Compilation Principle

gm VE I
et WEIRIHT(3)
HNUINGE

xianweiz.github.io
DCS290, 3/10/2022

INE


https://xianweiz.github.io/

Review Questions

* Formal definition of Grammar?
(T, N, s, g): T—terminals; N — non-terminals, s — start, o — productions
* Grammar G: stmt = if (expr) stmt else stmt
| while ( expr ) stmt | v

expr =2 true | false
N = { stmt expr }

e Isif (true ) stmt else v an sentence of grammar G?

NO. It is a sentential form (F]%), as stmt is non-terminal symbol.

* Is while ( false ) if ( true ) v else v an sentence of G?
YES. It can be derived using the production rules.

* Describe the languages generated by G: list - list, id | id?
A list of one or more ids separated by commas.



Parse Trees[4#i#i]

* Both previous derivations result in the same parse tree:

=
/’\ Two derivations of string
E + E “id * id +id * id”
T P using grammar:
E' ™ E E * E  ESE*E|E+E| (E)|id
id id id id

* A parse tree is a graphical representation of a derivation

— But filters out the order in which productions are applied to
replace non-terminals[id € T #5715 E ]
— Each interior node represents the application of a production
o Labeled with the non-terminal in the LHS of production
— Leaves are labeled by terminals or non-terminals

o Constitutes a sentential form (read from left to right)

o Called the yield[ /=] or frontier[ ZZ£#] of the tree




Parse Trees (cont.)

* Derivations and parse trees: many-to-one relationship
— Leftmost derivation order: builds tree left to right
— Rightmost derivation order: builds tree right to left
- Different parser implementations choose different orders

— One-to-one relationships between parse trees and either
leftmost or rightmost derivations[# £ 8l & A #ES 50 B —
X — RO AR ]

* Program structure does not depend on order of rule
application, instead it depends on what production rules
are applied

— Grammar must define unambiguously set of rules applied

() f
‘\/‘ ivﬂnl\‘ﬁnﬁ ‘b GG LZ




Different Parse Trees

 Grammar ESE*E | E+E | (E) | id is ambiguous[ = X i

- String id * id + id * id can result in 3 parse trees (and more)

E E E

ol ™ Pl

E + E E ® E E X E
AN, AP | | Pk o
E * E E*E id + E id E % E
[ I BYZAN SN
id id id id dE * E E + E id

I I

id id id id

The deepest sub-tree is traversed first, thus higher precedence

 Grammar can apply different rules to derive same string

— Meaning of parse tree 1: (id * id) + (id * id) Preorder?
— Meaning of parse tree 2:id * (id + (id * id)) norder?
: : : : : Postorder?
. .— Meaning of parse tree 3:id * (_Qd +id) * id)
@ruxE IR




Ambiguity[ = ]

e Grammar G is ambiguous if
— It produces more than one parse tree for some sentence
- i.e., there exist a string str € L(G) such that
— more than one parse tree derives str
= more than one leftmost derivation derives str
= more than one rightmost derivation derives str

 Unambiguous grammars are preferred for most parsers[
VRE IR B ]
— Ambiguity of the grammar implies that at least some strings in
its language have different structures (parse trees)

— Thus, such a grammar is unlikely to be useful for a programming
language, because two structures for the same string (program)
implies two different meanings (executable equivalent
programs) for this program

»L‘G“X

http://infolab.stanford.edu/~ullman/ialc/slides/slides7.pdf



http://infolab.stanford.edu/~ullman/ialc/slides/slides7.pdf

Ambiguity (cont.)

 Ambiguity is the property of the grammar, not the
language
- Just because G is ambiguous, does not mean L(G) is inherently
ambiguous

— A G’ can exist where G’ is unambiguous and L(G’) = L(G)

* Impossible to convert ambiguous to unambiguous
grammar automatically[ 15 X AGe H 3h7H FR]
- It is (often) possible to rewrite grammar to remove ambiguity

— Or, use ambiguous grammar, along with disambiguating rules to
“throw away” undesirable parse trees, leaving only one tree for
each sentence (as in YACC)

o A parse tree would be used subsequently for semantic analysis; more
than one parse tree would imply several interpretations

@ Tux% IR




Remove Ambiguity ik — )

 Specify precedence[+5 2]
— The higher level of the production, the lower priority of operator
— The lower level of the production, the higher priority of operator

* Specify associativity[{5 & 45 & 1]
- If the operator is left associative, induce left recursion in its production
- If the operator is right associative, induce right recursion in its production

ESE*E | E+E | (E) | id

E>E+E|T E>E+T|T
T>T*T|F T>T*F|F
F—>(E)|id F-> (E) | id

Possible to get id + (id + id) and (id + id) + id Now, can only have more ‘+" on left
// lowest precedence + // + is left-associative
// middle precedence * // * is left-associative

// highest precedence ()
@ turs g IR




Grammar =2 Parser[ i34 #75)

* What exactly is parsing, or syntax analysis?[i&7% 7 H7]
— To process an input string for a given grammar,
- and compose the derivation if the string is in the language

— Two subtasks
o determine if string can be derived from grammar or not
o build a representation of derivation and pass to next phase

* What is the best representation of derivation?[#5 % /R]
— Can be a parse tree or an abstract syntax tree

 An abstract syntax tree is[#i 5 i
— Abbreviated representation of a parse tree

— Drops some details without compromising meaning

o some terminal symbols that no longer contribute to semantics are
dropped (e.g. parentheses)

o internal nodes may contain terminal symbols
@ Tux% IR




Example: Abstract Syntax Tree

* AST: condensed form of parse tree
— Operators and keywords do not appear as leaves (e.g., +)
— Chains of single productions are collapsed (e.g., E ->T)

G: T
EDE+T|T i o o
T>OT*F|F ' l
3Tl T 2 -
(E) | i kil |:‘ > 7
b ET id +
Input: = - "
id +id + id id l|‘ ¥ { ‘ ’
,1. [.’
| I
Foid
I
id
parse tree e
fux% 0

Dhige



Summary of CFG[/~gh]

 Compilers specify program structure using CFG
- Most programming languages are not context free
— Context sensitive analysis can easily be separated out to

semantic analysis phase

* A parser uses CFG to

.. answer if an input str € L(G)

.. and build a parse tree

.. or build an AST instead

.. and pass it to the rest of compiler

.. Or give an error message stating that str is invalid

() f
‘\/‘ ivﬂnl\‘ﬁnﬁ ‘b GG LZ



Parser Types[y#rzs25%!]

* Grammar is used to derive string or construct parser
* Most compilers use either top-down or bottom-up

parsers E
* Top-down parsing[ B Tii[a] | 45 #7] / \
— Starts from root and expands into leaves : + :
o Tries to expand start symbol to input string | / \
o Finds leftmost derivation[# /& £ 5] id F % E
- |In each step ‘ ‘
o Which non-terminal to replace? id id

o Which production of the non-terminal to use?

— Parser code structure closely mimics grammar
o Amenable to implementation by hand
o Automated tools exist to convert to code (e.g. ANTLR)

() A
‘\J‘ ivﬂnl\‘ﬁnﬁ }b QG LZ




Parser Types (cont.)

* Bottom-up parser[H & A 5 #7]

— Starts at leaves and builds up to root
o Tries to reduce the input string to the start symbol

o Finds reverse order of the rightmost derivation[fx £ S5 i > A
1%y, AR AFRTEIH 2]
— Parser code structure nothing like grammar
o Very difficult to implement by hand

o Automated tools exist to convert to code (e.g. Yacc, Bison)
o LL € LR (Bottom-up works for a larger class of grammars)

e Top-down vs. bottom-up [} Et]

— Top-down: easier to understand and implement manually
o E.g., ANTLR

- Bottom-up: more powerful, can be implemented automatically
o E.g., YACC/Bison

() A
‘\J‘ ivﬂnl\‘ﬁnﬁ }b QG LZ




Example

e Consider a CFG grammar G

S—>AB A—>aC B—>bD D—>d C->c
* This language has only one sentence: L(G) = {acbd}
Top-down (leftmost derivation) Bottom-up (reverse of
rightmost derivation)

S= AB (1) S= AB (5)

= aCB (2) = AbD (4)

= acB (3) = Abd (3)

= acbD (4) = aCbD (2)

= acbd (5) = acbd (1)

S
/\
A B
AN |
/C/D
a ¢ b d

M‘EW



Preview: Bottom-up Parsing[BE & 1]

* Consider a CFG grammar G

SSAB  A->aC B->bD D->d C>c
Stack Input Action
S acbdS | Shift Bottom-up (reverse of
$a cbds | shift rightmost derivation)
Sac bd$ | Reduce S = AB (5)
SaC bdS | Reduce = AbD (4)
A bd$ | Shift = Abd (3)
SAb d$ | shift = aCbD (2)
$Abd $ | Reduce = acbd (1)
SAbD $ | Reduce S
SAB S | Reduce A/ \B
AN \

SS S | SUCCESS! / C‘ /D

a C b d

15

IR




Top-down Parsers[ T R

* Recursive descent parser (RDP, i#:/H T B&%#7) with
backtracking|[a] ]

- Implemented using recursive calls to functions that implement
the expansion of each non-terminal

— Goes through all possible expansions by trial-and-error until
match with input; backtracks when mismatch detected

- Simple to implement, but may take exponential time

* Predictive parser[Till /> #7]
— Recursive descent parser with prediction (no backtracking)
— Predict next rule by looking ahead kK number of symbols

— Restrictions on the grammar to avoid backtracking
o Only works for a class of grammars called LL(k)

@ Tux% IR




RDP with Backtrackingl=li]

e Approach: for a non-terminal in the derivation,
productions are tried in some order until

— A production is found that generates a portion of the input, or

- No production is found that generates a portion of the input, in
which case backtrack to previous non-terminal

* Terminals of the derivation are compared against input
- Match: advance input, continue parsing
— Mismatch: backtrack, or fail

 Parsing fails if no derivation generates the entire input

»bi‘ﬁ“ﬁ




Recursive Decent Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S
— The input pointer pointing to ¢, the first symbol of w
— S has only one production, so we use it to expand S and obtain

the tree
/ ] \
C A d

““ e [
‘\J‘ ivﬂnl\;ﬁmﬁ 18 }b QG LZ




Recursive Decent Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

 To construct a parse tree top-down for input string w=cad

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

— Next, expand A using A 2 ab

o Have a match for the 2" input symbol, a, so advance the input pointer
to d, the 3 input symbol

AN 2N

/

d
b 19 ’hﬂq
Py




Recursive Decent Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

 To construct a parse tree top-down for input string w=cad

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

— Leaf a matches the 2" symbol of w, and leaf d matches the 3rd

- We have produced a parse tree for w, we halt and announce
successful completion of parsing

C/ SA \d C/ ,SA\ \d C/ i\d

/

a b z‘;\
»L‘G“Z




Left Recursion Problem{Z: 3 13 ja) &)

e Recursive descent doesn’t work with left recursion
— Right recursion is OK

* Why is left recursion[/£i£ ] a problem?
— For left recursive grammar
A->Ab|c
— We may repeatedly choose to apply A b
A=>Ab=>Abb..

— Sentence can grow indefinitely w/o consuming input
o Non-terminal: expand, terminal: match

- How do you know when to stop recursion and choose ¢?

. )Rewrite the grammar so that it is right recursive[ 47 i3
9]

— Which expresses the same language

“‘ 2 [
‘\“ s;tmgs‘mvﬁnﬁ 2 1 ‘b QG LZ




Left Recursion[Z i 1H]

A grammar is left recursive if

— |t has a nonterminal A such that there is a derivation A =+ Ax
for some string a

* Recursion types [ B #Ha) 4% 2 i3 )]
- Immediate left recursion, where there is a production A 2 Ax
- Non-immediate: left recursion involving derivation of 2+ steps
S2>Aa|b
A—>Sd| e
- S = Aa = Sda

* Algorithm to systematically eliminates left recursion from
a grammar

»L‘G“X




Remove Left Recursion(iy & A i M)

e Grammar: A 2 Aa | B (a#pB, B doesn’t start with A)
A= Aa
= Ao

= Ad...0x
= Ba...ax

r=Bo*

* Rewrite to:
A > BA // begins with B (A’ is a new non-terminal)

A 2 oA’ |e // A is to produce a sequence of a
= aoA’

= ...00A" = A...(

‘  e T




Remove Left Recursion (cont.)

* Grammar:
A->Aa| B
to
A BA
A =2 oA |e
" EDE+T|T E->TE
x B E' 2> +TE | €
a B T =2 *FT' | ¢
« F- () | id F-> (E) | id

24 Dhige




Summary of Recursive Descent[/; 4]

* Recursive descent is a simple and general parsing strategy

— Left-recursion must be eliminated first
o Can be eliminated automatically using some algorithm

— L(Recursive _descent) = L(CFG) = CFL

 However it is not popular because of backtracking
— Backtracking requires re-parsing the same string
- Which is inefficient (can take exponential time)

— Also undoing semantic actions may be difficult
o E.g. removing already added nodes in parse tree

Parser
. I
Top—dovan parser Bottom-up parser
| |
RD-backtrack Predictive
parser parser

25 Dhige




