WHEHILER (RE&FB)
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

I 19 JR H

$H229F: AAEIC(2)
i NGE

xianweiz.github.io
DCS290, 5/23/2023

B

https://xianweiz.github.io/

/

Quiz Questions [QUIZ)

* Q1: what is 3-phase compilation? Benefits?
Front-end, IR, back-end. Decouple language from machine (i.e.,
independent). Easy to commonly optimize and to extend.

e Q2: TACof x+y *z+5.
ti=y*zt,=x+t;t;=t, +5;

* Q3: is the code SSA? If not, convert it. a=x*y;
No. x is assigned more than once. gi:i; -
a,=x*y;ifa;>5:a,=2;b=PHl(ay, a,) + 2; '

* Q4: forthe IR of S ->if (B) S, else S,, where to place ‘goto
S.next’?
S,.code {goto S.next} else S,.code: skip S, after executing S,.

* Q5: explain the code. %5 = load 132, i32% @i, align 4
i=i+1: %6 = nsw i32 %5, 1

) . i store 132 %6, 132% @i, align 4
%5 =i;%6=i+1;i=%6

‘ e f

Types of Optimizations[4r2]

» Compiler optimization is essentially a transformation[#%#:]

- Delete / Add / Move / Modify something /_S"“rc‘ic"de ,,,,,,
* Layout-related transformations[fi J& <] [texealnaleee]
— Optimizes where in mem code and data is placed Syntax Analysis
. . . . N >, . Syntax Tree|
— Goal: maximize spatial locality[=q] 5 &5 1H] W T
o Spatial locality: on an access, likelihood that nearby o SyntaxTree|
locations will also be accessed soon 1 intermediate

o Increases likelihood subsequent accesses will be faster COtlE ?Re“eratm”

y

e E.g. If access fetches cache line, later access can reuse

: Optimization
* E.g. If access page faults, later access can reuse page R]
i > S | Code Generati
* Code-related transformations[fUigfH%] = e
— Optimizes what code is generated o TergetCode

— Goal: execute least number of most costly instructions

Layout-Related Opt.: Code

* Two ways to layout code for the below example

f() {
-H.();

}
g() {

code of f()

code of g()

code of h()

OR

code of f()

code of h()

code of g()

Mﬂ?

Layout-Related Opt.: Code (cont.)

 Which code layout is better?

* Assume
— data cache has one N-word line
— the size of each function is N/2-word long
— access sequence is “g, f, h, f, h, f, h”

cache .
6 cache misses
Y Y Y Y VYY
code of f() code of g()
g,f,h,f,h,f,h
code of h() A A
2 cache misses
code of f() code of h()
code of g()
S)Tux s 5

M‘E?

Layout-Related Opt.: Data

* Change the variable declaration order

struct S { struct S {
int x1; int x1;
int x2[200]; int x3;
int x3; int x2[200];
} 0bj[100]; } obj[100];
for(...) { for(...) {
... = 0obj[i].x1 + obj[i].x3; ... = 0bj[i].x1 + obj[i].x3;
} }

* Improved spatial locality

— Now x1 and x3 likely reside in same cache line
— Access to x3 will always hit in the cache

»»’:ﬁ%

Layout-Related Opt.: Data (cont.)

* Change AOS (array of structs) to SOA (struct of arrays)

struct S { struct S {

int x; int x[100];

inty; int y[100];
} points[100]; } points;
for(...) { for(...) {

... = points[i].x * 2; ... = points.x[i] * 2;
} }
for(...) { for(...) {

... = pointsl[il.y * 2; ... = points.y[i] * 2;
} }

* Improved spatial locality for accesses to ‘x’s and ‘y’s

».‘:GLZ

Structure Peeling[45#)4> &]

struct S {
int A; A,C — Hot fields
e B B - Cold field
T I

};

Peeled structures:

struct S.Hot { struct S.Cold {
int A; int B;
int C; ¥

¥

https://llvm.org/devmtg/2014-10/Slides/Prashanth-DLO.pdf
https://llvm.org/devmtg/2021-02-28/slides/Prashantha-MLIR-LTO.pdf

AN ‘
() F b K 8 M{SICI C L2
G Ty U SUN YAT-SEN UNIVERSITY u&

https://llvm.org/devmtg/2014-10/Slides/Prashanth-DLO.pdf
https://llvm.org/devmtg/2021-02-28/slides/Prashantha-MLIR-LTO.pdf

Code-Related Optimizations

* Modifying code e.g. strength reduction[5% & Bl k]
A=2*a; A=a«l;

* Deleting code e.g. dead code elimination
A=2; A=y; = A=y;

* Moving code e.g. code scheduling

A=x*y; B=A+1; C=y; = A=x*y; C=y; B=A+1,
(Now C=y; can execute while waiting for A=x*y;)
* Inserting code e.g. data prefetching[%3 T

while (p!=NULL)
{ process(p); p=p->next; }

while (p!=NULL)
{ prefetch(p->next); process(p); p=p->next; }

(Now access to p->next is likely to hit in cache)

(e 2 ||
‘\“ s;tmgs‘mvﬁnﬁ 9 " Hhﬂ LZ

Detour: Instruction Scheduling[45 4k

e Scheduling: act of finding independent instructions
— Static: done at compile time by the compiler (sw)

— Dynamic: done at runtime by the processor (hw)
o Scoreboard, Tomasulo’s algorithm, Reorder Buffer (ROB)

Static Scheduling Dynamic Scheduling

Application Application
0S 0S
Compiler Firmware Compiler Firmware
———————————————————— = ————————————————————— =
CPU 1/0 CPU 1/0

Memory Memory

Digital Circuits Digital Circuits

Gates & Transistors Gates & Transistors

f
https://acg.cis.upenn.edu/miIom/mini—couJSeQMarch—2013/|ectures/08 scheduling.pdf u" GELZ
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

Detour: Compiler Tech. to Expose [LP

* Scheduling[fJF]
— To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be

overlapped in the pipeline[EZ]
— To avoid a pipeline stall, the execution of a dependent inst must

be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[/) %]

* A compiler’s ability to perform the scheduling depends on

— Amount of ILP in the program[f& /5514
— Latencies of the functional units in the pipeline[f# 445]

 Compiler can increase the amount of available of ILP by
transforming loops[f& ¥ #t]

= Dhg:

Detour: Loop Unrolling[1&f & T

* Simply replicates the loop body multiple times, adjusting
the loop termination code[& fill->1H %]
— Increases the number of insts relative to the branch and
overhead insts[3¥% G #3544k
- Eliminates branches, thus allowing insts from different iterations
to be scheduled together[#4 %> 32, JL [%]

Loop: fld fo, 0(x1) Loop: fld fo, 0(x1)
fadd.d f4, f0, f2 fld 6, -8(x1)
fsd f4, 0(x1) fld fo, -16(x1)
fld 6, -8(x1) fld f14, -24(x1)
fadd.d f8, f6, f2 fadd.d f4, f0, f2
fsd f8, -8(x1) fadd.d f8, 6, f2 A total of 14 clock cycles
fld fo, -16(x1) fadd.d f12, fO, f2 (3.5 cycles per iter)
fadd.d f12, fO, f2 fadd.d f16, f14, f2
fsd f12, -16(x1) fsd f4, 0(x1)
fld f14, -24(x1) fsd f8, -8(x1)
fadd.d f16, f14, f2 fsd f12, -16(x1)
fsd f16, -24(x1) fsd f16, -24(x1)
addi x1, x1, -32 addi x1, x1, -32

bne x1, x2, loop bne x1, x2, loop »i‘ﬁ‘z

Detour: Unrolling Limitations[pE 4]

* The gains from loop unrolling are
limited by
— A decrease in the amount of
overhead amortized with each unroll

o Unrolled 4 times = 8 times: % cycle/iter
- % cycle/iter

— Growth in code size caused by
unrolling
o May increase in the inst cache miss rate

o May bring register pressure (more live
values)

— Compiler limitations

o Sophisticated transformations increases
the compiler complexity

7
() F b X % 13
%@j

/ SUN YAT-SEN UNIVERSITY

Loop: fld

fld

fld

fld
fadd.d
fadd.d
fadd.d
fadd.d
fsd

fsd
fsd
fsd
addi
bne

fO, O(x1)

f6, -8(x1)
fo, -16(x1)
f14, -24(x1)
f4, fO, f2

f8, f6, 2
f12, fo, f2
fie, f14, f2
f4, 0(x1)

f8, -8(x1)
f12, -16(x1)
f16, -24(x1)
x1, x1, -32
x1, x2, loop

M‘ﬂ‘f

Control-Flow Analysis{# #1454

* The compiling process has done lots of analysis

store i32 0, i32* %1, align 4
store i32 3, i32* @a, align 4

. %2 = load 132, i32* @a, align 4

_ LeX|Ca| % = icmp sgt 32 %2, 0

bril %3, label %4, label %5

(T I F)
y %4 %5:
4 L
. store 132 1,132* %1, align 4 store 132 0, 132* %1, align 4

_ Se Mmahntic br label %6 br label %6

%6:
— IR :

‘%7 = load i32, i32* %1, align 4
ret i32 %7

* But, it still doesn’t really know how the program does
what it does

* Control-flow analysis helps compiler to figure out more
info about how the program does its work

— First construct a control-flow graph (CFG), which is a graph of
the different possible paths program flow could take through a
function

o To build the graph, we first divide the code into basic blocks

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ }' GG [Z

Basic Block[3: A<t

* A basic block is a maximal sequence of instructions that
— Except the first instruction, there are no other labels[H 55— \]
- Except the last instruction, there are no jumps[2 K —2%]

* Therefore, [t/ H I ME—]
— Can only jump into the beginning of a block
— Can only jump out at the end of a block

* Are units of control flow that cannot be divided further

— All instructions in basic block execute or none at all[all or
nothing]

* Local optimizations are limited to scope of a basic block
* Global optimizations are across basic blocks

»Q‘GLZ

Control Flow Graph{#zsii &)

* A control flow graph is a directed graph in which
— Nodes are basic blocks

- Edges represent flow of execution between basic blocks
o Flow from end of one basic block to beginning of another
o Flow can be result of a control flow divergence
o Flow can be result of a control flow merge

%0:

%1 = alloca 132, align 4

store i32 0, i32* %1, align 4
store 32 3, i32* @a, align 4
%2 = load 132, i32* @a, align 4

— Control statements introduce control flow edges -

T [F
[)
o e.g. if-then-else, for-loop, while-loop, ... ‘ ’
N
* CFG is widely used to represent a function

* CFG is widely used for program analysis, especially for
global analysis/optimization

MG‘Z

Example

L1:
t:i=2 *x;
L1: w=t+y,
fi= 2 * x; if (w<0) goto L3

wi=t+y; \
if (w<0) goto L3

L2: L2:

W:i=-W L

R
(2) "
A)
Ty U SUN YAT-SEN UNIVERSITY

B

LLVM CFG

* Sclang -emit-llvm -S ../tester/functional /027 _if2.sysu.c

%S5

D2

store 132 0,132* %1, align 4
br label %6

@a = dso_local global i32 @, align 4 1 int a;
define dso_local i32 @Emain() { 2 int main(){
%1 = alloca i32, align &4 3 a = 10;
store i32 0, i32% %1, align 4 4 1f(a>»>0){
store i32 10, i32x @a, align 4 5 return 1;
%2 = load 132, i32% Qa, align 4 = }
%3 = icmp sgt 132 %2, ©
br i1 %3, label %&, label %5 7 elsef{
8 return 9;
4: 9 }
store 132 1, i32% %1, align 4 10 }
br label %6
5:
store i32 0, i32% %1, align &4 P04
br label %6 4:
store 132 1,i32* %1, align 4
6: . . . br label %6
%7 = load 132, 132% %1, align 4
ret i32 %7
}

Sopt -dot-cfg 027_if2.sysu.ll [> .main.dot]

digraph "CFG for 'main' function" {
label="CFG for 'main' function";

Node@x2a784a90 [shape=record,color="#b70d28ff", style=filled, fillcolor="#b
70d2870",label="{%0:\1 %1 = alloca i32, align 4\1 store i32 @, i32% %1, align 4\l
store i32 10, i32% @a, align 4\1 %2 = load i32, i32x Qa, align 4\1 %3 = icmp sg

t i32 %2, O\1 br il %3, label %4, label %5\1|{<s@>T|<s1>F}}"];

Node@x2a784a90:s0 -> Node®x2a784c70;

Node@x2a784a90:s1 —-> Node@x2a784ccO;

Node@x2a784c7@ [shape=record,color="#b70d28ff", style=filled, fillcolor="#e
8765¢70",label="{%4:\14: \1 store i
32 1, i32% %1, align 4\1 br label %6\1}"];

Node®x2a784c70 -> Node@x2a784e50;

Node@x2a784cc@ [shape=record,color="#3d50c3ff", style=filled, fillcolor="#f
7b39670",label="{%5:\15: \1 store i
32 @, 132% %1, align 4\1 br label %6\1}"];

Node@x2a784cc@ -> Node@x2a784e50;

Node@x2a784e50 [shape=record,color="#b70d28ff", style=filled, fillcolor="#b
70d2870",label="{%6:\16: \1 %7 = lo
ad 132, i32% %1, align 4\1 ret i32 %7\1}"];

}

18

CFG for 'main' function

http://viz-js.com/

Construct CFG

 Step 1: partition code into basic blocks[43 fif FE A B

- ldentify leader instructions that are
o the first instruction of a program, or[#4454
o target instructions of jump instructions, or[Bk#% H#x]
o instructions immediately following jump instructions['% iR Bk#%]

— A basic block consists of a leader instruction and subsequent
instructions before the next leader

* Step 2: add an edge between basic blocks B1 and B2 if[i%
R YN
- B2 follows B1, and B1 may “fall through” to B2[#H%F]

o B1 ends with a conditional jump to another basic block[#& %1, #iiAB2]

o B1 ends with a non-jump instruction (B2 is a target of a jump)[EBk#%, B1
N7 AT F] i B2]

o Note: if B1 ends in an unconditional jump, cannot fall through[B1 7414 Bk
¥, &5¢91B2]

- B2 doesn’t follow B1, but B1 ends with a jump to B2[&#f45, {HB2
7B BkEE H Fr]

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ }' GG [Z

Example

e Partition code into basic blocks 01: A=4

- ldentify leader instructions

* Add edges between basic blocks

01: A=4

02: T1=A*B

03. L1: T2=T1/C

04: if (T2<W) goto L2
05: M=T1*K

06: T3=M+1

07: L2: H=I

08: M=T3-H

09: if (T3>0) goto L3
10: goto L1

11: L3: halt

02: T1=A*B
’

2

03. L1: T2=T1/C

04: if (T2<W) goto L2
|

o the first instruction of a program, or 01
o target instructions of jump instructions, or 03, 07, 11
o instructions immediately following jump instructions

I , 05, 19, 11
07: L2: H=l
08: M=T3-H
09: if (T3>0) goto L3
|
'
10: goto L1 —
'
11: L3: halt r
20 Dhg:

Local and Global Optimizations

* Local optimizations[Jm#i44]
— Optimizations performed exclusively within a basic block

- Typically the easiest, never consider any control flow info
o All instructions in scope executed exactly once
- Examples:

o constant folding[# &1 5]
o common subexpression elimination[M A3t 7&Kz]

* Global optimizations[4:RifltiL]

— Optimizations performed across basic blocks
o Scope can contain if / while / for statements
o Some insts may not execute, or even execute multiple times

- Note: global here doesn’t mean across the entire program
o We usually optimize one function at a time

»Q‘GLZ

Local Optimization: Examples

 Common subexpression elimination[/A 313 1& =X 5]

— Two operations are common if they produce the same result

o Itis likely more efficient to compute the result once and reference it the
second time rather than re-evaluate it[i## % & & 11 5]

* Dead code elimination[JC AL FR]

— If an instruction’s result is never used, the instruction is
considered “dead” and can be removed from the instruction
streami4s & W AE]

y=x+z; =tz
V=X+12: t; =x*x t,=x*x
y=x*x’+(x/3) t,=x/3 t,=x/3
Z=X*X+Y; y=4 +1 y=4 +1
t;=Xx*Xx £y=Ex
z=13+Y, z=1+Yy;

DAG of Basic Blocks

* Many important techniques for local optimization begin

by transforming a BB into a DAG (directed acyclic graph)|
T 1) E]]

* To construct a DAG for a BB as follows

— Create a node for each of the initial values of the variables
appearing in the BBOYER=EWIIGEANE W &L, M1

— Create a node N associated with each statement s within the
block[47 BHiER]BIE T &, HH[E]]

o The children of N are those nodes corresponding to statements that are
the last definitions, prior to s, of the operands used by s

o Label N by the operator applied at s[fig &7 briE" A
— Certain nodes are designated output nodes[3: L A H 5 1]

o These are the nodes whose variables are live on exit from the block (i.e.,
their values may be used later, in another block of the flow graph)

() Nl

Example: DAG

*(3)c=b+c (1)a=b+c
— b refers to the node labelled ‘- (2)b=a-d
o Most recent definition of b (3)c=b+c
(4)d=a-d

*(4)d=a-d

— Operator and children are the
same as the 2"d statement
o Reuse the node

&)t 24 1
iYAT-SEN&EI:;% " Hh LZ

Local Opt.: Elimination

* If cis not live on exit from the (1)a=b+c
block (2)b=a-d
- No needto keepc=b+c (8)c=b+c
(4)d=a-d

* If both b and d are live
- Remove either (2) or (4) :
common subexpr elimination

— Add a 4t statement to copy one to
the other

* If only a is live on exit
— Then remove nodes from the DAG
correspond to dead code
o c->b,d->d,
— This is actually dead code
elimination

Local Opt.: Elimination (cont.)

* When finding common subexprs, (1)a=b+c
we really are finding exprs that (2)b=b-d
are guaranteed to compute the (3)c=c+d

(4)e=b+c

same value, no matter how that
value is computed[id T ™ #f]

— Thus miss the fact that (1) and (4)
are the same

ob+c=(b-d)+(c+d)=by+c,

* Solution: algebraic identities[{t%k
EE Y

