WHEHILER (RE&FB)
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

7 1°F R B

= N

2t LS
INGE

xianweiz.github.

M (2)

10

DCS290, 2/28/2023

D

https://xianweiz.github.io/

Review Questions

e Q1: lexical analysis of “while (i>=1"7
(keyword, ‘while’), (sym, ’(’), (id, ‘i), (sym, >=’), (num, ‘1’)

* Q2:2 ={a}, L, ={aa}, L,={aaa}. What are L, | L,and L,L,?
L; =L, | L, ={aa} | {aaa} ={aa, aaa}, L, = L,L, = {aaaaa}

¢ Q3:L,2?

L2 = L;L; = {aa, aaa}l{aa, aaa} = {aaaa, aaaaa, aaaaaa}

* Q4: describe the meaning of L;" | L,"?
A language composed of ‘a’s of length 2X and 3X, including €

* Q5:is (L; | L,)" of the same meaning?
(L; | L) =L3"={L°, LY, Ls?, ...} = {¢, aa, aaa, aaaa, aaaaa, aaaaaa, ...}

* Q6: RE of identifiers in C language?
(_letter)(_letter|digit)”

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Summary: RE

* We have learnt how to specify tokens for lexical
analysis[€ X token]
— Regular expressions
o Concise notations for the string patterns

* Used in lexical analysis with some extensions[i&E# J&]
— To resolve ambiguities
— To handle errors

 REs is only a language specification[R &€ X TiE =]
— An implementation is still needed

— Next: to construct a token recognizer for languages given by
regular expressions — by using finite automata[G 75 5 zh#1]

@) tuxe 3 I

Impl. of Lexical Analyzer[sz#i]

* How do we go from specification to implementation?
— RE = finite automata

 Solution 1: to implement using a tool — Lex (for C), Flex
(for C++), Jlex (for java)
— Programmer specifies tokens using REs

— The tool generates the source code from the given REs

o The Lex tool essentially does the following translation: REs (specification)
= FAs (implementation)

* Solution 2: to write the code yourself

- More freedom; even tokens not expressible through REs

— But difficult to verify; not self-documenting; not portable;
usually not efficient

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

R
e

Transition Diagram[#%

* REs = transition diagrams
- By hand 1

— Automatic ,Q/—\©

* Node[7 5i]: state
— Each state represents a condition that may occur in the process
— Initial state (Start): only one, circle marked with ‘start 2>’
- Final state (Accepting): may have multiple, double circle

* Edge[i4]: directed, labeled with symbol(s)

— From one state to another on the input

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

Finite Automatal g s gaahl

* Regular Expression = specification[1F %% & & Y]
* Finite Automata = implementation[[Zh#H1& 92 Fi]

e Automaton (pl. automata): a machine or program

* Finite automaton (FA): a program with a finite number of
states

* Finite Automata are similar to transition diagrams

- They have states and labelled edges

— There are one unique start state and one or more than one final
states

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

FA: Language

* An FA is a program for classifying strings (accept, reject)
- In other words, a program for recognizing a language

- The Lex tool essentially does the following translation: REs
(specification) = FAs (implementation)

— For a given string X/, if there is transition sequence for X’ to
move from start state to certain accepting state, then we say x’
is accepted by the FA

o Otherwise, rejected

* Language of FA = set of strings accepted by that FA
— L(FA) = L(RE)

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Example

* Are the following strings acceptable? 1

2 X o
-1 X
- 11110 vV
-11101 X

- 11100 X
- 1111110 Vv

* What language does the state graph recognize? > = {0, 1}
Any number of ‘1’s followed by a single O

a

= Y a '/—\ b /_\- b L|‘//—_\->V'
start —> 0) > 1 >

O P "2) '\\i//
b
L(FA): all strings of >{a, b}, ending with ‘abb’
L(RE) = (a|b)*abb
@turs : i

DFA and NFA

* Deterministic Finite Automata (DFA): the machine can
exist in only one state at any given time[#i €]
— One transition per input per state
— No e-moves
— Takes only one path through the state graph

* Nondeterministic Finite Automata (NFA): the machine can
exist in multiple states at the same time[dE#ffE]
— Can have multiple transitions for one input in a given state
— Can have e-moves

— Can choose which path to take

o An NFA accepts if some of these paths lead to accepting state at the end
of input

“‘ : k)
@ tuxt bl

State Graph

e 5 components (5,S,n, F &)
- An input alphabet 2

- A set of states S Q

— Astartstaten €S _O

— A set of accepting states FS S @ _

— A set of transitions 6: S, "™ S, m

@) tuxs 10 i

Example: DFA

* There is only one possible sequence of moves --- either
lead to a final state and accept or the input string is
rejected

- Input string: aabb

- Successful sequence: O06—=1—+=1—#=2—»3

start b final state
state
0= @
start
A DFA accepts (a|b) “abb

11 Dhge

Example: NFA

* There are many possible moves: to accept a string, we
only need one sequence of moves that lead to a final
state

— Input string: aabb) _
— Successful sequence: 0 —>0—>1—»2—» 3

— Unsuccessful sequence: 90— »0— »0—» 0—» 0

start final state
state

,,—‘%—’Q ~(2)—,

An NFA accepts (a|b) "abb
, 1o
e Dyéde

Conversion Flow[##37 F2]

e Outline: RE &> NFA - DFA = Table-driven

Implementation

— (3) Converting DFAs to table-driven implementations
- (U Converting REs to NFAs

—~ (2) Converting NFAs to DFAs

Lexical Specification

I
|
I
I
|
|
¥

Regular Express.'ion

O - B B B B S S S B S B S B G B B B B B B G S S S Eae S B B B e e e

S EE EEE E— EEE EEE EEE EEE EEE EEE EEE EEE EEE EE EEn En S EEn mn S EEn mEn S mEn S S mEm S S mae S S mee mem oy

| Table-driven Impl.

automatic

13

_— e o - o o= =

of automata

DFA = Table

* FA can also be represented using transition table

0 iTabIe-driven Code:
' DFA() { I
state = “S”; l
while (Idone) { l
ch = fetch_input();
state = Table[state][ch];] !
if (state == X’ I

print(“reject”);

alphabet if (state € F)

printf(“accept”);
else
printf(“reject”);

state

)

Q: which is/are accepted?
111
000

14 14 001

c|c |

- |- |+ |O

X

More on Table

* Implementation is efficient[F#& & —F = R =2
— Table can be automatically generated

- Need finite memory O(S x)
o Size of transition table

- Need finite time O(input length)
o Number of state transitions

* Pros and cons of table[ZFA& SZHL L %51

— Pro: can easily find the transitions on a given state and input

— Con: takes a lot of space, when the input alphabet is large, yet
most states do not have any moves on most of the input
symbols

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

RE = NFA

* NFA can have s-moves
— Edges labelled with €

- Move from state A to state B without reading any input

* M-Y-T algorithm to convert any RE to an NFA that defines

the same language

- Input: RE r over alphabet
— Output: NFA accepting L(r)

McNaughton-Yamada-Thompson

[
|
I
|
]

P el e e e e e e T T R e]

Regular Expression > DFA —
\

@ Table-driven Impl.
of automata

16

e e o m mm mm m o mm mm m mm e e e e e e e e mm Em o e e = = =

RE = NFA (cont.)

* Step 1: processing atomic REs) £
- € expression[%*] /'@

o iis a new state, the start state of NFA
o fis another new state, the accepting state of NFA

2SSy

- Single character RE a[®#.74F]

AD)——®

7O
(&) F w % 2 17
%@j

TN / SUN YAT-SEN UNIVERSITY

Dhge

RE = NFA (cont.)

* Step 2: processing compound REs[ZH&]
-R=R; | R,

N; :NFA for R,
N, : NFA for R;

Pt
the new and
unique final state

initial state final state
N N .
o e Jor Nyand N,
- R=R,R,
merge : final state of N,
and initial state of N, ‘
initial state (O NI @ N2 O) final state
for 4'\'1 N for J'VZ

“) 18 It rﬂ
N/ s;t Y::}S'ENﬁEﬁ v': LZ

RE = NFA (cont.)

* Step 2: processing compound REs
-R=R;*

initial state
for N, final state

for .'Vl

N;:NFA for R

& A2 \‘ It I
@) tux s 19 Dade

Example

e Convert “(a|b)*abb” to NFA

a

a (m a|b)==> e @
b

b (in a|b)=—> o @

(22 20 I *ﬂ
()T X2 NS b

Example (cont.)

e Convert “(a|b)*abb” to NFA

abb ====>(several steps are omitted)

21 Dhig

Example (cont.)

e Convert “(a|b)*abb” to NFA

(a b)‘abb ——— A

22 Dhig

The Conversion Flow

e Outline: RE &> NFA - DFA = Table-driven

Implementation

- (3) Converting DFAs to table-driven implementations
- (U Converting REs to NFAs

- (2) Converting NFAs to DFAs

Lexical Specification

|
|
I [
| 1
| I
|

I
5 .

Regular Express.'ion

O EE EE EE EEE EEE S S S S S S S B B B B B B B B G S S S Eae mae B B B e e e

G E— EEE E— EEE EEE EEE EEE EEE EEE EE EEE S EE EEE EE EE En EEn mEn mEn S S mEn S S mEn S mam mae S S mee mem

| Table-driven Impl.

automatic

23

e o - o = =

of automata

NFA > DFA: Same[Zh]

* NFA and DFA are equivalent

start final state
state
start b b final state

state el
-
start 9 "‘i__b,
a
a a

To show this we must prove every DFA can be converted into an
NFA which accepts the same language, and vice-versa

24 D

NFA = DFA: Theory[#<# i)

e Question: is L(NFA) € L(DFA)?

— Otherwise, conversion would be futile

* Theorem: L(NFA) = L(DFA)
- Both recognize regular languages L(RE)
— Will show L(NFA) € L(DFA) by construction (NFA = DFA)

— Since L(DFA) € L(NFA), L(NFA) = L(DFA)
_ Any DFA can be easily changed into NFA
* Resulting DFA consumes more memory than NFA

— Potentially larger transition table as shown later

e But DFAs are faster to execute
— For DFAs, number of transitions == length of input
— For NFAs, number of potential transitions can be larger

 NFA = DFA conversion is done because the speed of DFA
far outweighs its extra memory consumption

»‘vi’@“ﬁ

NFA = DFA: Idea

e Algorithm to convert[¥;#t 5 V%]
— Input: an NFA N
— Output: a DFA D accepting the same language as N

* Subset construction[1 £ {4 £]
— Each state of the constructed DFA corresponds to a set of NFA
states
o Hence, the name ‘subset construction’

— After reading input a,0a....a,, the DFA is in that state which
corresponds to the set of states that the NFA can reach, from its
start state, following paths labeled a,a....a,

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

NFA = DFA: Steps

* The initial state of the DFA is the set of all states the NFA
can be in without reading any input

* For any state {q;,q; ,...,qy} of the DFA and any input a, the
next state of the DFA is the set of all states of the NFA
that can result as next states if the NFA is in any of the
states q;,q; ,...,q, when it reads a

— This includes states that can be reached by reading a followed
by any number of e-transitions

— Use this rule to keep adding new states and transitions until it is
no longer possible to do so

* The accepting states of the DFA are those states that
contain an accepting state of the NFA.

@)tk s bl

wsonmsi s/ /web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

