
Compilation Principle
编译原理

第22讲：代码优化(2)
张献伟

xianweiz.github.io
DCS290, 5/23/2023

https://xianweiz.github.io/

Quiz Questions
• Q1: what is 3-phase compilation? Benefits?

• Q2: TAC of x + y * z + 5.

• Q3: is the code SSA? If not, convert it.

• Q4: for the IR of S -> if (B) S1 else S2, where to place ‘goto
S.next’?

• Q5: explain the code.

2

Front-end, IR, back-end. Decouple language from machine (i.e.,
independent). Easy to commonly optimize and to extend.

t1 = y * z; t2 = x + t1; t3 = t2 + 5;

No. x is assigned more than once.
a1 = x * y; if a1 > 5: a2 = z; b = PHI(a1, a2) + 2;

S1.code {goto S.next} else S2.code: skip S2 after executing S1.

i = i + 1:
%5 = i; %6 = i + 1; i = %6

a = x * y;
if a > 5: a = z;
b = a + 2;

Types of Optimizations[分类]

• Compiler optimization is essentially a transformation[转换]
− Delete / Add / Move / Modify something

• Layout-related transformations[布局相关]
− Optimizes where in mem code and data is placed
− Goal: maximize spatial locality[空间局部性]

p Spatial locality: on an access, likelihood that nearby
locations will also be accessed soon

p Increases likelihood subsequent accesses will be faster
• E.g. If access fetches cache line, later access can reuse
• E.g. If access page faults, later access can reuse page

• Code-related transformations[代码相关]
− Optimizes what code is generated
− Goal: execute least number of most costly instructions

3

Focus

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Layout-Related Opt.: Code
• Two ways to layout code for the below example

4

code of f()
code of g()
code of h()

f() {
…
h();
…

}
g() {

...
}
h() {
…

}

code of f()
code of h()
code of g()

OR

Layout-Related Opt.: Code (cont.)
• Which code layout is better?
• Assume

− data cache has one N-word line
− the size of each function is N/2-word long
− access sequence is “g, f, h, f, h, f, h”

5

Layout-Related Opt.: Data
• Change the variable declaration order

• Improved spatial locality
− Now x1 and x3 likely reside in same cache line
− Access to x3 will always hit in the cache

6

struct S {
int x1;
int x2[200];
int x3;

} obj[100];

for(...) {
... = obj[i].x1 + obj[i].x3;

}

struct S {
int x1;
int x3;
int x2[200];

} obj[100];

for(...) {
... = obj[i].x1 + obj[i].x3;

}

Layout-Related Opt.: Data (cont.)
• Change AOS (array of structs) to SOA (struct of arrays)

• Improved spatial locality for accesses to ‘x’s and ‘y’s

7

struct S {
int x;
int y;

} points[100];

for(...) {
... = points[i].x * 2;

}
for(...) {

... = points[i].y * 2;
}

struct S {
int x[100];
int y[100];

} points;

for(...) {
... = points.x[i] * 2;

}
for(...) {

... = points.y[i] * 2;
}

Structure Peeling[结构分离]

8

https://llvm.org/devmtg/2014-10/Slides/Prashanth-DLO.pdf
https://llvm.org/devmtg/2021-02-28/slides/Prashantha-MLIR-LTO.pdf

https://llvm.org/devmtg/2014-10/Slides/Prashanth-DLO.pdf
https://llvm.org/devmtg/2021-02-28/slides/Prashantha-MLIR-LTO.pdf

Code-Related Optimizations
• Modifying code e.g. strength reduction[强度削减]

A=2*a; ≡ A=a«1;
• Deleting code e.g. dead code elimination

A=2; A=y; ≡ A=y;
• Moving code e.g. code scheduling

A=x*y; B=A+1; C=y; ≡ A=x*y; C=y; B=A+1;
(Now C=y; can execute while waiting for A=x*y;)

• Inserting code e.g. data prefetching[数据预取]
while (p!=NULL)
{ process(p); p=p->next; }
≡
while (p!=NULL)
{ prefetch(p->next); process(p); p=p->next; }
(Now access to p->next is likely to hit in cache)

9

Detour: Instruction Scheduling[指令调度]

• Scheduling: act of finding independent instructions
− Static: done at compile time by the compiler (sw)
− Dynamic: done at runtime by the processor (hw)

p Scoreboard, Tomasulo’s algorithm, Reorder Buffer (ROB)

10
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

Detour: Compiler Tech. to Expose ILP
• Scheduling[调度]

− To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be
overlapped in the pipeline[重叠]

− To avoid a pipeline stall, the execution of a dependent inst must
be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[分隔]

• A compiler’s ability to perform the scheduling depends on
− Amount of ILP in the program[程序特性]
− Latencies of the functional units in the pipeline[硬件特性]

• Compiler can increase the amount of available of ILP by
transforming loops[循环转换]

11

Detour: Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations
to be scheduled together[消除分支, 共同调度]

12

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1)
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1)
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

A total of 14 clock cycles
(3.5 cycles per iter)

Detour: Unrolling Limitations[限制]

• The gains from loop unrolling are
limited by

− A decrease in the amount of
overhead amortized with each unroll

p Unrolled 4 times à 8 times: ½ cycle/iter
à ¼ cycle/iter

− Growth in code size caused by
unrolling

p May increase in the inst cache miss rate
p May bring register pressure (more live

values)
− Compiler limitations

p Sophisticated transformations increases
the compiler complexity

13

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Control-Flow Analysis[控制流分析]

• The compiling process has done lots of analysis
− Lexical
− Syntax
− Semantic
− IR

• But, it still doesn’t really know how the program does
what it does
• Control-flow analysis helps compiler to figure out more

info about how the program does its work
− First construct a control-flow graph (CFG), which is a graph of

the different possible paths program flow could take through a
function

p To build the graph, we first divide the code into basic blocks

14

Basic Block[基本块]

• A basic block is a maximal sequence of instructions that
− Except the first instruction, there are no other labels[只第一条入]
− Except the last instruction, there are no jumps[只末一条出]

• Therefore, [进/出口唯一]
− Can only jump into the beginning of a block
− Can only jump out at the end of a block

• Are units of control flow that cannot be divided further
− All instructions in basic block execute or none at all[all or

nothing]

• Local optimizations are limited to scope of a basic block
• Global optimizations are across basic blocks

15

Control Flow Graph[控制流图]

• A control flow graph is a directed graph in which
− Nodes are basic blocks
− Edges represent flow of execution between basic blocks

p Flow from end of one basic block to beginning of another
p Flow can be result of a control flow divergence
p Flow can be result of a control flow merge

− Control statements introduce control flow edges
p e.g. if-then-else, for-loop, while-loop, ...

• CFG is widely used to represent a function
• CFG is widely used for program analysis, especially for

global analysis/optimization

16

Example

17

L1:
t:= 2 * x;
w:= t + y;
if (w<0) goto L3

L2:
...

L3:
w:= -w
...

L1:
t:= 2 * x;
w:= t + y;
if (w<0) goto L3

L2:
…

L3:
w:= -w;
…

yes

no

LLVM CFG

18

• $clang -emit-llvm -S ../tester/functional/027_if2.sysu.c

$opt -dot-cfg 027_if2.sysu.ll [à .main.dot]
http

://
viz-j

s.c
om/

http://viz-js.com/

Construct CFG
• Step 1: partition code into basic blocks[分解为基本块]

− Identify leader instructions that are
p the first instruction of a program, or[首条指令]
p target instructions of jump instructions, or[跳转目标]
p instructions immediately following jump instructions[紧跟跳转]

− A basic block consists of a leader instruction and subsequent
instructions before the next leader

• Step 2: add an edge between basic blocks B1 and B2 if[连
接基本块]

− B2 follows B1, and B1 may “fall through” to B2[相邻]
p B1 ends with a conditional jump to another basic block[若条件假，到达B2]
p B1 ends with a non-jump instruction (B2 is a target of a jump)[无跳转，B1
顺序执行到达B2]

p Note: if B1 ends in an unconditional jump, cannot fall through[B1无条件跳
转，会绕开B2]

− B2 doesn’t follow B1, but B1 ends with a jump to B2[不相邻，但B2
是B1的跳转目标]

19

Example
• Partition code into basic blocks

− Identify leader instructions

• Add edges between basic blocks

20

01: A=4
02: T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt

01: A=4
02: T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt

01: A=4
02: T1=A*B

03. L1: T2=T1/C
04: if (T2<W) goto L2

05: M=T1*K
06: T3=M+1

07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3

10: goto L1

11: L3: halt

o the first instruction of a program, or
o target instructions of jump instructions, or
o instructions immediately following jump instructions

01
03, 07, 11

05, 10, 11

Local and Global Optimizations
• Local optimizations[局部优化]

− Optimizations performed exclusively within a basic block
− Typically the easiest, never consider any control flow info

p All instructions in scope executed exactly once
− Examples:

p constant folding[常量折叠]
p common subexpression elimination[删除公共子表达式]

• Global optimizations[全局优化]
− Optimizations performed across basic blocks

p Scope can contain if / while / for statements
p Some insts may not execute, or even execute multiple times

− Note: global here doesn’t mean across the entire program
p We usually optimize one function at a time

21

Local Optimization: Examples
• Common subexpression elimination[公共子表达式删除]

− Two operations are common if they produce the same result
p It is likely more efficient to compute the result once and reference it the

second time rather than re-evaluate it[避免重复计算]

• Dead code elimination[无用代码删除]
− If an instruction’s result is never used, the instruction is

considered “dead” and can be removed from the instruction
stream[结果从不使用]

22

y = x + z;
y = x * x + (x/3)
z = x * x + y;

y = x + z;
t1 = x * x
t2 = x / 3
y = t1 + t2
t3 = x * x
z = t3 + y;

y = x + z;
t1 = x * x
t2 = x / 3
y = t1 + t2
t3 = x * x
z = t1 + y;

DAG of Basic Blocks
• Many important techniques for local optimization begin

by transforming a BB into a DAG (directed acyclic graph)[
无环有向图]

• To construct a DAG for a BB as follows
− Create a node for each of the initial values of the variables

appearing in the BB[为变量初始值创建节点，叶子]
− Create a node N associated with each statement s within the

block[为声明语句创建节点，中间]
p The children of N are those nodes corresponding to statements that are

the last definitions, prior to s, of the operands used by s
p Label N by the operator applied at s[用运算符标注节点]

− Certain nodes are designated output nodes[某些为输出节点]
p These are the nodes whose variables are live on exit from the block (i.e.,

their values may be used later, in another block of the flow graph)
23

• (3) c = b + c
− b refers to the node labelled ‘-’

p Most recent definition of b

• (4) d = a - d
− Operator and children are the

same as the 2nd statement
p Reuse the node

Example: DAG

24

(1) a = b + c
(2) b = a - d
(3) c = b + c
(4) d = a - d

b0 c0

a+

b–

d0

+
c

,d

• If c is not live on exit from the
block

− No need to keep c = b + c

• If both b and d are live
− Remove either (2) or (4) :

common subexpr elimination
− Add a 4th statement to copy one to

the other

• If only a is live on exit
− Then remove nodes from the DAG

correspond to dead code
p c -> b,d -> d0

− This is actually dead code
elimination

Local Opt.: Elimination

25

(1) a = b + c
(2) b = a - d
(3) c = b + c
(4) d = a - d

b0 c0

a+

b–

d0

+
c

,d

Local Opt.: Elimination (cont.)
• When finding common subexprs,

we really are finding exprs that
are guaranteed to compute the
same value, no matter how that
value is computed[过于严苛]

− Thus miss the fact that (1) and (4)
are the same

p b + c = (b - d) + (c + d) = b0 + c0

• Solution: algebraic identities[代数
恒等式]

26

(1) a = b + c
(2) b = b - d
(3) c = c + d
(4) e = b + c

b0 c0

a+ c+

d0

b–

e+

