
Compilation Principle
编译原理

第13讲：语法分析(10)
张献伟

xianweiz.github.io
DCS290, 4/6/2023

https://xianweiz.github.io/

Review Questions
• Action table entries can be si and rj, what do they mean?

• Item/configuration: what does A → XYZ• mean?

• State: why we put the items into a configuration set?

• What is augmented grammar?

• What are the possible items of S’ → S?

2

We have seen the body XYZ and it is time to reduce XYZ to A

A → X • YZ
Y → •u
Y → •w

Y → u|wClosure: we hope to see one symbol in FIRST(Y)

Add one extra rule S’ → S to guarantee only one ‘acc’ in the table

S’ → •S: initial item, haven’t seen any input symbol
S’ → S•: accept item, have reduced the input string to start symbol

si: shift the input symbol and move to state i
rj: reduce by production numbered j

LR(0) Parsing
• Construct LR(0) automaton from the Grammar[由文法构建
自动机]

• Idea: assume
− Input buffer contains ⍺[但buffer不止有⍺]
− Next input is t[⍺后是t]
− DFA on input ⍺ terminates in state s

p ⍺处理完毕后处于状态s

• Next: reduce by X → β if[归约]
− s contains item X → β·

• Or, shift if[移进]
− s contains item X → β·tω
− Equivalent to saying s has a transition labeled t

3
http://openclassroom.stanford.edu/MainFolder/courses/Compilers/docs/slides/08-05-slr-parsing-annotated.pdf

http://openclassroom.stanford.edu/MainFolder/courses/Compilers/docs/slides/08-05-slr-parsing-annotated.pdf

LR(0) Parsing (cont.)
• The parser must be able to determine what action to take

in each state without looking at any further input symbols
[没有展望就可以决定动作]

− i.e. by only considering what the parsing stack contains so far
− This is the ‘0’ in the parser name

• In a LR(0) table, each state must only shift or reduce[确定
性移进或归约]

− Thus an LR(0) configurating set can only have exactly one
reduce item[每个归约item自成一个状态]

p cannot have both shift and reduce items; otherwise, conflicts

4

State
ACTION GOTO

a b $ S B
0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

☞

LR(0) Conflicts[冲突]

5

• LR(0) has a reduce/reduce conflict[归约-归约冲突] if:
− Any state has two reduce items:
− X → β· and Y → ω·

• LR(0) has a shift/reduce conflict[移进-归约冲突] if:
− Any state has a reduce item and a shift item:
− X → β· and Y → ω·t𝜎

✗ ✗

LR(0) Summary[小结]

• LR(0) is the simplest LR parsing[最简单]
− Table-driven shift-reduce parser[表驱动]

p ACTION table[s, a] + GOTO table[s, X]
− Weakest LR, not used much in practice[实际不常使用]
− Parses without using any lookahead[没有任何展望]

• Adding just one token of lookahead vastly increases the
parsing power[考虑展望]

− SLR(1): simple LR(1), use FOLLOW[归约用FOLLOW]
− LR(1): use dedicated symbols[比FOLLOW更精细]
− LALR(1): balance SLR(1) and LR(1)[折衷]

6

SLR(1) Parsing
• LR(0) conflicts are generally caused by reduce actions

− If the item is complete (A à ⍺.), the parser must choose to
reduce[项目形式完整就归约]

p Is this always appropriate?
p The next upcoming token may tell us sth different

− What tokens may tell the reduction is not
appropriate?

p Perhaps FOLLOW(A) could be useful here
• If the sequence on top of the stack could be reduced to the nonterminal A,

what tokens do we expect to find as the next input?

• SLR = Simple LR
− Use the same LR(0) configurating sets and have the same table

structure and parser operation[表结构一致]
− The difference comes in assigning table actions[动作填充不同]

p Use one token of lookahead to help arbitrate among the conflicts
p Reduce only if the next input token is a member of the FOLLOW set of

the nonterminal being reduced to[下一token在FOLLOW集才归约]
7

State
ACTION GOTO

a b $ S B
0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

SLR(1) Parsing (cont.)
• In the SLR(1) parser, it is allowable for there to be both

shift and reduce items in the same state as well as
multiple reduce items

− The SLR(1) parser will be able to determine which action to take
as long as the FOLLOW sets are disjoint[可区分即可]

8
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

✓

✓

移入还是归约？

下一token在T的FOLLOW集就归约；
否则，就不归约而移入（移入符号不在FOLLOW）

归约到T还是V？
下一token在T的FOLLOW集就归约到T；
在V的FOLLOW集就归约到V

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example
• The first two LR(0) configurating sets entered if id is the

first token of the input[用于识别id的前两个状态]
− LR(0) parser: the set on the right side has a shift-reduce conflict
− SLR(1) parser:

p Compute FOLLOW(T) = { +,),], $ }, i.e., only reduce on those tokens
• FOLLOW(T) = FOLLOW(E) = {+,),], $}

p id[id]: next input is [, not in FOLLOW(T), shift
p id + id: next input is +, in FOLLOW(T), reduce

9
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example (cont.)
• The first two LR(0) configurating sets entered if id is the

first token of the input[用于识别id的前两个状态]
− LR(0) parser: the right set has a reduce-reduce conflict
− SLR(1) parser:

p Capable to distinguish which reduction to apply depending on the next
input token, no conflict

p Compute FOLLOW(T) = { +,), $ } and FOLLOW(V) = { = }

10
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

id + id
id = id

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

SLR(1) Grammars[文法]

• A grammar is SLR(1) if the following two conditions hold
for each configurating set[可区分]

• (1) For any item A → u·xv in the set, with terminal x, there
is no complete item B → w· in that set with x in
FOLLOW(B)[无移入-归约冲突]

− In the table, this translates no shift-reduce conflict on any state

• (2) For any two complete items A → u· and B → v· in the
set, the follow sets must be disjoint, i.e. FOLLOW(A) ∩
FOLLOW(B) is empty[无归约-归约冲突]

− This translates to no reduce-reduce conflict on any state
− If more than one nonterminal could be reduced from this set, it

must be possible to uniquely determine which using only one
token of lookahead

11
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

SLR(1) Limitations[限制]

• SLR(1) vs. LR(0)
− Adding just one token of lookahead and using the FOLLOW set

greatly expands the class of grammars that can be parsed
without conflict

• When we have a completed configuration (i.e., dot at the
end) such as X –> u·, we know that it is reducible[可归约]

− We allow such a reduction whenever the next symbol is in
FOLLOW(X)[使用Follow集]

− However, it may be that we should not reduce for every symbol
in FOLLOW(X), because the symbols below u on the stack
preclude u being a handle for reduction in this case[Follow集不够]

− In other words, SLR(1) states only tell us about the sequence on
top of the stack, not what is below it on the stack

− We may need to divide an SLR(1) state into separate states to
differentiate the possible means by which that sequence has
appeared on the stack[额外使用栈信息，FOLLOW是input buffer信息]

12
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example
• For input string: id = id, at I2

after having reduced idLeft to L
− Initially, at S0

− Move to S5, after shifting id to
stack (S5 is also pushed to stack)

− Reduce, and back to S0, and
further GOTO S2

p S5 has a completed item, and next
‘=‘ is in FOLLOW(L)

p S5 and id are popped from stack,
and L is pushed onto stack

p GOTO(S0, L) = S2

13
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example (cont.)
• Choices upon seeing = coming up

in the input:
− Action[2, =] = s6

p Move on to find the rest of
assignment

− Action[2, =] = r5
p = ∈ FOLLOW(R): S => L=R => *R = R

• Shift-reduce conflict
− SLR parser fails to remember

enough info
− Reduce using R -> L only after

seeing * or =

14
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

For any item A → u·xv in the set, with
terminal x, there is no complete item B →
w· in that set with x in FOLLOW(B)

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

SLR(1) Improvement[改进]

• We don’t need to see additional symbols beyond the first
token in the input, we have already seen the info that
allows us to determine the correct choice[展望信息已足够]

• Retain a little more of the left context that brought us
here[历史路径]

− Divide an SLR(1) state into separate states to differentiate the
possible means by which that sequence has appeared on the
stack

• Just using the entire FOLLOW set is not discriminating
enough as the guide for when to reduce[FOLLOW集不够]

− For the example, the FOLLOW set contains symbols that can
follow R in any position within a valid sentence

− But it does not precisely indicate which symbols follow R at this
particular point in a derivation

15

LR(1) Parsing
• LR parsing adds the required extra info into the state

− By redefining items to include a terminal symbol as an added
component[让项目中包含终结符]

• General form of LR(1) items[项目]
− A –> X1...Xi•Xi+1...Xj , a
− We have states X1...Xi on the stack and are looking to put states

Xi+1...Xj on the stack and then reduce
p But only if the token following Xj is the terminal a
p a is called the lookahead of the configuration

• The lookahead only works with completed items[完成项]
− A –> X1...Xj •, a
− All states are now on the stack, but only reduce when next

symbol is a (a is either a terminal or $)
− Multi lookahead symbols: A -> u•, a/b/c

16

LR(1) Parsing (cont.)
• When to reduce?

− LR(0): if the configuration set has a completed item (i.e., dot at
the end)

− SLR(1): only if the next input token is in the FOLLOW set
− LR(1): only if the next input token is exactly a (terminal or $)
− Trend: more and more precise

• LR(1) items: LR(0) item + lookahead terminals
− Many differ only in their lookahead components[仅展望不同]
− The extra lookahead terminals allow to make parsing decisions

beyond the SLR(1) capability, but with a big price[代价]
p More distinguished items and thus more sets
p Greatly increased GOTO and ACTION table sizes

17

S’ -> ·S
LR(0)

S’ -> ·S, $
LR(1)

LR(1) Construction
• Configuration sets

− Sets construction are essentially the same with SLR, but
differing on Closure() and Goto()

p Because we must respect the lookahead

• Closure()
− For each item [A -> u·Bv, a] in I, for each production rule B -> w

in G’, add [B -> ·w, b] to I, if
p b ∈ FIRST(va) and [B -> ·w, b] is not already in I

− Lookahead is the FIRST(va), which are what can follow B
p v can be nullable

18

(0) S’ -> S
(1) S -> XX
(2) X -> aX
(3) X -> b

S’ -> ·S, $

I0:
S’ -> ·S, $

I0:
S’ -> ·S, $
S -> .XX, $
X -> .aX, a/b
X -> .b, a/b

S -> .XX, First(ε$)
X -> .aX, First(X$)
X -> .b, First(X$)

LR(1) Construction (cont.)
• Goto(I, X)

− For item [A -> u·Xv, a] in I, Goto(I, X) = Closure ([A -> uX·v, a])
− Basically the same Goto function as defined for LR(0)

p But have to propagate the lookahead[传递] when computing the
transitions

• Overall steps
− Start from the initial set Closure([S’ -> ·S, $])
− Construct configuration sets following Goto(I, X)
− Repeat until no new sets can be added

19

I0:
S’ -> ·S, $
S -> .XX, $
X -> .aX, a/b
X -> .b, a/b

I2:
S -> X.X, $X

I2:
S -> X.X, $
X -> .aX, $
X -> .b, $

X -> .aX, First(ε$)
X -> .b, First(ε$)

Example

20

I0:
S’ → ·S, $
S → ·XX, $
X → ·aX, a/b
X → ·b, a/b

I1:
S’ → ·S, $

I2:
S → X·X, $
X → ·aX, $
X → ·b, $

I3:
X → a·X, a/b
X → ·aX, a/b
X → ·b, a/b

I4:
X → b·, a/b

I5:
S → XX·, $

I6:
X → a·X, $
X → .aX, $
X → ·b, $

I7:
X → b·, $

I9:
X → aX·, $

I8:
X → aX·, a/b

S

X X

a
X

a

b

b

X

b
a

b

a

Example (cont.)

21

String: bab
#bab$ => b#ab$ => B#ab$ => Ba#b$

=> Bab#$ => BaB#$ => BB#$ => S#$
0 0 4 0 2 0 2 3

0 2 3 4 0 2 3 6 0 2 5 0 1

String: bab
#bab$ => b#ab$ => B#ab$ => Ba#b$

=> Bab#$ => BaB#$ => BB#$ => S#$
0 0 4 0 2 0 2 6

0 2 3 7 0 2 3 9 0 2 5 0 1

LR(0)

LR(1)

String: abb
#abb$ => a#bb$ => ab#b$ => aB#b$

=> B#b$ => Bb#$ => BB#$ => S#$
0 0 3 0 3 0 3 8

0 2 0 2 7 0 2 5 0 1

4

都是Bß b归约

都是Bß aB归约

