Compilation Principle

Jm 1F R B
F213F: H AR A Al (1)
GG

xianweiz.github.io
DCS290, 6/2/2022

Dhg:

https://xianweiz.github.io/

Review Questions

* Q1: what is a Basic Block?
A straight-line sequence of code with only one

entry point and only one exit. w=0

* Q2: how to partition code into BBs? y=0 -B1
|dentify leader insts; a BB consists of a leader X=Xty
inst and subsequent insts before next leader. if’_‘ ; Zigons L g

* Q3: BBs of the listed code? Z++ -
B1, B2, B3, B4 goto L2 .

* Q4: What is a control-flow graph? Ll:)‘(’:‘ -B3
A directed graph where nodes are BBs, edges 5.\ = x + 7 T
show flow of execution between BBs.

* Q5: What is the CFG of the listed code? 5 = .

B4

m‘ﬁ“‘

LLVM Optimization Flags

* O0: no optimization
— Compiles the fastest and generates the most debuggable code

e O1: somewhere between O0 and 02

* 02: moderate level of optimization enabling most
optimizations

e O03: like O2,

— except that it enables opts that take longer to perform or that
may generate larger code (in an attempt to make the program
run faster)

* Os: like O2 with exta opts to reduce code size
e Oz: like Os, but reduce code size further

* O4: enables link-time opt Clang has support for 04, but
not opt

3 \ 'nﬁ"
Book: Getting Started with LLVM Core Libraries, C5 Y 1

Execution time(LLVM) / Execution time(GCC)

Performance at Varying Flags

 Compare the performance of the benchmark when
compiled with either GCC or LLVM

— Compile benchmark at six optimization levels
— Each workload was run 3 times with each executable on the

Intel Core i7-2600 machines

L5

-00 01 -02 -03 -Os -Ofast
Optimization level

Instruction count(LLVM) / Instruction count(GCC)

4

-00 01 -02 -03 -Os -Ofast
Optimization level

£
Ui ie
¥ https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2 report.html#x1-12003r1 4

https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html

Combine GCC/LLVM?

o H¥x[E—BACISIEAE R gmiEss FAFAE
- A [A DAL TR IE AN [F]
- AN[FAgm i as LA 7 VESE AN [F]

« Z9miFEes EREAL
- Fuasm:Zm i 2L T R B e i IC gAY it &

YmiFa1 (LLVM)

[clang [ccl

https://getianao.github.io/

https://getianao.github.io/

LLVM Passes

e Optimizations are implemented as Passes that traverse
some portion of a program to either collect information
or transform the program

* A Pass receives an LLVM IR and performs analyses and/or
transformations

— Using opt, it is possible to run each Pass

* A Pass can be executed in a middle of compiling process
from source code to binary code

— The pipeline of Passes is arranged by Pass Manager

Clang
C/C++ Opt
SOUrCe LI front >IR3 Pass, |—>IR,— .. Pass, H>IR3 llc >Erecutable
code end code

https://releases.llvm.org/1.2/docs/CommandGuide/llc.html
The llc command compiles LLVM bytecode into assembly language for a specified architecture.
The assembly language output can then be passed through a native assembler and linker to generate native code. G

y 4

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation Py

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation
https://releases.llvm.org/1.2/docs/CommandGuide/llc.html

LLVM Passes (cont.)

* Analysis passes: compute info that other passes can use
or for debugging or program visualization purposes

- -memdep: Memory Dependence Analysis

(https://llvm.org/doxygen/MemDepPrinter 8cpp_ source.html)

— -instcount: Counts the various types of Instructions

(https://llvm.org/doxygen/InstCount_8cpp_source.html)

= .. (https://llvm.org/doxygen/dir a25db018342d3ae6c7e6779086c18378.html)

* Transform passes: can use (or invalidate) the analysis
passes, all mutating the program in some way
— -dce: Dead Code Elimination (ws.//ivm.ore/doxyeen/oce seop source.htmi)
— -loop-unroll: Unroll loops (htws://ivm.ore/doxyeen/toopunrolipass scop source htmi)

= .. (https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html)

 Utility passes: provides some utility but don’t otherwise
fit categorization

- -view-cfg: View CFG of function

:"‘:‘ - 7 ‘ r E ‘
\“ ivﬂmﬁnﬁ V "' Li

https://www.llvm.org/docs/Passes.html

https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html
https://llvm.org/doxygen/InstCount_8cpp_source.html
https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html
https://llvm.org/doxygen/DCE_8cpp_source.html
https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html
https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html
https://www.llvm.org/docs/Passes.html

Example

 Sclang -emit-llvm -S sum.c

int sum(int a, int b) {

‘noa + b

e Sopt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.lI

Pass Arguments: -targetlibinfo -tti -—targetpassconfig -assumption-cache-tracker |domtree -mem2reg|-verify —print-module

Target Library Information
Target Transform Information
Target Pass Configuration
Assumption Cache Tracker

ModulePass Manager

FunctionPass Manager

Dominator Tree Construction
Promote Memory to Register
“Module Verifier
Print Module IR

Sopt sum.ll -debug-pass=Structure -O1 -S -0 sum-O1.lI
Sopt sum.ll -time-passes -0O1 -o sum-tim.l|

e Sopt sum.ll -time-passes -mem2reg -o sum-tim.ll

. Pass execution timing report ...

Total Execution Time: ©.0003 seconds (0.0003 wall clock)

——-User Time--- —--System Time-—-
0.0002 (91.1%) 0.0001 (2%)
0.0000 (3.7%) 0.0000 (.5%)
0.0000 (2.3%) 0.0000 (.3%)
0.0000 (2.3%) 0.0000 (.3%)
0.0000 (0.5%) 0.0000 (.8%)
0.0002 (100.0%) 0.0001 (.0%)

——User+System——
0.0003 (90.8%)
0.0000 (.0%)
0.0000 (.3%)
0.0000 (.3%)
0.0000 (.6%)
0.0003 (100.0%)

——— Name ——-

Bitcode Writer

Module Verifier

Dominator Tree Construction
Promote Memory to Register
Assumption Cache Tracker
Total

LLVM IR Parsing

Total Execution Time: ©0.0006 seconds (0.0006 wall clock)

SUN YAT-SEN UNIVERSITY

%ﬁg@ ¥ X %

8
Book: Getting Started with LLVM Core Libraries, C5

Target Code Generation[H ##fUH54:

* What we have now

— Optimized IR of the source program
o And, symbol table

* Target code

- Binary (machine) code
- Assembly code

* Goals of target code generation

— Correctness: the target program must
preserve the semantic meaning of the
source program

- High-quality: the target program must
make effective use of the available
resources of the target machine

— Fast: the code generator itself must
runs efficiently

Source Code

Lexical Analysis

’ l N
’ \
/ \
! v
I 1
1 1
'

- Token Stream|

Syntax Analysis

Syntax Tree"

Semantic Analysis

Syntax Tree

Intermediate
Code Generation

TTozizzzzzziizios W oIoooooIIIiiis -

IR
A

y

Optimization

IR
A

y

Code Generation

v

Target Code

Front End
. (Analysis)

Back End

(Synthesis)

Dhg:

Example

* An example on real machine (x86 _64)
- Symbols have to be translated to memory addresses

p—
- we

Z : g (%srip), %
Y S(%rip), %
oid main() { c %eax, _x(%rip)
X =y + 2z;
}
* A simplified representation
LD RO, vy // RO =y (load y into register RO)
X=Y+12 ADD RO, RO, z // RO =RO +z (add z to RO)
ST x, RO // x = RO (store RO into x)
fux s 10 IR

Translating IR to Machine Code[###]

* Machine code generation is machine ISA dependent”

— Complex instruction set computer (CISC): x86
- Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

% 5
| N {\/ ISA
* Three primary tasks - NG S
— Instruction selection[#54 £ HY] Y
o Choose appropriate target-machine instructions to implement the IR

statements

— Register allocation and assignment[& /7% 77 Fic]
o Decide what values to keep in which registers

— Instruction ordering[f5 4 HE]
o Decide in what order to schedule the execution of instructions

* CPU K HE 2 45Tt
@ turs 11 IR

https://zhuanlan.zhihu.com/p/363765166

x86 =2 ARM > RISC-V[i#t47 i 2s #:

e The war started in mid 1980’s

— CISC won the high-end commercial war (1990s to today)
— RISC won the embedded computing war

* But now, things are changing ...
— Fugaku: ARM-based supercomputer, Apple ARM-based M1 chip

e RISC-V: a freely licensed open standard (Linux in hw)

— Builds on 30 years of experience with RISC architecture, “cleans
up” most of the short-term inclusions and omissions

o Leading to an arch that is easier and more efflc_l_ent to |mplement
[cpuxmsy 0 ; 4 T

: Y| R I S C SRREEF 20104

RISC-1 RISC-TI RIQ(11 (SOAR) RISC IV (SPUR) RISC-V
1981 1983 1984 1988 2013

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and
- HeFe 512 early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed

EEF 19785 HEETF 19855 with a similar philosophy which has become known as RISC :

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

Instruction Selection[#&4- %)

* Code generation is to map the IR program into a code

sequence that can be executed by the target machine[ik
Bk S 1) H AL AR 1R 2 K SEILIR]

— ISA of the target machine

o If thereis INC’, thenfora=a+ 1, INCa’ is better than ‘LD a; ADD a, 1’

— Desired quality of the generated code
o Many different generations, naive translation is usually correct but very

inefficient

TAC code:

a=b+c
d=a+e

Target code:

LD RO, b
ADD RO, RO, c
ST a, RO

LD RO, a

ADD RO, RO, e
STd, RO

//RO=Db
//RO=R0O+c
//a=R0
//RO=a
//RO=R0O+e
// d=R0

m‘@“ﬂ

Register Allocation & Evaluation Order

* Register allocation: a key problem in code generation is
deciding what values to hold in what registers[#F /7% 7 i

— Registers are the fastest storage unit but are of limited numbers

o Values not held in registers need to reside in memory
o Insts involving register operands are much shorter and faster

- Finding an optimal assignment of registers to variables is NP-
hard

* Evaluation order: the order in which computations are
performed can affect the efficiency of the target code[#k
AT MR

- Some computation orders require fewer registers to hold
intermediate results than others

- However, picking a best order in the general case is NP-hard

/R0 X\ F {
() F b X SI| T
(53} Wy
v/ SUN YAT-SEN UNIVERSITY p ' ‘

Stack Machine# =it #1]

* A simple evaluation model[—“~{a] B Y]
— No variables or registers
— A stack of values for intermediate results

* Each instruction[fg&11:45]
— Takes its operands from the top of the stack[#& i BUEE/E %]
— Removes those operands from the stack[4% 1 #2 B E1E 5

— Computes the required operation on them([it %]
— Pushes the result on the stack[K i1 545 - AAR]

i

7 {12
9 2 9

pop add push

I

Example

* Consider two instructions
— push i - place the integer i on top of the stack
— add - pop two elements, add them and put the result back on

the stack

* A program to compute 7+ 5

- push 7
- push 5
- add

-

~

pop

Py

| *ELX

Optimize the Stack Machine

* The add instruction does 3 memory operations

. push 7
— Two reads and one write to the stack push 5
— The top of the stack is frequently accessed add

* ldea: keep the top of the stack in a register (called
accumulator) [F 27 17 23]
— Register accesses are much faster

e The “add” instruction is now

— acc €& acc + top_of stack
— Only one memory operation

acc 7 5 ——>@/v 12

7 ¥ /

stack

acc « 7 acc < 5 acc < acc + top_of_stack
push acc Pop

)i

From Stack Machine to MIPS

* The compiler generates code for a stack machine with
accumulator

— The accumulator is kept in MIPS register St0

— Stack machine instructions are implemented using MIPS
instructions and registers

- We want to run the resulting code on the MIPS processor (or
simulator)

* The stack is kept in memory
- The stack grows towards lower addresses (standard convention)
— The address of next stack location is kept in a MIPS register Ssp
o The top of the stack is now at address Ssp + 4

— A block of stack space, called stack frame, is allocated for each
function call

o A stack frame consists of the memory between Sfp which points to the
base of the current stack frame, and the Ssp

o Before func returns, it must pop its stack frame, and restore the stack

s
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf 4

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

MIPS Architecture

* Load/store architecture MIPbES

— Only load and store instructions can access memory
— All other instructions access only registers
o E.g., all arithmetic and logical operations involve only registers (or constants
that are stored as part of the instructions)
* Word size is 32 bits, all instructions are encoded in a single 32-
bit word format

— Arithmetic

o e.g., add des, srcl, src2 // des =srcl + src2
— Comparison

o e.g., sgedes, srcl,src2 //des & 1ifsrcl >src2, 0 ow
— Branch/jump

o e.g., bgesrcl, src2,lab // branch to lab if srcl > src2

— Load, store, and data movement
o E.g., lw des, addr // load the word at addr into des
o E.g., move des, srcl // copy the contents of srcl to des

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf wr

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

MIPS Architecture (cont.)

* 32 registers

— 31 of these are general-purpose that can be used in any of the
instructions

— The last one (zero), is to contain the number zero at all times

* While general-purpose, there are guidelines specifying
how each of the registers should be used

— S0 is always zero, Sa0,...,5a4 are for arguments
— Ssp saves stack pointer, Sfp saves frame pointer

Symbolic Name | Number Usage

ZEero 0 Constant 0.

at 1 Reserved for the assembler.

v - vl 2-3 Result Registers.

al - a3 4-7 Argument Registers 1 --- 4.

t0 - t9 8 - 15, 24 - 25 | Temporary Registers 0 -+ 9.

s0 - 87 16 - 23 Saved Registers 0 --- 7.

kO - k1 26 - 27 Kernel Registers 0 --- 1.

gp 28 Global Data Pointer.

sp 29 Stack Pointer.

fp 30 Frame Pointer.

ra 31 Return Address. | ’;E-Lz
7y

Example MIPS Instructions

* la regl addr
— Load address into regl
* liregimm
- reg & imm
Iw regl offset(reg2)
- Load 32-bit word from address reg2 + offset into regl
sw regl offset(reg2)
— Store 32-bit word in regl at address reg2 + offset
add regl reg2 reg3
- regl < reg2 +reg3
* move regl reg2
- regl <- reg?2
* sgereglreg2 reg3
- regl & (reg2 >=reg3)

&
() F b X 21
5

4 SUN YAT-SEN UNIVERSITY

)i

Example MIPS Assembly

 The stack-machine code for 7 + 5 in MIPS:

Stack-machine MIPS Comment

acc<-7 i St0 7 Load constant 7 into S$t0

push acc addi Ssp Ssp -4 | Decrement sp to make space
sw StO O(Ssp) Copy the value to stack

acc<-5 i St0 5 Load constant 5 into St0

acc <- acc + top_of stack | lw St1 4(Ssp) Load value from Ssp+4 into St1
add St0 St0 St1 | Add St0+St1=5+7

pop add Ssp Ssp4 | Pop constant 7 off stack

acc 73 5 ——>®/v 12

7 ¥ /

stack

acc « 7 acc < 5 acc < acc + top_of_stack
push acc pop W:ELX

A Small Language

* A language with integers and integer operations

P—->D;P|D

D - def id(ARGS) = E;

ARGS - id, ARGS | id

E->int|id|ifE;=E,then E;else E,
| E,+E, | E,—E, | id(E,,...,E,)

* Example: program for computing the Fibonacci numbers:

def fib(x) = if x =1 then O else
if x=2then 1 else
fib(x - 1) + fib(x — 2)

iy

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf

g

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Code Generation Considerations[Z &)

* We used to store values in unlimited temporary variables, but
registers are limited --> must reuse registers[& & & H & 17 28]

* Must save/restore registers when reusing them[{rR{F-PK H]
— E.g. suppose you store results of expressions in St0
- When generating E->E; + E,,
o E; will first store result into S$tO

o E, will next store result into $t0, overwriting E,’s result
o Must save $t0 somewhere before generating E,

* Registers are saved on and restored from the stack

Note: Ssp - stack pointer register, pointing to the top of stack

— Saving a register St0 on the stack:
addiu Ssp, Ssp, -4 # Allocate (push) a word on the stack

sw St0, 0(Ssp) # Store StO on the top of the stack
— Restoring a value from stack to register StO:
lw St0, O(Ssp) # Load word from top of stack to St0

addiu Ssp, Ssp, 4 # Free (pop) word from stack
©tuxs b

Stack Operations[##/E]

* To push elements onto the stack
— To move stack pointer Ssp down to make room for the new data
— Store the elements into the stack

* For example, to push registers St1 and St2 onto stack
sub Ssp, Ssp, 8 sw St1, -4(Ssp)
sw St1, 4(Ssp) sw St2, -8(Ssp)
sw St2, 0(Ssp) sub Ssp, Ssp, 8
* Pop elements simply by adjusting the Ssp upwards
— Note that the popped data is still present in memory, but data
past the stack pointer is considered invalid

word 1 word 1 word 1
Ssp word 2 word 2 word 2
$t1 Ssp $t1
Ssp $t2 $t2
C)FTuxE I

Code Generation Strategy

* For each expression e we generate MIPS code that:
— Computes the value of e into 5t0
— Preserves Ssp and the contents of the stack

* We define a code generation function cgen(e)
— Its result is the code generated for e

* Code generation for constants

— The code to evaluate a constant simply copies it into the
register: cgen(i) = li StO i
o Note that this also preserves the stack, as required

26 Diige
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf 4

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

