Compilation Principle

% % JE I8

3Kk

xianweiz.github.io
DCS290, 5/26/2022

B


https://xianweiz.github.io/

Quiz Questions

—

* Q1: why have the phase of Intermediate Code Gen?

AST - IR, both language- and machine independent. Easy to
apply common optimizations and to extend.

e Q2: TAC of Ali][j], type(A) = array(20, array(10, double))?
Addr(A[i][j]) = base+i * 80+ * 8
t,=i*80;t,=)*8;t;=1, +t,; t; = A[t]]

* Q3:is the code SSA? If not, convert it. = b
No. x is assigned more than once. if x>5:x=¢;
y=x*2;

X, =a+b;if x; >5:x, =¢; y; = PHI(x{, X5)*2;
* Q4: forthe IRof S ->if (B) S, else S,, where to place ‘goto

S.next’?

S,.code {goto S.next} else S,.code: skip S, after executing S;.

* Q5: usage of backpatching?

One-pass code gen, backpatching ‘goto " when target is known.
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Control-Flow Analysis[# il 2 #r]

* The compiling process has done lots of analysis
- Lexical
- Syntax
- Semantic
- IR

* But, it still doesn’t really know how the program does
what it does

* Control-flow analysis helps compiler to figure out more
info about how the program does its work

— First construct a control-flow graph, which is a graph of the
different possible paths program flow could take through a
function

o To build the graph, we first divide the code into basic blocks
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Basic Block[3: A<t

* A basic block is a maximal sequence of instructions that
— Except the first instruction, there are no other labels[ H 55— \]
- Except the last instruction, there are no jumps[ 2 K —2% ]

* Therefore, [t/ H I ME—]
— Can only jump into the beginning of a block
— Can only jump out at the end of a block

* Are units of control flow that cannot be divided further

— All instructions in basic block execute or none at all[all or
nothing]

* Local optimizations are limited to scope of a basic block
* Global optimizations are across basic blocks
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Control Flow Graph{#zsii &)

* A control flow graph is a directed graph in which
— Nodes are basic blocks

- Edges represent flow of execution between basic blocks
o Flow from end of one basic block to beginning of another
o Flow can be result of a control flow divergence
o Flow can be result of a control flow merge

— Control statements introduce control flow edges
o e.g. if-then-else, for-loop, while-loop, ...

* CFG is widely used to represent a function

* CFG is widely used for program analysis, especially for
global analysis/optimization
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Example

L1:
t:i=2 *x;

L Y]:I; t<; " to L3
t:=2 *x; 1 (15:20) it
wi=t+y; \
if (w<0) goto L3

L2: L2:

yes see

L3:

W:= -W |
3:
W:= -W;
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LLVM CFG

* Sclang -emit-llvm -S ../tester/functional /027 _if2.sysu.c

%S5

D2

store 132 0,132* %1, align 4
br label %6

@a = dso_local global i32 @, align 4 1 int a;
define dso_local i32 @Emain() { 2 int main(){
%1 = alloca i32, align &4 3 a = 10;
store i32 0, i32% %1, align 4 4 1f( a>»>0 ){
store i32 10, i32x @a, align 4 5 return 1;
%2 = load 132, i32% Qa, align 4 = }
%3 = icmp sgt 132 %2, ©
br i1 %3, label %&, label %5 7 elsef{
8 return 9;
4: 9 }
store 132 1, i32% %1, align 4 10 }
br label %6
5:
store i32 0, i32% %1, align &4 P04
br label %6 4:
store 132 1,i32* %1, align 4
6: . . . br label %6
%7 = load 132, 132% %1, align 4
ret i32 %7
}

Sopt -dot-cfg 027_if2.sysu.ll [> .main.dot]

digraph "CFG for 'main' function" {
label="CFG for 'main' function";

Node@x2a784a90 [shape=record,color="#b70d28ff", style=filled, fillcolor="#b
70d2870",label="{%0:\1 %1 = alloca i32, align 4\1 store i32 @, i32% %1, align 4\l
store i32 10, i32% @a, align 4\1 %2 = load i32, i32x Qa, align 4\1 %3 = icmp sg

t i32 %2, O\1 br il %3, label %4, label %5\1|{<s@>T|<s1>F}}"];

Node@x2a784a90:s0 -> Node®x2a784c70;

Node@x2a784a90:s1 —-> Node@x2a784ccO;

Node@x2a784c7@ [shape=record,color="#b70d28ff", style=filled, fillcolor="#e
8765¢70",label="{%4:\14: \1 store i
32 1, i32% %1, align 4\1 br label %6\1}"];

Node®x2a784c70 -> Node@x2a784e50;

Node@x2a784cc@ [shape=record,color="#3d50c3ff", style=filled, fillcolor="#f
7b39670",label="{%5:\15: \1 store i
32 @, 132% %1, align 4\1 br label %6\1}"];

Node@x2a784cc@ -> Node@x2a784e50;

Node@x2a784e50 [shape=record,color="#b70d28ff", style=filled, fillcolor="#b
70d2870",label="{%6:\16: \1 %7 = lo
ad 132, i32% %1, align 4\1 ret i32 %7\1}"];

}

CFG for 'main' function
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Construct CFG

 Step 1: partition code into basic blocks[ 43 fif FE A B

- ldentify leader instructions that are
o the first instruction of a program, or[ i 4454
o target instructions of jump instructions, or[Bk#% H#x]
o instructions immediately following jump instructions['& iR Bk#%]

— A basic block consists of a leader instruction and subsequent
instructions before the next leader

* Step 2: add an edge between basic blocks B1 and B2 if[i%
R YN
- B2 follows B1, and B1 may “fall through” to B2[#H%F]

o B1 ends with a conditional jump to another basic block[#& %1, #iiAB2]

o B1 ends with a non-jump instruction (B2 is a target of a jump)[EBk#%, B1
N7 AT F] i B2]

o Note: if B1 ends in an unconditional jump, cannot fall through[B1 7414 Bk
¥, &5¢91B2]

- B2 doesn’t follow B1, but B1 ends with a jump to B2[&#f45, {HB2
7B BkEE H Fr]
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Example

* Partition code into basic blocks 4. a4

- |ldentify leader instructions 02: T1=A*B
- .
* Add edges between basic blocks J
03. L1: T2=T1/C
01: A=4 04: if (T2<W) goto L2
02: T1=A*B o the first instruction of a program, or 01
03. L1: T2=T1/C o target instructions of jump instructions, or 03, 07, 11
04: if (T2<W) goto L2 © instructions immediately following jump instructions
05: M=T1*K ' | 05, 10, 11
06: T3=M+1 v
07: L2: H=l 07: L2: H=l
08: M=T3-H 08: M=T3-H
09: if (T3>0) goto L3 09: if (T3>0) goto L3
10: goto L1 i
11: L3: halt 10: goto L1 |
'

9 11: 13: halt Dide



Local and Global Optimizations

* Local optimizations[Jm#i44]
— Optimizations performed exclusively within a basic block

- Typically the easiest, never consider any control flow info
o All instructions in scope executed exactly once
- Examples:

o constant folding[# &1 5]
o common subexpression elimination[M A3t 7&Kz ]

* Global optimizations[4:RifltiL]

— Optimizations performed across basic blocks
o Scope can contain if / while / for statements
o Some insts may not execute, or even execute multiple times

- Note: global here doesn’t mean across the entire program
o We usually optimize one function at a time
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Local Optimization: Examples

e Common subexpression elimination[ifl[& A3 7 #Fis ]

— Two operations are common if they produce the same result

o Itis likely more efficient to compute the result once and reference it the
second time rather than re-evaluate it[i## % & & 11 5]

 Dead code elimination[#fl 5% JC AL S

— If an instruction’s result is never used, the instruction is
considered “dead” and can be removed from the instruction
streami4s & W AE ]

y=x+z; =tz
V=X+12: t; =x*x t,=x*x
y=x*x’+(x/3) t,=x/3 t,=x/3
Z=X*X+Y; y=4 +1 y=4 +1
t;=Xx*Xx £y=Ex
z=13+Y, z=1+Yy;




DAG of Basic Blocks

* Many important techniques for local optimization begin

by transforming a BB into a DAG (directed acyclic graph)|
T 1) E]]

* To construct a DAG for a BB as follows

— Create a node for each of the initial values of the variables
appearing in the BBOYER=EWIIGEANE W &L, M1

— Create a node N associated with each statement s within the
block[ 47 BHiER]BIE T &, HH[E]]

o The children of N are those nodes corresponding to statements that are
the last definitions, prior to s, of the operands used by s

o Label N by the operator applied at s[fig &7 briE" A
— Certain nodes are designated output nodes[3: L A H 5 1]

o These are the nodes whose variables are live on exit from the block (i.e.,
their values may be used later, in another block of the flow graph)
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Example: DAG

*(3)c=b+c (1)a=b+c
— b refers to the node labelled ‘- (2)b=a-d
o Most recent definition of b (3)c=b+c
(4)d=a-d

*(4)d=a-d

— Operator and children are the
same as the 2"d statement
o Reuse the node

&)t 13 {d
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Local Opt.: Elimination

* If bis not live on exit from the (1)a=b+c
block (2)b=a-d
-~ No need to keepb=a—-d (B)c=b+c
(4)d=a-d

* If both b and d are live
- Remove either (2) or (4) :
common subexpr elimination

— Add a 4t statement to copy one to
the other

* If only a is live on exit
— Then remove nodes from the DAG
correspond to dead code
o c->b,d->d,
— This is actually dead code

elimination
@ tuxs IR




Local Opt.: Elimination (cont.)

* When finding common subexprs, (1)a=b+c
we really are finding exprs that (2)b=b-d
are guaranteed to compute the (3)c=c+d

(4)e=b+c

same value, no matter how that
value is computed[id T ™ #f]

— Thus miss the fact that (1) and (4)
are the same

ob+c=(b—-d)+(c+d)=by+c,

* Solution: algebraic identities[{t%k
EE Y




Local Opt.: Algebraic ldentities[ft&fE 7 5]

* Eliminate computations by applying mathematical rules]
5 FH 20 F0
— Identities:a*1=a,a*0=0,b &true=b

— Reassociation and commutativity[E 414 . 28]
o(a+b)+c=a+(b+c),a+b=b+a

e Strength Reduction[% % H ]
— Replacing expensive operations (multiplication, division) by less
expensive operations (add, sub, shift)

— Some ops can be replaced with cheaper ops

- Examples
o X=y/8 --> x=y»3
o y=y*8 --> x=y«3
o X2-->X*X
o 2*X-->x+X

@tuxs IR




Local Opt.: Constant Folding[# & &]

* Constant Folding
— Computing operations on constants at compile time
- Example:

#define LEN 100
X=2*LEN;
if (LEN < 0) print(”error”);

— After constant folding

x = 200;
if (false) print(”error”);

— Dead code elimination can further remove the above if
statement

- Inherently local since scope limited to statement

Y Dhige




Local Opt.: Constant Propagation[# &A% #]

e Constant Propagation
— Substituting values of known constants at compile time
- Local Constant Propagation (LCP)
X=3; X =3; X =3;
y=x*2; y=3%2; y=6;
* Some optimizations have both local and global versions
— Global Constant Propagation (GCP)

a=1; a=1; a=1;
X=3; X=3; X=3;
if (...) if (...) if (...
X=a+2; x=1+2; X=3;
y=X; y=X; y=3;

— GCP more powerful than LCP but also more complicated
o Must determine x is constant across all paths reaching x

: } P




Global Optimizations

* Extend optimizations to flow of control, i.e. CFG
— Along all paths, the last assignment to X is “X=C"
— Optimization must be stopped if incorrect in even one path

X=3; X=3;
if (B>0) if (B>0)

Mﬂ?




Global Opt.: Conservative|[#Ff#5¥]

 Compiler must prove some property X at a particular
point
- Need to prove at that point property X holds along all paths

- Need to be conservative to ensure correctness
o An optimization is enabled only when X is definitely true
o If not sure if it is true or not, it is safe to say don’t know
o If analysis result is don’t know, no optimization done
o May lose opt. opportunities but guarantees correctness

* Property X often involves data flow of program

- E.g. Global Constant Propagation (GCP):
X=17;

Y =X+ 3; // Does value of 7 flow into this use of X?
- Needs knowledge of data flow, as well as control flow
o Whether data flow is interrupted between points A and B

: } P




Global Opt.: Data Flow[##E i)

* Most optimizations rely on a property at given point
— For Global Constant Propagation (GCP):
A =B+ C;//Property: {A=?, B=10, C=?}
— After optimization:
A=10+C;

* For this discussion, let’s call these properties values

* Dataflow analysis: compiler analysis that calculates values for
each point in a program
— Values get propagated from one statement to the next
— Statements can modify values (for GCP, assigning to vars)
- Requires CFG since values flow through control flow edges

* Dataflow analysis framework: a framework for dataflow
analysis that guarantees correctness for all paths

— Does not traverse all possible paths (could be infinite)
— To be feasible, makes conservative approximations

: } P




Global Constant Propagation (GCP)

* Let’s apply dataflow analysis to compute values for GCP
- Emulates what human does when tracing through code

* Let’s use following notation to express the state of a var:

- x="*: not assigned (default)
- x=1, x=2, ...: assigned to a constant value
— x=#: assigned to multiple values

 All values start as x=* and are iteratively refined
— Until they stabilize and reach a fixed point

* Once fixed point is reached, can replace with constants:

- x="*: replace with any constant (typically 0)
- x=1, x=2, ...: replace with given constant value
— x=#: cannot do anything

: } P




Example

* In this example, constants can be propagated to X+1, 2*X

e Statements visited in reverse postorder (predecessor first)

x=*: not assigned (default)
x=1, x=2, ...: assigned to a constant value

x=#: assigned to multiple values
23
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Example (cont.)

* Once constants have been globally propagated, we would
like to eliminate the dead code

X=3; =2
if (B>0) if (8>0)
Y=Z2+W, Y=0; Y=Z2+W, Y=0;
X =4; X=X+1 \/
A:Z*X; A=2*4;
4
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IR Optimization of LLVM

C x86
~ Front-end
C++ —» Clang ARM
Middle-end Back-end
Go —pf Gollvm \ radieren ack-en RISC-V
LLVM IR —» LLVM optimizer » LLVM IR —{ LLVM static compiler
Rust — rustc [ | I \\A> MIPS
Toy ———->: toyc : PowerPC
| I |
Clang
++ Opt
Source ¢/C P & _ Executable
front = IR Pass, —>IR,— .. > Pass, >IR,> llc >
code end code
.1. 25 l@ﬁ
F X % {00 b

U SUN YAT-SEN UNIVERSITY

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation
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LLVM Optimization Flags

* O0: no optimization
— Compiles the fastest and generates the most debuggable code

e O1: somewhere between O0 and 02

* 02: moderate level of optimization enabling most
optimizations

e 03: like O2,

— except that it enables opts that take longer to perform or that
may generate larger code (in an attempt to make the program
run faster)

* Os: like O2 with exta opts to reduce code size
e Oz: like Os, but reduce code size further

* O4: enables link-time opt Clang has support for 04, but
not opt

_ _ - | ’h[!tz
Book: Getting Started with LLVM Core Libraries, C5 ol



Execution time(LLVM) / Execution time(GCC)

Perform

ance at Varyi

ng Flags

* Comparet

ne performance of the benchmark when
compiled with either GCC or LLVM
— Compile benchmark at six optimization levels

— Each workload was run 3 times with each executable on the
Intel Core i7-2600 machines
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Instruction count(LLVM) / Instruction count(GCC)
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03 -Os -Ofast

Optimization level
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Optimization level

i
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LLVM Passes

e Optimizations are implemented as Passes that traverse
some portion of a program to either collect information
or transform the program

* A Pass receives an LLVM IR and performs analyses and/or
transformations

— Using opt, it is possible to run each Pass

* A Pass can be executed in a middle of compiling process
from source code to binary code

— The pipeline of Passes is arranged by Pass Manager

Clang
Source C/C++ Opt Executable
front = IR Pass, —>IR;—> .. > Pass, IR > llc >
code end code
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https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation



https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

LLVM Passes (cont.)

* Analysis passes: compute info that other passes can use
or for debugging or program visualization purposes

- -memdep: Memory Dependence Analysis
— -print-function: Print function to stderr

* Transform passes: can use (or invalidate) the analysis
passes, all mutating the program in some way

— -dce: Dead Code Elimination
— -loop-unroll: Unroll loops

 Utility passes: provides some utility but don’t otherwise
fit categorization

- -view-cfg: View CFG of function

: } P
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Example

. int sum(int a, int b) {
* Sclang -emit-llvm -S sum.c | return & + b;

* Sopt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.l|

Pass Arguments: -targetlibinfo -tti -—targetpassconfig —assumption-cache-tracker |domtree -mem2reg|-verify —print-module
Target Library Information

Target Transform Information

Target Pass Configuration

Assumption Cache Tracker
ModulePass Manager Sopt sum.ll -debug-pass=Structure -O1 -S -0 sum-O1.l|
FunctionPass Manager c -
D e Sopt sum.l -time-passes -O1 -o sum-tim.||

Promote Memory to Register
Module Verifier
Print Module IR

e Sopt sum.ll -time-passes -mem2reg -o sum-tim.ll

. Pass execution timing report ...

Total Execution Time: ©0.0003 seconds (0.0003 wall clock)

——-User Time--- --System Time—- —-User+System——- ---Wall Time-—-- -—- Name —-—-

0.0002 ( 91.1%) 0.0001 ( 90.2%) 0.0003 ( 90.8%) 0.0003 ( 90.6%) Bitcode Writer

0.0000 ( 3.7%) 0.0000 ( 4.5%) 0.0000 ( 4.0%) 0.0000 ( 3.7%) Module Verifier

0.0000 ( 2.3%) 0.0000 ( 2.3%) 0.0000 ( 2.3%) 0.0000 ( 2.8%) Dominator Tree Construction
0.0000 ( 2.3%) 0.0000 ( 2.3%) 0.0000 ( 2.3%) 0.0000 ( 2.4%) Promote Memory to Register
0.0000 ( 0.5%) 0.0000 ( 0.8%) 0.0000 ( 0.6%) 0.0000 ( 0.6%) Assumption Cache Tracker
0.0002 (100.0%) 0.0001 (100.0%) 0.0003 (100.0%) 0.0003 (100.0%) Total

LLVM IR Parsing

Total Execution Time: ©0.0006 seconds (0.0006 wall clock)

X # 30 e

N s war ovamoey Book: Getting Started with LLVM Core Libraries, C5 /




