WHEHILER ( RE&FB )
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

7 1°F R B

= N

131 1BVES)

NINGE

xianweiz.github.

i (10)

10

DCS290, 4/6/2023

B


https://xianweiz.github.io/

Review Questions

e Action table entries can be si and rj, what do they mean?

si: shift the input symbol and move to state i
rj: reduce by production numbered j

* [tem/configuration: what does A - XYZe mean?
We have seen the body XYZ and it is time to reduce XYZ to A

e State: why we put the items into a configuration set?

Closure: we hope to see one symbol in FIRST(Y) ¥ = ulw éj i(u° Y
* What is augmented grammar? Y > ew

Add one extra rule S - S to guarantee only one ‘acc’ in the table

* What are the possible items of S" - S?
S” = «S:initial item, haven’t seen any input symbol
S” = Se: accept item, have reduced the input string to start symbol

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ }' GG [Z




LR(O) Parsing

* Construct LR(0) automaton from the Grammar[ /i 3CiE) %
ER)IN

* |dea: assume | |
— Input buffer contains a[fHbuffer s iEfHa] 25 =S

S- .BB
— Next input is t[a)5 &t] Ejjffi E;BB ’ "55; -
— DFA on input o terminates in state s gz -EB
o SEHETEEEE A TR s ° y b |
* Next: reduce by X - B if[IH%] e
- s contains item X = B- | v R
* Or, shift if[#] 23 b

— s contains item X - B-tw
- Equivalent to saying s has a transition labeled t

3 d
v http://openclassroom.stanford.edu/MainFolder/courses/Compilers/docs/slides/08-05-slr-parsing-annotated.pdf VIN z

.ts- \
(D) * Ja K
"O' g



http://openclassroom.stanford.edu/MainFolder/courses/Compilers/docs/slides/08-05-slr-parsing-annotated.pdf

LR(O) Parsing (cont.)

* The parser must be able to determine what action to take
in each state without looking at any further input symbols
[V A B R v LAk E B1E]

- i.e. by only considering what the parsing stack contains so far
-5~ This is the ‘0’ in the parser name

* In a LR(O) table, each state must only shift or reduce[# &
PERZ it B A 2]
- Thus an LR(0) configurating set can only have exactly one
reduce item[&~ 0 Zitem H il — AN RAS]
o cannot have both shift and reduce items; otherwise, conflicts

ACTION GOTO
b S S
0 s3 s4 1 2

acc

State

s3 s4
s3 s4 6
r3 r3 r3
ri ri ri

r2 r2 r2 ”'EELZ

(U PAP|IWIN |




LR(0) Conflicts[mz

* LR(0) has a reduce/reduce conflict[J3%)-J3 %) #125] if:

— Any state has two reduce items:
-X=>B-andY > w-

 LR(0) has a shift/reduce conflict[#Z - 1341 %K] if:
— Any state has a reduce item and a shift item:
-X=>Band¥Y > wto

E'->E
E->E+T |T|V=E E'-> E
T->(E)|id E->E+T|T
V ->id T -> (E) | id | id[E]
(e s ) — |
E->+E+T . T->ide
E-> T id V-> ide /E' -> *E ) '
E->eV=E E->E+T id
T-> '(E) . E-> T
T-> »id $-> '_(5)
- o -> e
V> rid T-> «id[E]

X _ X

T->ide
T-> id-[E]}

B



LR(O) Summary[/h45]

* LR(0) is the simplest LR parsing[#x {4 #.]
— Table-driven shift-reduce parser[#& x5/
o ACTION table[s, a] + GOTO table[s, X]
— Weakest LR, not used much in practice[SZBrAN 13 ]
— Parses without using any lookahead[# & {T-{f f& &]

* Adding just one token of lookahead vastly increases the
parsing power[*% & & H]
— SLR(1): simple LR(1), use FOLLOWI[IH %] HFOLLOW]
— LR(1): use dedicated symbols[Lt.FOLLOW BE 4 4]
— LALR(1): balance SLR(1) and LR(1)[#7#]

LR(1)

LALR(1)




SLR(1) Parsing

* LR(0) conflicts are generally caused by reduce actions
— If the item is complete (A =2 a.), the parser must choose to

reduce[Ii H K 52 &5k IH 2]

w
wv

o Is this always appropriate? a [ b

o The next upcoming token may tell us sth different

— What tokens may tell the reduction is not

appropriate?

o Perhaps FOLLOW(A) could be useful here B O RS R

* |f the sequence on top of the stack could be reduced to the nonterminal A,
what tokens do we expect to find as the next input?

* SLR = Simple LR

- Use the same LR(0) configurating sets and have the same table
structure and parser operation[# 45— %]

— The difference comes in assigning table actions[z{F & 7c A5 [F]]

o Use one token of lookahead to help arbitrate among the conflicts

o Reduce only if the next input token is a member of the FOLLOW set of
the nonterminal being reduced to[ | —tokenfEFOLLOWZ£E A 4 ]

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ }' GG [Z




SLR(1) Parsing (cont.)

* In the SLR(1) parser, it is allowable for there to be both
shift and reduce items in the same state as well as
multiple reduce items

— The SLR(1) parser will be able to determine which action to take
as long as the FOLLOW sets are disjoint[#] [X 4B H]]

./E' -> oF \ '
E->«E+T %{T'>!d° J
E-> T T-> Id'[E]
T-> «(E)
T-> »id BNIERZIHZ)? \/
T->+dlEl I~ tokenETIHIFOLLOWAE S VA 4
\ BN, AL (BT SAEFOLLOW)
-/E' -> oF \ ‘
E->E+T i/d,[-r'>i.d. J J
E->oT V -> ide
E->eV=E
T2 HAETERY?
V -> sid N —tokenZE T FOLLOWAE B 2 F| T,
EVIKIFOLLOWZEE L IF 21 v

ﬂ‘»x’E J‘ K ’% EE
wrsevolditps://web.stanforded., . ~—— ¢ i —— - ... __...__________LR%20Parsing.pdf VW 1



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example

* The first two LR(0) configurating sets entered if id is the
first token of the input[H T HAlid AT AR
- LR(O) parser: the set on the right side has a shift-reduce conflict
— SLR(1) parser:

o Compute FOLLOW(T)={+,),1,S}, i.e., only reduce on those tokens
« FOLLOW(T) = FOLLOW(E) = {+, ), ], $}

o id[id]: next input is [, not in FOLLOW(T), shift

o id +id: next input is +, in FOLLOW(T), reduce

(esee ) ' .
E->*E+T id T-> !d'
E-> T T-> ide[E]

E'->E $-> '_(c*jf)

E->E+T|T >l

T -> (E) | id | id[E] T o> cidlE]

o .

J'K% 2 Eﬂ
jv:m-smmvhtnps://web.stanford.edu/class/archive/cs/csl43/csl43.1128/handouts/llO%ZOLR%ZOand%ZOSLR%ZOParsing.pdf U& z



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example (cont.)

* The first two LR(0) configurating sets entered if id is the
first token of the input[H T HAlid AT AR
— LR(O) parser: the right set has a -reduce conflict

— SLR(1) parser:

o Capable to distinguish which reduction to apply depending on the next
input token, no conflict +id

o Compute FOLLOW(T) ={+, ), $ }and FOLLOW(V) ={=} ;4-ig
/E' -> oF \ R

E->«E+T i T->ide
E-> T V->ide
E->V=E
T -> «(E)

' T-> »id
E'->E V-> eid

E->E+T |T|V=E
T ->(E) | id

V ->id \_ J

@) Fux 2 10 @ﬂ
jv:m-smmvhtnps://web.stanford.edu/class/archive/cs/csl43/csl43.1128/handouts/llO%ZOLR%ZOand%ZOSLR%ZOParsing.pdf Ui z



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

SLR(1) Grammars[3ci%]

A grammar is SLR(1) if the following two conditions hold
for each configurating set[r] X /3]

* (1) For any item A = u-xv in the set, with terminal x, there
is no complete item B - w: in that set with x in
FOLLOW(B)[ L A -2 %%]

- In the table, this translates no shift-reduce conflict on any state

* (2) For any two complete items A - u- and B - v- in the
set, the follow sets must be disjoint, i.e. FOLLOW(A) N
FOLLOW(B) is empty[J5IHZ)-IHZ1#25K]

— This translates to no reduce-reduce conflict on any state

— If more than one nonterminal could be reduced from this set, it

must be possible to uniquely determine which using only one
token of lookahead

(0' /)

[
| { hm
smm-smmvh’t%ps://web.stanford.edu/class/archive/cs/csl43/csl43.1128/handouts/llO%ZOLR%ZOand%ZOSLR%ZOParsing.pdf Pry 7



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

SLR(1) Limitations[BE i

* SLR(1) vs. LR(O)
— Adding just one token of lookahead and using the FOLLOW set

greatly expands the class of grammars that can be parsed
without conflict

* When we have a completed configuration (i.e., dot at the
end) such as X —> u-, we know that it is reducible[R] |7 %]]

- We allow such a reduction whenever the next symbol is in
FOLLOW(X)[ 13 FH Follow%E]
- However, it may be that we should not reduce for every symbol

in FOLLOW(X), because the symbols below u on the stack
preclude u being a handle for reduction in this case[Follow%E A 15]

- In other words, SLR(1) states only tell us about the sequence on
top of the stack, not what is below it on the stack

- We may need to divide an SLR(1) state into separate states to
differentiate the possible means by which that sequence has
appeared on the stack[#i#Ms H#%{5 2, FOLLOW Einput buffer(s 2]

u*; ‘1‘ K '% } ’hm
im-samwhtn ps://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf Pry 7



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example

* For input string: id =id, at I,

§'->S
after having reduced id s to L s>L=R
->
— Initially, at S, L-> *(;R
el . L->i
- Move to S, after shifting id to R->L
stack (Ss is also pushed to stack)
— Reduce, and back to S,, and S It L->id
further GOTO S, S-> R lg S->L=¢R
. L -> «*R R-> L
o S¢ has a completed item, and next L-> *id L-> «*R
‘=" is in FOLLOW/(L) M L-> «id
o Ss and id are popped from stack, L: 5'->5 I L->*R
and L is pushed onto stack L; S->Le=R Iy R->Le
— R-> Le
o GOTO(S,, L) =S, Li S-»L=R
13 S->R
I4: L -> *eR
R-> sl
L -> o*R
L -> «id
;\,7 o h
j:vgs‘wﬁh’t%)s://web.stanford.edu/class/archive/cs/csl43/csl43.111?2’8/handouts/llO%ZOLR%ZOand%ZOSLR%ZOParsing.pdf VINELZ



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

Example (cont.)

* Choices upon seeing = coming up
in the input:
- Action[2, =] =s6

o Move on to find the rest of
assignment

— Action[2, =] =15 Iy

o = € FOLLOW(R): S => L=R => *R =R

* Shift-reduce conflict
— SLR parser fails to remember

= - -

enough info -

— Reduce using R -> L only after :12'
seeing * or = Iy

For any item A - u-xv in the set, with I:

terminal x, there is no complete item B -
w- in that set with x in FOLLOW(B)

S'->S

S->L=R

S->R

L->*R

L->id

R->1L
S'-> S Is: L->ide
S->eL=R
S -> R Ig: S->L=°R
L -> «*R R=-> e
L -> «id L -> «*R
R-> oL L-> «id
S'-> Se I;: L->*Re
S->Le =RI Iz R->Le
R->Le !
______ : It S->L=Re
S -> Re
L -> *eR
R -> L
L -> «*R
L -> «id



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

SLR(1) Improvement[it]

* We don’t need to see additional symbols beyond the first
token in the input, we have already seen the info that
allows us to determine the correct choice[[E 2/Z B C 2]

* Retain a little more of the left context that brought us
here[)}; 32 E§12]

- Divide an SLR(1) state into separate states to differentiate the
possible means by which that sequence has appeared on the
stack

* Just using the entire FOLLOW set is not discriminating
enough as the guide for when to reduce[FOLLOW£E A %]

— For the example, the FOLLOW set contains symbols that can
follow R in any position within a valid sentence

— But it does not precisely indicate which symbols follow R at this

particular point in a derivation




LR(1) Parsing

* LR parsing adds the required extra info into the state
— By redefining items to include a terminal symbol as an added
component[ikIi H HA & 44555
* General form of LR(1) items[%ii H]
- A—=> X X0 Xy1...X; , @
- We have states X;...X,on the stack and are looking to put states
Xi;1.--X; on the stack and then reduce

o But only if the token following X; is the terminal a
o ais called the lookahead of the configuration

* The lookahead only works with completed items[5¢ &3]
—A—=>X;.. X e, 2
— All states are now on the stack, but only reduce when next
symbol is a (a is either a terminal or S)

= Multi lookahead symbols: A -> ue, a/b/c




LR(1) Parsing (cont.)

e When to reduce?

- LR(O): if the configuration set has a completed item (i.e., dot at
the end)

— SLR(1): only if the next input token is in the FOLLOW set
— LR(1): only if the next input token is exactly a (terminal or S)
- Trend: more and more precise

* LR(1) items: LR(0) item + lookahead terminals

— Many differ only in their lookahead components[{¥ J& 22 A [H]]

— The extra lookahead terminals allow to make parsing decisions
beyond the SLR(1) capability, but with a big price[{t1]
o More distinguished items and thus more sets
o Greatly increased GOTO and ACTION table sizes

S ->-S S ->-S,S

LR(0) LR(1) r
Y Dhge




LR(1) Construction

* Configuration sets

— Sets construction are essentially the same with SLR, but
differing on Closure() and Goto()
o Because we must respect the lookahead

* Closure()

— For each item [A -> u-By, a] in /, for each production rule B -> w
in G, add [B -> -w, b] to /, if
o b € FIRST(va) and [B -> -w, b] is not already in /
— Lookahead is the FIRST(va), which are what can follow B

o vV can be nullable
lo: lo:

2(1); 2 -_>>xSx A o
$->.5,$ S -> XX, First(€S) S-> XX, S

(2) X ->aX X -> .aX, First(X$) X ->.aX, a/b

(3) X->b X -> .b, First(XS) X ->.b, a/b

Wl



LR(1) Construction (cont.)

e Goto(l, X)
— For item [A -> u-Xy, a] in /, Goto(l, X) = Closure ([A -> uX-v, a])
— Basically the same Goto function as defined for LR(O)

o But have to propagate the lookahead[f%i#] when computing the
transitions

* Overall steps
— Start from the initial set Closure([S’ -> S, $])

— Construct configuration sets following Goto(l, X)
- Repeat until no new sets can be added

IO: . : |-

’ . 2. 2
510205 X S->XX S S->XX S
S-> XX, S ,

X -> .aX, First(eS) X->.aX, S
R X -> .b, First(eS) X->.b, S
X->.b, a/b Y Y

() Nl




Example

lo:

S >S5
S>> XX, S

X = -aX, a/b
X > -b, a/b

X = a-X, a/b
X = -aX, a/b
X = -b, a/b

MG‘Z



Example (cont.)

b sl String: bab
S>> s> S.
o3 b B #bab$ => b#ab$ => B#ab$ => Ba#b$
S e om : 04 02 023
e T, => Bab#5 => BaB#5 => BB#S => S#5
a éiy | 0234 0236 025 01
‘Ezza.g . [56:9 aB. ,:'/ String: bab
. -~ #bab$ => b#ab$ => B#tab$ => Ba#b$
___________ L _R(_O_)______——”’ 04 02 026
Cgs U,y  AEBE DA _, Bab#$ => BaB#S => BB#S => S#S
K b X S5m0 0237 0238 025 01
Xéba/b T USSXX S ™ &
X2aS a2y yaxs XS .
o T s String: abb #i2B€ aBHL)
R ST #abb$ => a#tbb$ => ab#b$ => aB#bs
’ K>S 0 03 034 038
ggazia%ﬁf'x%ax,a/b => B#bS => Bb#S => BB#S => S#S
LR(].) 02 027 025 01

D) tux s 21 IR




