
The Golden Age of
Compilers

in an era of Hardware/Software co-design

DCS290, 06/23/2022

Compilation Phases[编译阶段]

2

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

• Lexical: source code → tokens
− RE, NFA, DFA, …

• Syntax: tokens → AST or parse tree
− CFG, LL(1), LALR(1), …

• Semantic: AST → AST +symbol table
− SDD, SDT, typing, scoping, …

• Int. Code Generation: AST → TAC
− IR, offset, CodeGen, …

• Optimization: TAC → (optimized) TAC
− BB, CFG, DAG, …

• Code generation: TAC → Instructions
− Instruction, register, stack, …

Modern Compilers[现代编译器]

• Compila>on flow[编译流程]
− First, translate the source program to some form of

intermediate representaJon (IR, 中间表示)
− Then convert from there into machine code

• IR provides advantages[IR的优势]
− Increased abstracJon, cleaner separaJon, and retargeJng, etc

3

Opportunities for Compiler?

4

Compiler?
??

Outline
• The Trends[需求趋势]

− Application, software, hardware

• The Issues[传统编译的问题所在]
− Limitations of classical compilers

• The Solutions[潜在编译技术方案]
− TVM, MLIR

• Summary

5

ML Applica9ons[机器学习应用]

• Models are growing and getting more complex
− Model Size: larger models require more multiply accumulate

operations
− Model Complexity: as model complexity increases it becomes

harder to fully utilize hardware
− Much faster than Moore’s law

6
[1] IR Design for Heterogeneity: Challenges and Opportunities

https://conf.researchr.org/getImage/CC-2020/orig/IR+Design+for+Heterogeneity+-+Challenges+and+Opportunities.pdf

ML Software Explosion[机器学习框架]

• Many frameworks

• Many different graph
implementations

• Each framework is
trying to gain a
usability and
performance edge
over each other

7

High Performance Computing[高性能计算]

• Larger scale applica>ons
− Climate change, new drug discovery
− Data analyJcs, modeling and simulaJon

• Various parallel programming models
− MPI, OpenMP, OpenACC, SYCL/DPC++

8

More Hardware... More Complexity...
• Lots of players! (an incomplete list!)

9

Specialization

Architecture Trends

10

[1] Arch2030, hHps://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

• Current challenges
− End of Moore's Law and

Dennard Scaling
− Overlooked security

• Future opportunities in
computer architecture

− Domain-specific
architectures

− Domain-specific
languages

− Open architectures
− Agile hardware

development

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson

https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Domain Specific Arch.[领域专用架构]

• Achieve higher efficiency by tailoring the architecture to
characteristics of the domain[体系结构适配领域特性]

− Not one application, but a domain of applications
p Different from strict ASIC

− Requires more domain-specific knowledge then general
purpose processors need

• Examples:
− Neural network processors for machine learning
− GPUs for graphics, virtual reality
− Programmable network switches and interfaces

11

Domain Specific Arch.(cont.)
• More effec>ve parallelism for a specific domain

− SIMD vs. MIMD
− VLIW vs. SpeculaJve, out-of-order

• More effec>ve use of memory bandwidth
− User controlled versus caches

• Eliminate unneeded accuracy
− IEEE replaced by lower precision FP
− 32-64 bit bit integers to 8-16 bit integers

• Domain specific programming language
− DSAs require targeJng of high level operaJons to the

architecture
− Need matrix, vector, or sparse matrix operaJons

12

Domain Specific Languages[领域专用语言]

• Invent a new language for the specialized HW
− Better exploit application knowledge: directly connecting users

to HW, bypassing the ISA

• OpenCL is such an example
− HW vendors can regularly change GPU ISAs without affecting

user code
p OpenCL is the new contract

• It can be a bitter experience for programmers
− Rewrite code for new HW
− Not all new languages will survive in the long term

13

Outline
• The Trends[需求趋势]

− Application, software, domain specific

• The Issues[问题所在]
− Limitations of classical compilers

• The Solutions[潜在编译技术方案]
− TVM, MLIR

• Summary

14

The History[过去的成功经验]

• For more than 50 years, we have enjoyed exponentially
increasing compute power[算力急剧增长]

• The growth is based on a fundamental contract between
HW and SW[得益于软硬件之间的协议]

− HW may change radically “under the hood”
p Old SW can still on new HW (even faster)

− HW looks the same to SW, always speaking the same language
p The ISA, allows the decoupling of SW development from HW dev

• Three-phase compiler design (e.g., LLVM)[三段式编译器]
− One frontend for many backends, one backend for many

frontends

15

The Issue[当前面临的问题]

• The contract is breaking
− The end of Moore’s Law forces new design approaches

p Develop specialized HW to gain massive performance
p Program and use the specialized and heterogeneous HWs

• Limitations of LLVM
− “One size fits all” quickly turns into “one size fits none”

p ”fits all”: a single abstraction level to interface with the system
− LLVM is: 👍 CPUs, “just ok” 👈 for SIMT, but 👎 for many

accelerators
− … is not great for parallel programming models 💩

• Many problems are better modeled at a higher- or lower-
level abstraction

− e.g. source-level analysis of C++ code is very difficult on LLVM IR

16

Issue: Modern Languages[编程语言]

• Modern languages pervasively invest in high level IRs[更高
级、更抽象]

− To solve domain-specific problems, like language/library-
specific optimizations, flow-sensitive type checking (e.g., for
linear types)

− To improve the implementation of the lowering process

• Each compiler frontend is creating one or more high level
IR in addition to their AST representations[上层IR]

17

Issue: ML Frameworks[机器学习框架]

• Compiler tech is widely deployed in others fields,
including machine learning frameworks
• ML systems typically use “ML graphs” as a domain-

specific abstraction
• TensorFlow is basically a huge compiler ecosystem

− These boxes are all different domain-specific compiler systems:
p Different limitations, challenges, owners, etc
p No unifying theory and infrastructure to support this

18

Next-Gen Compilers & PL are Needed
• We need:

− Hardware abstraction spanning diverse accelerators
− Support for heterogeneous compute platforms
− Domain specific languages and programming models
− Quality, reliability, and scalability of infrastructure

• We see:
− “No one size fits all” compiler
− Shape of the problem is the same, but the accel details always

vary

• This opportunity is beckoning a golden age in compiler
and PL technology!

19

Outline
• The Trends[需求趋势]

− Applica>on, so_ware, domain specific

• The Issues[问题所在]
− Limita>ons of classical compilers

• The Solu3ons[潜在编译技术方案]
− TVM, MLIR

• Summary

20

TVM
• Bring ML to a wide diversity of hardware devices

− Current frameworks rely on vendor-specific operator libraries
and optimize for a narrow range of server-class GPUs

− Deploying workloads to new platforms – such as mobile
phones, embedded devices, and accelerators (e.g., FPGAs,
ASICs) – requires significant manual effort

• TVM: an end to end ML compiler framework for CPUs,
GPUs and accelerators

− Aims to enable machine learning engineers to optimize and run
computations efficiently on any hardware backend

21

[1] TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI’2018
[2] Apache TVM,

https://www.usenix.org/system/files/osdi18-chen.pdf
https://tvm.apache.org/

TVM (cont.)
• Execution steps in TVM

− ① First takes as input a
model from an existing
framework and transforms
it into a computational
graph representation

− ② Then performs high-
level dataflow rewriting to
generate an optimized
graph

− ③ The operator-level
optimization module must
generate efficient code for
each fused operator in
this graph

22

①

②

③

TVM (cont.)
• Execution steps in TVM

− ④ TVM identifies a
collection of possible
code optimizations for a
given hardware target’s
operators

p Possible optimizations
form a large space, so we
use an ML-based cost
model to find optimized
operators

− ⑤ Finally, the system
packs the generated
code into a deployable
module

23

①

②

③

④

⑤

MLIR: Multi-Level Intermediate Representation

• MLIR: Compiler Infra at the End of Moore’s Law
− Joined LLVM, follows open library-based philosophy
− Modular, extensible, general to many domains

p Being used for CPU, GPU, TPU, FPGA, HW, quantum,
− Easy to learn, great for research
− MLIR + LLVM IR + RISC-V CodeGen = 💝💝

24

https://mlir.llvm.org

https://mlir.llvm.org/

MLIR (cont.)
• MLIR is a novel approach to building reusable and

extensible compiler infrastructure
− Addresses software fragmentation, compilation for

heterogeneous hardware
− Significantly reducing the cost of building domain specific

compilers, and connecting existing compilers together
• MLIR is intended to be a hybrid IR which can support

multiple different requirements in a unified infrastructure
− The ability to represent dataflow graphs (such as in TensorFlow)
− Ability to host HPC-style loop optimizations across kernels, and

to transform memory layouts of data
− Ability to represent target-specific operations, e.g. accelerator-

specific high-level operations.
− Quantization and other graph transformations done on a Deep-

Learning graph.

25
[1] MLIR: Scaling Compiler Infrastructure for Domain Specific Computation, CGO’2021
[2] Building a Compiler with MLIR, Google’2020

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/85bf23fe88bd5c7ff60365bd0c6882928562cbeb.pdf
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf

Outline
• The Trends[需求趋势]

− Application, software, domain specific

• The Issues[问题所在]
− Limitations of classical compilers

• The Solutions[潜在编译技术方案]
− TVM, MLIR

• Summary

26

Summary
• Compiler/PL tech more important than ever!

− The world is evolving fast at the “End of Moore’s Law”
● Changing assump[ons, expanding possibili[es

• HW changes require new programming models and
approaches:

− Various models and frameworks

− More high-level semanJcs

• We need compiler and PL experts to step up!

27

References
• [1] Chris Lattner, The Golden Age of Compiler Design in an Era of HW/SW Co-

design, Keynote @ International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Apr 2021.

• [2] Albert Cohen, IR Design for Heterogeneity: Challenges and Opportunities,
Keynote @ International Conference on Compiler Construction (CC), Feb 2020.

• [3] John Hennessy and David Patterson, A New Golden Age for Computer
Architecture, Turing Lecture @ The International Symposium on Computer
Architecture (ISCA), June 2018.

• [4] Luis Ceze, Mark D. Hill and Thomas F. Wenisch, Arch2030: A Vision of
Computer Architecture Research over the Next 15 Years, Workshop @ The
International Symposium on Computer Architecture (ISCA), June 2016.

28

https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit
https://conf.researchr.org/getImage/CC-2020/orig/IR+Design+for+Heterogeneity+-+Challenges+and+Opportunities.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://cra.org/ccc/wp-content/uploads/sites/2/2016/12/15447-CCC-ARCH-2030-report-v3-1-1.pdf

Compilers for ML à ML for Compilers

29

o Machine Learning in Compilers: Past, Present and Future，
https://ieeexplore.ieee.org/document/9232934

o Profile Guided Optimization without Profiles: A Machine Learning Approach，
https://arxiv.org/abs/2112.14679

o VESPA: static profiling for binary optimization，
https://dl.acm.org/doi/abs/10.1145/3485521

https://ieeexplore.ieee.org/document/9232934
https://arxiv.org/abs/2112.14679
https://dl.acm.org/doi/abs/10.1145/3485521

