _sub will
have a prefix derivable from B by applying one of the B-
productions.

— Thus, we add items for all the B-productions, i.e., if B> yisa
production, we add B - .y in the closure

@ T1x2 Dl

