
Compilation Principle
编译原理

第2讲：词法分析(2)
张献伟

xianweiz.github.io
DCS290, 2/28/2023

https://xianweiz.github.io/

Review Questions
• Q1: lexical analysis of “while (i>=1”?

• Q2: Σ = {a}, L1 = {aa}, L2={aaa}. What are L1 | L2 and L1L2?

• Q3:L3
2?

• Q4: describe the meaning of L1
* | L2

*?

• Q5: is (L1 | L2)* of the same meaning?

• Q6: RE of identifiers in C language?

2

(_letter)(_letter|digit)*

(keyword, ‘while’), (sym, ’(’), (id, ‘i‘), (sym, ‘>=’), (num, ‘1’)

L3 = L1 | L2 = {aa} | {aaa} = {aa, aaa}, L4 = L1L2 = {aaaaa}

L32 = L3L3 = {aa, aaa}{aa, aaa} = {aaaa, aaaaa, aaaaaa}

A language composed of ‘a’s of length 2X and 3X, including ε

(L1 | L2)* = L3*= {L30, L31, L32, …} = {ε, aa, aaa, aaaa, aaaaa, aaaaaa, …}

Summary: RE
• We have learnt how to specify tokens for lexical

analysis[定义token]
− Regular expressions

p Concise notations for the string patterns

• Used in lexical analysis with some extensions[适度扩展]
− To resolve ambiguities
− To handle errors

• REs is only a language specification[只是定义了语言]
− An implementation is still needed
− Next: to construct a token recognizer for languages given by

regular expressions – by using finite automata[有穷自动机]
3

Impl. of Lexical Analyzer[实现]

• How do we go from specification to implementation?
− RE à finite automata

• Solution 1: to implement using a tool — Lex (for C), Flex
(for C++), Jlex (for java)

− Programmer specifies tokens using REs
− The tool generates the source code from the given REs

p The Lex tool essentially does the following translation: REs (specification)
⇒ FAs (implementation)

• Solution 2: to write the code yourself
− More freedom; even tokens not expressible through REs
− But difficult to verify; not self-documenting; not portable;

usually not efficient
− Generally not encouraged

4

Transition Diagram[转换图]

• REs à transition diagrams
− By hand
− Automatic

• Node[节点]: state
− Each state represents a condition that may occur in the process
− Initial state (Start): only one, circle marked with ‘start à’
− Final state (Accepting): may have multiple, double circle

• Edge[边]: directed, labeled with symbol(s)
− From one state to another on the input

5

Finite Automata[有穷自动机]

• Regular Expression = specification[正则表达是定义]

• Finite Automata = implementation[自动机是实现]

• Automaton (pl. automata): a machine or program
• Finite automaton (FA): a program with a finite number of

states

• Finite Automata are similar to transition diagrams
− They have states and labelled edges
− There are one unique start state and one or more than one final

states

6

FA: Language
• An FA is a program for classifying strings (accept, reject)

− In other words, a program for recognizing a language
− The Lex tool essentially does the following translation: REs

(specification) ⇒ FAs (implementation)
− For a given string ‘x’, if there is transition sequence for ‘x’ to

move from start state to certain accepting state, then we say ‘x’
is accepted by the FA

p Otherwise, rejected

• Language of FA = set of strings accepted by that FA
− L(FA) ≡ L(RE)

7

Example
• Are the following strings acceptable?

− 0
− 1
− 11110
− 11101
− 11100
− 1111110

• What language does the state graph recognize? ∑ = {0, 1}

8

✓

✓

✓

✗

✗
✗

L(FA): all strings of ∑{a, b}, ending with ‘abb’
L(RE) = (a|b)*abb

Any number of ‘1’s followed by a single 0

DFA and NFA
• Deterministic Finite Automata (DFA): the machine can

exist in only one state at any given time[确定]
− One transition per input per state
− No ε-moves
− Takes only one path through the state graph

• Nondeterministic Finite Automata (NFA): the machine can
exist in multiple states at the same time[非确定]

− Can have multiple transitions for one input in a given state
− Can have ε-moves
− Can choose which path to take

p An NFA accepts if some of these paths lead to accepting state at the end
of input

9

• 5 components（∑, S, n, F, 𝛿）
− An input alphabet Σ

− A set of states S

− A start state n ∈ S

− A set of accepting states F ⊆ S

− A set of transitions δ: Sa Sb

State Graph

10

input

a

Example: DFA
• There is only one possible sequence of moves --- either

lead to a final state and accept or the input string is
rejected

− Input string: aabb

− Successful sequence:

11

Example: NFA
• There are many possible moves: to accept a string, we

only need one sequence of moves that lead to a final
state

− Input string: aabb
− Successful sequence:

− Unsuccessful sequence:

12

Conversion Flow[转换流程]

• Outline: RE à NFA à DFA à Table-driven
Implementation

−③ Converting DFAs to table-driven implementations
−① Converting REs to NFAs
−② Converting NFAs to DFAs

13

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

③
① ②

DFA à Table
• FA can also be represented using transition table

1414

0 1

S

T

U

T U

T U

T x

alphabet

state

Q: which is/are accepted?
111
000
001

More on Table
• Implementation is efficient[表格是一种高效实现]

− Table can be automatically generated
− Need finite memory O(S x ∑)

p Size of transition table
− Need finite time O(input length)

p Number of state transitions

• Pros and cons of table[表格实现的优劣]
− Pro: can easily find the transitions on a given state and input
− Con: takes a lot of space, when the input alphabet is large, yet

most states do not have any moves on most of the input
symbols

15

RE à NFA
• NFA can have ε-moves

− Edges labelled with ε
− Move from state A to state B without reading any input

• M-Y-T algorithm to convert any RE to an NFA that defines
the same language

− Input: RE r over alphabet ∑
− Output: NFA accepting L(r)

16

Regular Expression

NFA

DFA Table-driven Impl.
of automata

manual

③
① ②

McNaughton-Yamada-Thompson

RE à NFA (cont.)
• Step 1: processing atomic REs

− ε expression[空]
p i is a new state, the start state of NFA
p f is another new state, the accepting state of NFA

− Single character RE a[单字符]

17

RE à NFA (cont.)
• Step 2: processing compound REs[组合]

− R = R1 | R2

− R = R1R2

18

RE à NFA (cont.)
• Step 2: processing compound REs

− R = R1*

19

Example
• Convert “(a|b)*abb” to NFA

20

Example (cont.)
• Convert “(a|b)*abb” to NFA

21

Example (cont.)
• Convert “(a|b)*abb” to NFA

22

The Conversion Flow

23

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

③
① ②

• Outline: RE à NFA à DFA à Table-driven
Implementation

−③ Converting DFAs to table-driven implementations
−① Converting REs to NFAs
−② Converting NFAs to DFAs

NFA à DFA: Same[等价]

• NFA and DFA are equivalent

24

To show this we must prove every DFA can be converted into an
NFA which accepts the same language, and vice-versa

NFA à DFA: Theory[相关理论]

• Question: is L(NFA) ⊆ L(DFA)?
− Otherwise, conversion would be futile

• Theorem: L(NFA) ≡ L(DFA)
− Both recognize regular languages L(RE)
− Will show L(NFA) ⊆ L(DFA) by construction (NFA à DFA)
− Since L(DFA) ⊆ L(NFA), L(NFA) ≡ L(DFA)

• Resulting DFA consumes more memory than NFA
− Potentially larger transition table as shown later

• But DFAs are faster to execute
− For DFAs, number of transitions == length of input
− For NFAs, number of potential transitions can be larger

• NFA à DFA conversion is done because the speed of DFA
far outweighs its extra memory consumption

25

Any DFA can be easily changed into NFA

NFA à DFA: Idea
• Algorithm to convert[转换算法]

− Input: an NFA N
− Output: a DFA D accepting the same language as N

• Subset construction[子集构建]
− Each state of the constructed DFA corresponds to a set of NFA

states
p Hence, the name ‘subset construction’

− After reading input a1a2…an, the DFA is in that state which
corresponds to the set of states that the NFA can reach, from its
start state, following paths labeled a1a2…an

26

NFA à DFA: Steps
• The initial state of the DFA is the set of all states the NFA

can be in without reading any input
• For any state {qi ,qj ,…,qk} of the DFA and any input a, the

next state of the DFA is the set of all states of the NFA
that can result as next states if the NFA is in any of the
states qi ,qj ,…,qk when it reads a

− This includes states that can be reached by reading a followed
by any number of ε-transitions

− Use this rule to keep adding new states and transitions until it is
no longer possible to do so

• The accepting states of the DFA are those states that
contain an accepting state of the NFA.

27
https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

