The Golden Age of
Compilers

in an era of Hardware/Software co-design

DCS290, 06/23/2022

».’.*G%

Compilation Phases 4B

e Lexical: source code - tokens
— RE, NFA, DFA, ...

Source Code

¢ SVntax: tokens - AST or parse tree v"//Lexica|lAna|ysiS-\\‘

- CFG, LL(].), LALR(].), Token Stream} ot End

. Syntax Analysis rcr)]r; s?s

* Semantic: AST - AST +symbol table s | (Analysis)

- SDD, SDT, typing, scoping, ... e
* Int. Code Generation: AST - TAC "ngteeéneqs:;i?on“

- IR, offset, CodeGen, ... R] |

. . . L. Optimization . Back End

* Optimization: TAC - (optimized) TAC R - (Synthesis)

- BB’ CFG’ DAG, Code Ge¢neration |

| Target Code

* Code generation: TAC = Instructions "o
— Instruction, register, stack, ...

Modern Compilersi s Fae]

* Compilation flow[Zm 157 FE]
— First, translate the source program to some form of
intermediate representation (IR, F[a]F%&R)

— Then convert from there into machine code

* IR provides advantages[IRFI 2]
- Increased abstraction, cleaner separation, and retargeting, etc

Fortran Fortran’s Intermediate IR MIPS MIPS

program — Lexer, Parser, Code Code er
and Static Checker Generator Generator

© — Eeier Parser gé?jremedlate IR_yCode R |1X86 Code] X86

program and Static Checker Generator Optimization | °%¢
C#'s Intermediate ARM

S:)gram — Lexer, Parser, and Code R Code %&2
Static Checker Generator Generator

Opportunities for Compiler?

Outline

» The Trends[7E R34

— Application, software, hardware

* The Issues[1% 4t 215 1] 8 Fir 1]

— Limitations of classical compilers

* The Solutions[J&1E 2R i Hi A 7T &K]
-TVM, MLIR

The Golden Age of Compilers

in an era of Hardware/Software co-design

* Summary

.»‘:G%

ML Applicationsil#2: > RiH]

* Models are growing and getting more complex

— Model Size: larger models require more multiply accumulate
operations

- Model Complexity: as model complexity increases it becomes
harder to fully utilize hardware

— Much faster than Moore’s law

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

* AlphaGo Zer Data ,
: Algorithms

Petaflop/s-day (Training)

vieo e DeepSpeech2
o e ResNets
@ 12Seq !
® GoogleNet
e AlexNet ® Visualizing and Understanding Conv Net
¢ Dropout

Compute

[1] IR Design for Heterogeneity: Challenges and Opportunities

[
2014 2015 2016 2017 2018 2019 It hﬂ LZ
Year UN

https://conf.researchr.org/getImage/CC-2020/orig/IR+Design+for+Heterogeneity+-+Challenges+and+Opportunities.pdf

ML Software Explosion[#l 2 > HE 4]

* Many frameworks

* Many different graph O P)/TOrCh
implementations
@oxnet
 Each framework is
trying to gain a
usability and @ ON NX

19/ PaddlePadd|
performance edge -/-/- PaddlePaddle
over each other Js

MindSpore
IR

High Performance Computing[& 461t 5]

 Larger scale applications
— Climate change, new drug discovery
— Data analytics, modeling and simulation

* Various parallel programming models
— MPI, OpenMP, OpenACC, SYCL/DPC++

OpenACC

| C NVIDIA.
More Science, Less Programmin 9 SYCL) CUDA

RAJYV Rroer
OpenMP J e

More Hardware... More Complexity...

e Lots of players! (an incomplete list!)
CPU, etc GPGPU, etc. TPU, NPU, eftc. FPGA, CPLD, etc. ASIC
@ SiFive <2 NVIDIA. G.ot glle $ XILINX i openfive
INntel. SEn
delere AMDZ1 L. tshie
arm Arm amoan ¢pusunc
intel intel & XILINXE = b ol
@:-Eerebras intel.

Programmable xPUs

Custom Hardware

Specialization

? D

Architecture Trends

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson
> e Current challenges
2020 2025 2030 |
D D — End of Moore's Law and
- - hardware C) i
BB Dennard Scaling
— Overlooked security
O Cloud as architecture .. .
innovation abstraction ¢ > ° Futu re Opportunltles IN
. computer architecture
eep - >
integration - Domain-specific
) architectures
-j:@:‘ Computing closer . > . . pe
to phyisics — Domain-specific
languages

% Machine learming L > - O pe Nna rCh |te Ctu res
as key workload

— Agile hardware
development

[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

10 Dhtge

https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Domain Specific Arch. (47 % H 22 4]

* Achieve higher efficiency by tailoring the architecture to
characteristics of the domain[14 & 45 #)i& Ao T s 4

- Not one application, but a domain of applications
o Different from strict ASIC

— Requires more domain-specific knowledge then general
purpose processors need

* Examples:
— Neural network processors for machine learning
— GPUs for graphics, virtual reality
- Programmable network switches and interfaces

“‘ : \ s
‘\/‘ ivﬂnl\‘ﬁnﬁ " ‘hm LZ

Domain Specific Arch.(cont.)

* More effective parallelism for a specific domain
- SIMD vs. MIMD
— VLIW vs. Speculative, out-of-order

* More effective use of memory bandwidth
— User controlled versus caches

* Eliminate unneeded accuracy

— |EEE replaced by lower precision FP
— 32-64 bit bit integers to 8-16 bit integers

* Domain specific programming language

— DSAs require targeting of high level operations to the
architecture

- Need matrix, vector, or sparse matrix operations

“‘ : \ s

Domain Specific Languages[4iil® % FHiE =)

* Invent a new language for the specialized HW

— Better exploit application knowledge: directly connecting users
to HW, bypassing the ISA

* OpenCL is such an example

- HW vendors can regularly change GPU ISAs without affecting
user code
o OpenCL is the new contract

* |t can be a bitter experience for programmers

— Rewrite code for new HW
- Not all new languages will survive in the long term

“‘ : \ s
‘\/‘ ivﬂnl\‘ﬁnﬁ " ‘hm LZ

O

Ut

ne

T

* The Issues[[/& AT F]

ne |

— Application, software, domain specific

rends[{5 K&

— Limitations of classical compilers

* The Solutions[J&1E 2R i Hi A 7T &K]
-TVM, MLIR

* Summary

14

Dhtge

The Historyil = i1 fzh &)

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 32U K]

* The growth is based on a fundamental contract between
HW and SWI15 2 T~ 4 hE A 2 18] B B]
- HW may change radically “under the hood”
o Old SW can still on new HW (even faster)
- HW looks the same to SW, always speaking the same language

o The ISA, allows the decoupling of SW development from HW dev
* Three-phase compiler design (e.g., LLVM)[=E X415 28]

— One frontend for many backends, one backend for many
frontends

C - C Frontend X86 Backend - X86

Fortran —#=| Fortran Frontend Common /

h | PowerPC Backend |—# PowerPC
Optimizer \
Ada | Ada Frontend ARM Backend - ARM

2 \ ‘

The Issue[4 i il i i) 5]

* The contract is breaking

— The end of Moore’s Law forces new design approaches
o Develop specialized HW to gain massive performance
o Program and use the specialized and heterogeneous HWs

e Limitations of LLVM

- “One size fits all” quickly turns into “one size fits none”
o “fits all”: a single abstraction level to interface with the system

— LLVM is: =& CPUs, “just ok” “ for SIMT, but " for many
accelerators

— ... is not great for parallel programming models a

* Many problems are better modeled at a higher- or lower-
level abstraction

- e.g. source-level analysis of C++ code is very difficult on LLVM IR

“‘ : \ s
‘\/‘ ivﬂnl\‘ﬁnﬁ " ‘hm LZ

Issue: Modern Languages|Zifiis 51

* Modern languages pervasively invest in high level IRs[5 5

P HEAMR]

— To solve domain-specific problems, like language/library-
specific optimizations, flow-sensitive type checking (e.g., for

linear types)

— To improve the implementation of the lowering process

* Each compiler frontend is creating one or more high level
IR in addition to their AST representations[I JZIR]

C, C++, ObjC,
CUDA, OpenCL,

Swift = (

Rust

Julia =

—| Clang AST |

Swift AST |

—| RustAST |

Julia AST |

Fortran =

Flang AST |

2 R el

Issue: ML Frameworks#l2%2 > HE 4

 Compiler tech is widely deployed in others fields,
including machine learning frameworks

* ML systems typically use “ML graphs” as a domain-
specific abstraction

* TensorFlow is basically a huge compiler ecosystem

— These boxes are all different domain-specific compiler systems:
o Different limitations, challenges, owners, etc
o No unifying theory and infrastructure to support this

Grappler XLA HLO) LENMIR]
i m ™ /[)
. , /[Tensor RT
1 ‘

nGraph

[

TPUIR

Several others

TensorFlow
Graph

_/*[Core ML

] NNAPI
& /\[TensorFlow Lite J<[J

Many others

MG“X

Next-Gen Compilers & PL are Needed

* We need:
— Hardware abstraction spanning diverse accelerators
— Support for heterogeneous compute platforms
— Domain specific languages and programming models
— Quality, reliability, and scalability of infrastructure

* We see:
- “No one size fits all” compiler

— Shape of the problem is the same, but the accel details always
vary

* This opportunity is beckoning a golden age in compiler
and PL technology!

MGLX

Outline

* The Trends[7 K &34
— Application, software, domain specific

* The Issues|[|n] @il FT1F]
— Limitations of classical compilers

* The Solutions[J&fEdm B R 77 &]
-TVM, MLIR

* Summary

20 g

TVM

* Bring ML to a wide diversity of hardware devices

— Current frameworks rely on vendor-specific operator libraries
and optimize for a narrow range of server-class GPUs

— Deploying workloads to new platforms — such as mobile
phones, embedded devices, and accelerators (e.g., FPGAs,
ASICs) — requires significant manual effort

 TVM: an end to end ML compiler framework for CPUs,
GPUs and accelerators

— Aims to enable machine learning engineers to optimize and run
computations efficiently on any hardware backend

[1] TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI'2018
[2] Apache TVM,

MG?

https://www.usenix.org/system/files/osdi18-chen.pdf
https://tvm.apache.org/

TVM (cont.)

* Execution steps in TVM

- (D) First takes as input a
model from an existing
framework and transforms
it into a computational
graph representation

- (2) Then performs high-
level dataflow rewriting to
generate an optimized
graph

- (3) The operator-level
optimization module must
generate efficient code for
each fused operator in
this graph

22

Frameworks

~ O @ 9 Id D

"

Y

Computational Graph

O

Hi

\J
gh Level Graph Rewriting
Y

@ | Optimized Computational Graph
v

@ Operator-level Optimization and Code Generation
Declarative Hardware-Aware

Tensor Expressions

- yr
Machine Learning Based

Automated Optimizer
¥

Optirnization Primitives

| Optimized Low Level Loop Program

|

P

Y

[Accelerator Backe

nd

|| wwwmir || CUDAMetallOpenCL |

¥

l

Deployable Module

|

TVM (cont.)

* Execution steps in TVM

- (4 TVM identifies a
collection of possible
code optimizations for a
given hardware target’s
operators

o Possible optimizations
form a large space, so we
use an ML-based cost
model to find optimized
operators

- (5 Finally, the system
packs the generated
code into a deployable

module

Frameworks ‘B~ (O 4 @ m Q

@ | Computaticv)nal Graph |
| High Level Gr'aph Rewriting

@, '

@ Operator-level Optimization and Code Generation

Declarative Hardware-Aware

Optimized Computational Graph I
v

Tensor Expressions Optimization Primitives

g e
@ Machine Learning Based
Automated Optimizer
A4
| Optimized Low Level Loop Program |
| Accelerator Backend || LLVMIR || CUDAMetaliOpenCL |
® i
| Deployable Module |

MLIR: Multi-Level Intermediate Representation

* MLIR: Compiler Infra at the End of Moore’s Law
- Joined LLVM, follows open library-based philosophy

— Modular, extensible, general to many domains
o Being used for CPU, GPU, TPU, FPGA, HW, quantum,

— Easy to learn, great for research
— MLIR + LLVM IR + RISC-V CodeGen = &%

https://mlir.llvm.org

24

https://mlir.llvm.org/

MLIR (cont.)

* MLIR is a novel approach to building reusable and
extensible compiler infrastructure

— Addresses software fragmentation, compilation for
heterogeneous hardware

— Significantly reducing the cost of building domain specific
compilers, and connecting existing compilers together

* MLIR is intended to be a hybrid IR which can support
multiple different requirements in a unified infrastructure
— The ability to represent dataflow graphs (such as in TensorFlow)

— Ability to host HPC-style loop optimizations across kernels, and
to transform memory layouts of data

— Ability to represent target-specific operations, e.g. accelerator-
specific high-level operations.

— Quantization and other graph transformations done on a Deep-
Learning graph.

[1] MLIR: Scaling Compiler Infrastructure for Domain Specific Computation, CG0O’2021
[2] Building a Compiler with MLIR, Google’2020

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/85bf23fe88bd5c7ff60365bd0c6882928562cbeb.pdf
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf

Outline

* The Trends[7 <34

— Application, software, domain specific

* The Issues|[|n] @il FiT1F]
— Limitations of classical compilers

* The Solutions[¥&1F 2w 13 H7 A T %]
- TVM, MLIR

* Summary

@trxe 26 Dhige

Summary

* Compiler/PL tech more important than ever!

- The world is evolving fast at the “End of Moore’s Law”
e Changing assumptions, expanding possibilities

* HW changes require new programming models and
approaches:

— Various models and frameworks

— More high-level semantics

* We need compiler and PL experts to step up!

».’.*G%

References

* [1] Chris Lattner, The Golden Age of Compiler Design in an Era of HW/SW Co-
design, Keynote @ International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Apr 2021.

* [2] Albert Cohen, IR Design for Heterogeneity: Challenges and Opportunities,
Keynote @ International Conference on Compiler Construction (CC), Feb 2020.

* [3] John Hennessy and David Patterson, A New Golden Age for Computer
Architecture, Turing Lecture @ The International Symposium on Computer
Architecture (ISCA), June 2018.

* [4] Luis Ceze, Mark D. Hill and Thomas F. Wenisch, Arch2030: A Vision of
Computer Architecture Research over the Next 15 Years, Workshop @ The
International Symposium on Computer Architecture (ISCA), June 2016.

28 Dhig

https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit
https://conf.researchr.org/getImage/CC-2020/orig/IR+Design+for+Heterogeneity+-+Challenges+and+Opportunities.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://cra.org/ccc/wp-content/uploads/sites/2/2016/12/15447-CCC-ARCH-2030-report-v3-1-1.pdf

Compilers for ML = ML for Compilers

Search Engine Best Heuristic Values

>3 I

Heuristic Program
Values :|:| Inputs

Program Compiler Executable Machine Performance Metrics

Fig. 1. Iterative Compilation: a search technique explores a space of
compilation strategies, continually compiling, executing and profiling
to find the best performing strategy.

o Machine Learning in Compilers: Past, Present and Future,
https://ieeexplore.ieee.org/document/9232934

o Profile Guided Optimization without Profiles: A Machine Learning Approach,
https://arxiv.org/abs/2112.14679

o VESPA: static profiling for binary optimization,
https://dl.acm.org/doi/abs/10.1145/3485521

29

https://ieeexplore.ieee.org/document/9232934
https://arxiv.org/abs/2112.14679
https://dl.acm.org/doi/abs/10.1145/3485521

