
Compilation Principle
编译原理

第8讲：语法分析(5)
张献伟

xianweiz.github.io
DCS290, 3/25/2021

https://xianweiz.github.io/

Review Questions (1)
• What are the parts of a table-driven predictive parser?

• What are the operations on the stack?

• How to predict the next production to use?

• What does LL(k) mean?

• How to build the LL(1) parse table?

2

Input buffer, stack, parse table and a driver

Expand the non-terminal, match the terminal

Next input symbol, current nonterminal being processed

L: scans the input from left to right
L: produces a leftmost derivation
k: using k input symbols of lookahead

Two sets: FIRST, FOLLOW

Review Questions (2)
• Which one is typically used, LL(0), LL(1), LL(2) …? Why not

others?

• Which are the key differences between top-down and
bottom-up parsing?

• What are the key operations of bottom-up parsing?

3

LL(1). LL(0) is too weak, LL(k) has a too large table

Top-down is based on leftmost derivation;
bottom-up is the reverse of rightmost derivation.

Shift: pushes a terminal on the stack
Reduce: pops RHS and pushes LHS

Types of Bottom-Up Parsers
• Types of bottom up parsers

− Simple precedence parsers
− Operator precedence parsers
− Recursive ascent parsers
− LR family parsers
− ...

• In this course, we will only discuss LR family parsers
− Efficient, table-driven shift-reduce parsers
− Most automated tools for bottom-up parsing generate LR family

4

LR(k) Parser
• LR(k): member of LR family of parsers

− L: scan input from left to right
− R: construct a rightmost derivation in reverse
− k: number of input symbols of lookahead to make decisions

p k = 0 or 1 are of particular interests, is assumed to be 1 when omitted

• Comparison with LL(k) parser
− Efficient as LL(k)

p Linear in time and space to length of input (same as LL(k))
− Convenient as LL(k)

p Can generate automatically from grammar – YACC, Bison
− More complex than LL(k)

p Harder to debug parser when grammar causes conflicting predictions
− More powerful than LL(k)

p Handles more grammars: no left recursion removal, left factoring
needed

p Handles more (and most practical) languages: LL(1) ⊂ LR(1)
5

LR Parser

• The stack holds a sequence of states, s0s1…sm (sm is the top)
− States are to track where we are in a parse
− Each grammar symbol Xi is associated with a state sm

• Contents of stack + input (X1X2...Xmai...an) is a right sentential
form

− If the input string is a member of the language
• Uses [Sm, ai] to index into parsing table to determine action

6

Parse Table
• LR parsers use two tables: action table and goto table

− The two tables are usually combined
− Action table specifies entries for terminals
− Goto table specifies entries for non-terminals

• Action table[动作表]
− Action[s, a] tells the parser what to do when the state on top of

the stack is s and terminal a is the next input token
− Possible actions: shift, reduce, accept, error

• Goto table[跳转表]
− Goto[s, X] indicates the new state to place on top of the stack

after a reduction of the non-terminal X while state s is on top of
the stack

7

Possible Actions[可能动作]

• Shift
− Transfer the next input symbol onto the top of the stack

• Reduce
− If there’s a rule A → w, and if the contents of stack are qw for

some q (q may be empty), then we can reduce the stack to qA

• Accept
− The special case of reduce: reducing the entire contents of stack

to the start symbol with no remaining input
− Last step in a successful parse: have recognized input as a valid

sentence

• Error
− Cannot reduce, and shifting would create a sequence on the

stack that cannot eventually be reduced to the start symbol
8

Possible Actions (cont.)
• Grammar

S → E
E → T | E + T
T → id | (E)

• Input: (id + id)
− #(id + id)$ => (id#+ id)$ => (T#+ id)$ => (E#+ id)$ => (E+id#)$ =>

(E+T#)$ => (E#)$ => (E)#$ => T#$ => E#$ => S#$

• Input: id+)
− #id+)$ => id#+)$ => T#+)$ => E#+)$ => E+#)$ …

9

Example: Parse Table
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

10

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

• Table entry:
− si: shifts the input symbol and moves to state i (i.e., push state on

stack)
− rj: reduce by production numbered j
− acc: accept
− blank: error

Example: Parse Table (cont.)
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

11

$ b a b $
0

b
4

b a b

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

state
symbol

Example: Parse Table (cont.)
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

12

$ a b $
0

b
4

b a b B

B

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

state
symbol

Example: Parse Table (cont.)
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

13

$ a b $
0

b a b B

B
2

a
3

b
4

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

state
symbol

Example: Parse Table (cont.)
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

14

$ $
0

b a b B

B
2

a
3

b
4
B

B
6

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

state
symbol

Example: Parse Table (cont.)
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

15

$ $
0

b a b B

B
2

B

a
3 6

B

B

B

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

state
symbol

Example: Parse Table (cont.)
State

ACTION GOTO
a b $ S B

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

16

$ $
0

b a b

B B

B

B
2

B
5

S

S
1

Grammar:
(1) S → BB
(2) B → aB
(3) B → b

String: bab

state
symbol

Parser Actions

• If ACTION[sm, ai] = sx, then do shift
− Pushes ai on stack

p ai is removed from input
− Enters state x

p i.e., pushes state x on stack

17

s0

$ a1a2…an$

s0s1 … sm

$X1…Xm aiai+1…an$

s0s1 … smx
$X1…Xmai ai+1…an$

Initial

General

Parser Actions (cont.)

• If ACTION[sm, ai] = rx, (i.e., the xth production: A → Xm-(k-
1)…Xm), then do reduce

− Pops k symbols from stack
− Pushes A on stack
− No change on input
− GOTO[Sm-k, A] = y, then

18

s0

$ a1a2…an$

s0s1 … sm

$X1…Xm aiai+1…an$

s0s1 … sm-k

$X1…Xm-kA aiai+1…an$

s0s1 … sm-ky
$X1…Xm-kA aiai+1…an$

Initial

General

Parser Actions (cont.)

• If ACTION[sm, ai] = acc, then parsing is complete

• If ACTION[sm, ai] = <empty>, then report error and stop

19

s0

$ a1a2…an$

s0s1 … sm

$X1…Xm aiai+1…an$

Initial

General

LR Parsing Program
• Input: input string ω and parse table with ACTION/GOTO
• Output: reduction steps ω’s bottom-up parse, or error
• Initial: s0 on the stack, ω$ in the input buffer

20

let a be the first symbol of ω$
while (1) { /* repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce A -> β) {
pop |β| symbols off the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A-> β;

} else if (ACTION[s,a] = accept) break; /* parsing is done */
else call error-recovery routine;

}

Construct Parse Table
• Construct parsing table: identify the possible states and

arrange the transitions among them
• LR(0) parsing

− Simplest LR parsing, only considers stack to decide shift/reduce
− Weakest, not used much in practice because of its limitations

• LR(1) parsing
− LR parser that considers next token (lookahead of 1)
− Compared to LR(0), more complex alg and much bigger table

• SLR(1) parsing
− Simple LR, lookahead from first/follow rules derived from LR(0)
− Keeps table as small as LR(0)

• LALR(1) parsing
− Lookahead LR(1): fancier lookahead analysis using the same LR(0)

automaton as SLR(1)

21

Item[项目]

• An item is a production with a “·” somewhere on the RHS
− Dot indicates extent of RHS already seen in the parsing process
− The only item for X → ε is X → ·
− Items are often called “LR(0) items” (a.k.a., configuration)

• The items for A → XYZ are
− A → ·XYZ

p Indicates that we hope to see a string derivable from XYZ next on input
− A → X·YZ

p Indicates that we have just seen on the input a string derivable from X
and that we hope next to see a string derivable from YZ

− A → XY·Z
− A → XYZ·

p Indicates that we have seen the body XYZ and that it may be time to
reduce XYZ to A

22

State[状态]

• Example:
− Suppose we are currently in this position

A → X·YZ
− We have just recognized X and expect the upcoming input to

contain a sequence derivable from YZ (say, Y → u|w)
p Y is further derivable from either u or w

A → X·YZ
Y → ·u
Y → ·w

− The above three items can be placed into a set, called as
configuration set of the LR parser

• Parsing tables have one state corresponding to each set
− The states can be modeled as a finite automaton where we

move from one state to another via transitions marked with a
symbol of the CFG

23

Augmented Grammar[增广文法]

• We want to start with an item with a dot before the start
symbol S and move to an item with a dot after S

− Represents shifting and reducing an entire sentence of the
grammar

− Thus, we need S to appear on the right side of a production
− Only one ‘acc’ in the table

• Modify the grammar by adding the production
S’ → ·S

24

Grammar:

(1) E → E + T
(2) E → T
(3) T → T * F
... …

Augmented grammar:
(0) E’ → E
(1) E → E + T
(2) E → T
(3) T → T * F
… …

Example

• Closure: the action of adding equivalent items to a set
− Example: S’ → .S S → .BB B → .aB B → .b

• Intuitively, A → ⍺.Bβ means that we might next see a
substring derivable from Bβ (_sub) as input. The _sub will
have a prefix derivable from B by applying one of the B-
productions.

− Thus, we add items for all the B-productions, i.e., if B → γ is a
production, we add B → .γ in the closure

25

(0) S’ → S (1) S → BB (2) B → aB (3) B → b
S → .BB
S → B.B
S → BB.

B → .aB
B → a.B
B → aB.

B → .b
B → b.

S’ → .S
S’ → S.

Initial item

Accept item

Reduce item

