
Compilation Principle
编译原理

第20讲：代码优化(2)
张献伟

xianweiz.github.io
DCS290, 5/26/2022

https://xianweiz.github.io/

Quiz Questions
• Q1: why have the phase of Intermediate Code Gen?

• Q2: TAC of A[i][j], type(A) = array(20, array(10, double))?

• Q3: is the code SSA? If not, convert it.

• Q4: for the IR of S -> if (B) S1 else S2, where to place ‘goto
S.next’?

• Q5: usage of backpatching?

2

AST à IR, both language- and machine independent. Easy to
apply common optimizations and to extend.

Addr(A[i][j]) = base + i * 80 + j * 8
t1 = i * 80; t2 = j * 8; t3 = t1 + t2; t4 = A[t3]

No. x is assigned more than once.
x1 = a + b; if x1 > 5: x2 = c; y1 = PHI(x1, x2)*2;

S1.code {goto S.next} else S2.code: skip S2 after executing S1.

One-pass code gen, backpatching ‘goto _’ when target is known.

x = a + b;
if x > 5: x = c;
y = x * 2;

Control-Flow Analysis[控制流分析]

• The compiling process has done lots of analysis
− Lexical
− Syntax
− Semantic
− IR

• But, it still doesn’t really know how the program does
what it does
• Control-flow analysis helps compiler to figure out more

info about how the program does its work
− First construct a control-flow graph, which is a graph of the

different possible paths program flow could take through a
function

p To build the graph, we first divide the code into basic blocks

3

Basic Block[基本块]

• A basic block is a maximal sequence of instructions that
− Except the first instruction, there are no other labels[只第一条入]
− Except the last instruction, there are no jumps[只末一条出]

• Therefore, [进/出口唯一]
− Can only jump into the beginning of a block
− Can only jump out at the end of a block

• Are units of control flow that cannot be divided further
− All instructions in basic block execute or none at all[all or

nothing]

• Local optimizations are limited to scope of a basic block
• Global optimizations are across basic blocks

4

Control Flow Graph[控制流图]

• A control flow graph is a directed graph in which
− Nodes are basic blocks
− Edges represent flow of execution between basic blocks

p Flow from end of one basic block to beginning of another
p Flow can be result of a control flow divergence
p Flow can be result of a control flow merge

− Control statements introduce control flow edges
p e.g. if-then-else, for-loop, while-loop, ...

• CFG is widely used to represent a function
• CFG is widely used for program analysis, especially for

global analysis/optimization

5

Example

6

L1:
t:= 2 * x;
w:= t + y;
if (w<0) goto L3

L2:
...

L3:
w:= -w
...

L1:
t:= 2 * x;
w:= t + y;
if (w<0) goto L3

L2:
…

L3:
w:= -w;
…

yes

no

LLVM CFG

7

• $clang -emit-llvm -S ../tester/functional/027_if2.sysu.c

$opt -dot-cfg 027_if2.sysu.ll [à .main.dot]
http

://
viz-j

s.c
om/

http://viz-js.com/

Construct CFG
• Step 1: partition code into basic blocks[分解为基本块]

− Identify leader instructions that are
p the first instruction of a program, or[首条指令]
p target instructions of jump instructions, or[跳转目标]
p instructions immediately following jump instructions[紧跟跳转]

− A basic block consists of a leader instruction and subsequent
instructions before the next leader

• Step 2: add an edge between basic blocks B1 and B2 if[连
接基本块]

− B2 follows B1, and B1 may “fall through” to B2[相邻]
p B1 ends with a conditional jump to another basic block[若条件假，到达B2]
p B1 ends with a non-jump instruction (B2 is a target of a jump)[无跳转，B1
顺序执行到达B2]

p Note: if B1 ends in an unconditional jump, cannot fall through[B1无条件跳
转，会绕开B2]

− B2 doesn’t follow B1, but B1 ends with a jump to B2[不相邻，但B2
是B1的跳转目标]

8

Example
• Partition code into basic blocks

− Identify leader instructions

• Add edges between basic blocks

9

01: A=4
02: T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt

01: A=4
02: T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt

01: A=4
02: T1=A*B

03. L1: T2=T1/C
04: if (T2<W) goto L2

05: M=T1*K
06: T3=M+1

07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3

10: goto L1

11: L3: halt

o the first instruction of a program, or
o target instructions of jump instructions, or
o instructions immediately following jump instructions

01
03, 07, 11

05, 10, 11

Local and Global Optimizations
• Local optimizations[局部优化]

− Optimizations performed exclusively within a basic block
− Typically the easiest, never consider any control flow info

p All instructions in scope executed exactly once
− Examples:

p constant folding[常量折叠]
p common subexpression elimination[删除公共子表达式]

• Global optimizations[全局优化]
− Optimizations performed across basic blocks

p Scope can contain if / while / for statements
p Some insts may not execute, or even execute multiple times

− Note: global here doesn’t mean across the entire program
p We usually optimize one function at a time

10

Local Optimization: Examples
• Common subexpression elimination[删除公共子表达式]

− Two operations are common if they produce the same result
p It is likely more efficient to compute the result once and reference it the

second time rather than re-evaluate it[避免重复计算]

• Dead code elimination[删除无用代码]
− If an instruction’s result is never used, the instruction is

considered “dead” and can be removed from the instruction
stream[结果从不使用]

11

y = x + z;
y = x * x + (x/3)
z = x * x + y;

y = x + z;
t1 = x * x
t2 = x / 3
y = t1 + t2
t3 = x * x
z = t3 + y;

y = x + z;
t1 = x * x
t2 = x / 3
y = t1 + t2
t3 = x * x
z = t1 + y;

DAG of Basic Blocks
• Many important techniques for local optimization begin

by transforming a BB into a DAG (directed acyclic graph)[
无环有向图]

• To construct a DAG for a BB as follows
− Create a node for each of the initial values of the variables

appearing in the BB[为变量初始值创建节点，叶子]
− Create a node N associated with each statement s within the

block[为声明语句创建节点，中间]
p The children of N are those nodes corresponding to statements that are

the last definitions, prior to s, of the operands used by s
p Label N by the operator applied at s[用运算符标注节点]

− Certain nodes are designated output nodes[某些为输出节点]
p These are the nodes whose variables are live on exit from the block (i.e.,

their values may be used later, in another block of the flow graph)
12

• (3) c = b + c
− b refers to the node labelled ‘-’

p Most recent definition of b

• (4) d = a – d
− Operator and children are the

same as the 2nd statement
p Reuse the node

Example: DAG

13

(1) a = b + c
(2) b = a – d
(3) c = b + c
(4) d = a – d

b0 c0

a+

b–

d0

+
c

,d

• If b is not live on exit from the
block

− No need to keep b = a – d

• If both b and d are live
− Remove either (2) or (4) :

common subexpr elimination
− Add a 4th statement to copy one to

the other

• If only a is live on exit
− Then remove nodes from the DAG

correspond to dead code
p c -> b,d -> d0

− This is actually dead code
elimination

Local Opt.: Elimination

14

(1) a = b + c
(2) b = a – d
(3) c = b + c
(4) d = a – d

b0 c0

a+

b–

d0

+
c

,d

Local Opt.: Elimination (cont.)
• When finding common subexprs,

we really are finding exprs that
are guaranteed to compute the
same value, no matter how that
value is computed[过于严苛]

− Thus miss the fact that (1) and (4)
are the same

p b + c = (b – d) + (c + d) = b0 + c0

• Solution: algebraic identities[代数
恒等式]

15

(1) a = b + c
(2) b = b – d
(3) c = c + d
(4) e = b + c

b0 c0

a+ c+

d0

b–

e+

Local Opt.: Algebraic Identities[代数恒等式]

• Eliminate computations by applying mathematical rules[
使用数学规则]

− Identities: a * 1 ≡ a, a * 0 ≡ 0, b & true ≡ b
− Reassociation and commutativity[重组合、交换]

p (a + b) + c ≡ a + (b + c) , a + b ≡ b + a

• Strength Reduction[强度削减]
− Replacing expensive operations (multiplication, division) by less

expensive operations (add, sub, shift)
− Some ops can be replaced with cheaper ops
− Examples

p x=y/8 --> x=y»3
p y=y*8 --> x=y«3
p x2 --> x * x
p 2 * x --> x + x

16

Local Opt.: Constant Folding[常量折叠]

• Constant Folding
− Computing operations on constants at compile time
− Example:

− After constant folding

− Dead code elimination can further remove the above if
statement

− Inherently local since scope limited to statement

17

#define LEN 100
x = 2 * LEN;
if (LEN < 0) print(”error”);

x = 200;
if (false) print(”error”);

Local Opt.: Constant Propagation[常量传播]

• Constant Propagation
− Substituting values of known constants at compile time
− Local Constant Propagation (LCP)

• Some optimizations have both local and global versions
− Global Constant Propagation (GCP)

− GCP more powerful than LCP but also more complicated
p Must determine x is constant across all paths reaching x

18

x = 3;
y = x * 2;

x = 3;
y = 3 * 2;

x = 3;
y = 6;

a = 1;
x = 3;
if (…)

x = a + 2;
y = x;

a = 1;
x = 3;
if (…)

x = 1 + 2;
y = x;

a = 1;
x = 3;
if (…)

x = 3;
y = 3;

Global Optimizations
• Extend optimizations to flow of control, i.e. CFG

− Along all paths, the last assignment to X is “X=C”
− Optimization must be stopped if incorrect in even one path

19

X = 3;
if (B>0)

Y = Z + W; Y = 0;

A = 2 * X;

X = 3;
if (B>0)

Y = Z + W; Y = 0;

A = 2 * 3;

X = 3;
if (B>0)

Y = Z + W;
X = Y;

Y = 0;

A = 2 * X;

Global Opt.: Conservative[需保守]

• Compiler must prove some property X at a particular
point

− Need to prove at that point property X holds along all paths
− Need to be conservative to ensure correctness

p An optimization is enabled only when X is definitely true
p If not sure if it is true or not, it is safe to say don’t know
p If analysis result is don’t know, no optimization done
p May lose opt. opportunities but guarantees correctness

• Property X often involves data flow of program
− E.g. Global Constant Propagation (GCP):

X = 7;
...
Y = X + 3; // Does value of 7 flow into this use of X?

− Needs knowledge of data flow, as well as control flow
p Whether data flow is interrupted between points A and B

20

Global Opt.: Data Flow[数据流]

• Most optimizations rely on a property at given point
− For Global Constant Propagation (GCP):

A = B + C; // Property: {A=?, B=10, C=?}
− After optimization:

A = 10 + C;
• For this discussion, let’s call these properties values
• Dataflow analysis: compiler analysis that calculates values for

each point in a program
− Values get propagated from one statement to the next
− Statements can modify values (for GCP, assigning to vars)
− Requires CFG since values flow through control flow edges

• Dataflow analysis framework: a framework for dataflow
analysis that guarantees correctness for all paths

− Does not traverse all possible paths (could be infinite)
− To be feasible, makes conservative approximations

21

Global Constant Propagation (GCP)
• Let’s apply dataflow analysis to compute values for GCP

− Emulates what human does when tracing through code

• Let’s use following notation to express the state of a var:
− x=*: not assigned (default)
− x=1, x=2, ...: assigned to a constant value
− x=#: assigned to multiple values

• All values start as x=* and are iteratively refined
− Until they stabilize and reach a fixed point

• Once fixed point is reached, can replace with constants:
− x=*: replace with any constant (typically 0)
− x=1, x=2, ...: replace with given constant value
− x=#: cannot do anything

22

Example
• In this example, constants can be propagated to X+1, 2*X
• Statements visited in reverse postorder (predecessor first)

Y = 0;
X = X + 1;

X = 3;
if (B>0)

Y = Z + W;
X = 4;

A = 2 * X;

x=*: not assigned (default)
x=1, x=2, ...: assigned to a constant value
x=#: assigned to multiple values

X = *

X = *

X = * X = *

X = *X = *

X = * X = *

X = *

X = 3

X = 3 X = 3

X = 3 X = 3

X = 4 X = 4

X = 4

23

3

4

Example (cont.)
• Once constants have been globally propagated, we would

like to eliminate the dead code

24

X = 3;
if (B>0)

Y = Z + W;
X = 4;

Y = 0;
X = X + 1

A = 2 * X;
4

X = 3;
if (B>0)

Y = Z + W; Y = 0;

A = 2 * 4;

IR Optimization of LLVM

25
https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

LLVM Optimization Flags
• O0: no optimization

− Compiles the fastest and generates the most debuggable code
• O1: somewhere between O0 and O2
• O2: moderate level of optimization enabling most

optimizations
• O3: like O2,

− except that it enables opts that take longer to perform or that
may generate larger code (in an attempt to make the program
run faster)

• Os: like O2 with exta opts to reduce code size
• Oz: like Os, but reduce code size further
• O4: enables link-time opt Clang has support for O4, but

not opt
26

Book: Getting Started with LLVM Core Libraries, C5

Performance at Varying Flags

27
https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html#x1-12003r1

• Compare the performance of the benchmark when
compiled with either GCC or LLVM

− Compile benchmark at six optimization levels
− Each workload was run 3 times with each executable on the

Intel Core i7-2600 machines

https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html

LLVM Passes
• Optimizations are implemented as Passes that traverse

some portion of a program to either collect information
or transform the program
• A Pass receives an LLVM IR and performs analyses and/or

transformations
− Using opt, it is possible to run each Pass

• A Pass can be executed in a middle of compiling process
from source code to binary code

− The pipeline of Passes is arranged by Pass Manager

28
https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

LLVM Passes (cont.)
• Analysis passes: compute info that other passes can use

or for debugging or program visualization purposes
− -memdep: Memory Dependence Analysis
− -print-function: Print function to stderr
− …

• Transform passes: can use (or invalidate) the analysis
passes, all mutating the program in some way

− -dce: Dead Code Elimination
− -loop-unroll: Unroll loops
− …

• Utility passes: provides some utility but don’t otherwise
fit categorization

− -view-cfg: View CFG of function
− …

29
https://www.llvm.org/docs/Passes.html

https://www.llvm.org/docs/Passes.html

Example
• $clang -emit-llvm -S sum.c
• $opt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.ll

• $opt sum.ll -time-passes -mem2reg -o sum-tim.ll

30

$opt sum.ll -debug-pass=Structure -O1 -S -o sum-O1.ll
$opt sum.ll -time-passes -O1 -o sum-tim.ll

Book: Getting Started with LLVM Core Libraries, C5

