WHEHILER (RE&FB)
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

I 19 JR H

239 ARSI (3)
i NGE

xianweiz.github.io
DCS290, 5/30/2023

B

https://xianweiz.github.io/

Review Questions

e Q1: what is a Basic Block?

A straight-line sequence of code with only one
entry point and only one exit.

* Q2: how to partition code into BBs?

|dentify leader insts; a BB consists of a leader
inst and subsequent insts before next leader.

e Q3: CFG of the listed code? B
B2 B3

B4
* Q4: Global vs local optimization?

Across BBs vs. single BB.

* Q5: Usage of DAG?

w=0

y=0

X=X+Yy

if x> z: goto L1
y=12

Z ++

goto L2

Y =X

X ++

L2: wW=X+12

Directed acyclic graph of a BB to identify local optimizations.

—B1

MG‘Z

Local Opt.: Elimination

* If cis not live on exit from the (1)a=b+c
block (2)b=a-d
- Noneedto keepc=b+c (8)c=b+c
(4)d=a-d

* If both b and d are live
- Remove either (2) or (4) :
common subexpr elimination

— Add a 4t statement to copy one to
the other

* If only a is live on exit
— Then remove nodes from the DAG
correspond to dead code
o c->b,d->d,
— This is actually dead code

elimination
[
@ Tux% ’ IR

Local Opt.: Elimination (cont.)

* When finding common subexprs, (1)a=b+c
we really are finding exprs that (2)b=b-d
are guaranteed to compute the (3)c=c+d

(4)e=b+c

same value, no matter how that
value is computed[id T ™ #f]

— Thus miss the fact that (1) and (4)
are the same

ob+c=(b-d)+(c+d)=by+c,

* Solution: algebraic identities[{t%k
EE Y

Local Opt.: Algebraic ldentities[ft&fE 7 5]

* Eliminate computations by applying mathematical rules]
5 FH 20 F0
— Identities:a*1=a,a*0=0,b &true=b

— Reassociation and commutativity[E 414 . 28]
o(a+b)+c=a+(b+c),a+b=b+a

e Strength Reduction[% % H]
— Replacing expensive operations (multiplication, division) by less
expensive operations (add, sub, shift)

— Some ops can be replaced with cheaper ops

- Examples
o X=y/8 --> x=y»3
o y=y*8 --> x=y«3
o X2-->X*X
o 2*X-->x+X

@tuxs IR

Local Opt.: Constant Folding[# & &]

* Constant Folding
— Computing operations on constants at compile time
- Example:

#define LEN 100
X=2*LEN;
if (LEN < 0) print(”error”);

— After constant folding

x = 200;
if (false) print(”error”);

— Dead code elimination can further remove the above if
statement

- Inherently local since scope limited to statement

6 b G
\"J 5;*1; Yﬂnl\;ﬁuﬁ ﬂ' Hh LZ

Local Opt.: Constant Propagation[# &A% #]

e Constant Propagation
— Substituting values of known constants at compile time
- Local Constant Propagation (LCP)
X=3; X =3; X =3;
y=x*2; y=3%2; y=6;
* Some optimizations have both local and global versions
— Global Constant Propagation (GCP)

a=1; a=1; a=1;
X=3; X=3; X=3;
if (...) if (...) if (...
X=a+2; x=1+2; X=3;
y=X; y=X; y=3;

— GCP more powerful than LCP but also more complicated
o Must determine x is constant across all paths reaching x

() Nl

Global Optimizations

* Extend optimizations to flow of control, i.e. CFG
— Along all paths, the last assignment to X is “X=C"
— Optimization must be stopped if incorrect in even one path

X=3; X=3;
if (B>0) if (B>0)

MG‘Z

Global Opt.: Conservative|[#Ff#5¥]

 Compiler must prove some property X at a particular
point
- Need to prove at that point property X holds along all paths

- Need to be conservative to ensure correctness
o An optimization is enabled only when X is definitely true
o If not sure if it is true or not, it is safe to say don’t know
o If analysis result is don’t know, no optimization done
o May lose opt. opportunities but guarantees correctness

* Property X often involves data flow of program

- E.g. Global Constant Propagation (GCP):
X=17;

Y =X+ 3; // Does value of 7 flow into this use of X?
- Needs knowledge of data flow, as well as control flow
o Whether data flow is interrupted between points A and B

@tuxs IR

Global Opt.: Data Flow[##E i)

* Most optimizations rely on a property at given point
— For Global Constant Propagation (GCP):
A=B+C;// Property: {A=?, B=10, C=?}
— After optimization:
A=10+C;

* For this discussion, let’s call these properties values

* Dataflow analysis: compiler analysis that calculates values for
each point in a program
— Values get propagated from one statement to the next
— Statements can modify values (for GCP, assigning to variables)
- Requires CFG since values flow through control flow edges

* Dataflow analysis framework: a framework for dataflow
analysis that guarantees correctness for all paths

— Does not traverse all possible paths (could be infinite)
— To be feasible, makes conservative approximations

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ }' GG [Z

Global Constant Propagation (GCP)

* Let’s apply dataflow analysis to compute values for GCP
- Emulates what human does when tracing through code

* Let’s use following notation to express the state of a var:

- x="*: not assigned (default)
- x=1, x=2, ...: assigned to a constant value
— x=#: assigned to multiple values

 All values start as x=* and are iteratively refined
— Until they stabilize and reach a fixed point

* Once fixed point is reached, can replace with constants:
- x="*: replace with any constant (typically 0)
- x=1, x=2, ...: replace with given constant value
— x=#: cannot do anything

() Nl

Example

* In this example, constants can be propagated to X+1, 2*X

e Statements visited in reverse postorder (predecessor first)

x=*: not assigned (default)
x=1, x=2, ...: assigned to a constant value

x=#: assigned to multiple values
12

ME“‘

Example (cont.)

* Once constants have been globally propagated, we would
like to eliminate the dead code

X=3; =2
if (B>0) if (8>0)
Y=Z2+W, Y=0; Y=Z2+W, Y=0;
X =4; X=X+1 \/
A:Z*X; A=2*4;
4

13 Dhge

IR Optimization of LLVM

C x86
. Front-end
C++ —» Clang ARM
Middle-end Back-end
Go —p{ Gollvm \ adieen ac er///' RISC-V
\\ -
LLVM IR —{ LLVM optimizer » LLVM IR —{ LLVM static compiler
//' T
Rust — rustc I \ MIPS
Toy - -4 >: toyc : PowerPC
| |
Clang
3 Opt
Source ¢/C P " _ Executable
front — IR Pass, —>IR,— .. > Pass, >IR3 llc >
code end code
(o) F b X % 14 lim
S;me—m""”m'" https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation o :

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

LLVM Optimization Flags

* O0: no optimization
— Compiles the fastest and generates the most debuggable code

e O1: somewhere between O0 and 02

* 02: moderate level of optimization enabling most
optimizations

e 03: like O2,

— except that it enables opts that take longer to perform or that
may generate larger code (in an attempt to make the program
run faster)

* Os: like O2 with exta opts to reduce code size
e Oz: like Os, but reduce code size further

* O4: enables link-time opt Clang has support for 04, but
not opt

\ ’hﬁ
Book: Getting Started with LLVM Core Libraries, C5 4 z

Execution time(LLVM) / Execution time(GCC)

Performance at Varyi

ng Flags

=
(&)

=
o

0.5

Compare the performance of the benchmark when
compiled with either GCC or LLVM

— Compile benchmark at six optimization levels

— Each workload was run 3 times with each executable on the

Intel Core i7-2600 machines

I

Optimization level

=
N

.
o

o
@

o
>

o
N

Instruction count(LLVM) / Instruction count(GCC)
o
[e)]

©
o

03 -Os -Ofast

16

-00 01 -02 -03 -Os -Ofast
Optimization level

i
¥ https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2 report.html#x1-12003r1 wi

https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html

LLVM Passes

e Optimizations are implemented as Passes that traverse
some portion of a program to either collect information
or transform the program

* A Pass receives an LLVM IR and performs analyses and/or
transformations

— Using opt, it is possible to run each Pass

* A Pass can be executed in a middle of compiling process
from source code to binary code

— The pipeline of Passes is arranged by Pass Manager

Clang
Source C/Ct+ - Executable
front = IR Pass, —>IR,—> .. > Pass, IR > lic >
code end code

‘ e (

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

LLVM Passes (cont.)

* Analysis passes: compute info that other passes can use
or for debugging or program visualization purposes

- -memdep: Memory Dependence Analysis

(https://llvm.org/doxygen/MemDepPrinter 8cpp_source.html)

— -instcount: Counts the various types of Instructions

(https://llvm.org/doxygen/InstCount_8cpp_source.html)

= .. (https://llvm.org/doxygen/dir a25db018342d3ae6c7e6779086c18378.html)

* Transform passes: can use (or invalidate) the analysis
passes, all mutating the program in some way
— -dce: Dead Code Elimination (ws.//ivm.ore/doxyeen/oce seop source.htmi)
— -loop-unroll: Unroll l00ps ihtws://ivm.ore/doxyeen/toopunrolipass scop source htmi)

= +e. (https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html)

 Utility passes: provides some utility but don’t otherwise
fit categorization

- -view-cfg: View CFG of function

‘ e 18 f E

https://www.llvm.org/docs/Passes.html

https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html
https://llvm.org/doxygen/InstCount_8cpp_source.html
https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html
https://llvm.org/doxygen/DCE_8cpp_source.html
https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html
https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html
https://www.llvm.org/docs/Passes.html

Example

* Sclang -emit-llvm -S sum.c

int sum(int a, int b) {
return a + b;

}

e Sopt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.lI

Pass Arguments: -targetlibinfo -tti -targetpassconfig -assumption-cache-tracker |-domtree -mem2regl—verify —-print-module

Target Library Information
Target Transform Information
Target Pass Configuration
Assumption Cache Tracker
ModulePass Manager
FunctionPass Manager

Dominator Tree Construction
Promote Memory to Register

Module vVeriftier
Print Module IR

Sopt sum.ll -debug-pass=Structure -O1 -S -0 sum-0O1.lI
Sopt sum.ll -time-passes -O1 -0 sum-tim.|I

e Sopt sum.ll -time-passes -mem2reg -o sum-tim.ll

. Pass execution timing report ...

Total Execution Time:

0.0003 seconds (0.0003 wall clock)

——-User Time--- --System Time--
0.0002 (91.1%) 0.0001 2%)
0.0000 (3.7%) 0.0000 (.5%)
0.0000 (2.3%) 0.0000 (.3%)
0.0000 (2.3%) 0.0000 (.3%)
0.0000 (0.5%) 0.0000 (.8%)
0.0002 (100.0%) 0.0001 (.0%)

——User+System—-
0.0003 8%)
0.0000 .0%)
0.0000 .3%)
0.0000 .3%)
0.0000 .6%)
0.0003 .0%)

——-Wall Time---
0.0003 (90.6%)
0.0000 (3.7%)
0.0000 (2.8%)
0.0000 (2.4%)
0.0000 (0.6%)
0.0003 (100.0%)

-—— Name —--—-

Bitcode Writer

Module Verifier

Dominator Tree Construction
Promote Memory to Register
Assumption Cache Tracker
Total

LLVM IR Parsing

Total Execution Time:

F b K %

ey v SUN YAT-SEN UNIVERSITY

0.0006 seconds (0.0006 wall clock)

19
Book: Getting Started with LLVM Core Libraries, C5

Compilation

Zm E R B

WHEHILER (RE&FB)
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Principle

NINGE

237k HARURSAE (L)

5

xianweiz.github.io

DCS290, 5/30/2023

B

https://xianweiz.github.io/

Target Code Generation[H ##CH54:

* What we have now

— Optimized IR of the source program
o And, symbol table

* Target code

- Binary (machine) code
- Assembly code

* Goals of target code generation

— Correctness: the target program must
preserve the semantic meaning of the
source program

- High-quality: the target program must
make effective use of the available
resources of the target machine

— Fast: the code generator itself must
runs efficiently

A

() F b X % 21
\“‘

Ny 4 SUN YAT-SEN UNIVERSITY

Source Code

Lexical Analysis

’ l N
’ \
/ \
! v
I 1
1 1
'

- Token Stream|

Syntax Analysis

Syntax Tree"

Semantic Analysis

Syntax Tree

Intermediate
Code Generation

TTozizzzzzziizios W oIoooooIIIiiis -

IR
A

y

Optimization

IR
A

y

Code Generation

v

Target Code

Front End
. (Analysis)

Back End

(Synthesis)

Mﬂ?

src =2 IR =2 exe: Example

+- @: input, "test@.c", c

3 }nt G =iy +- 1: preprocessor, {0}, cpp-output
> }nt Vi =i +- 2: compiler, {1}, ir
3 1nt z = 3; +- 3: backend, {2}, assembler
+- 4: assembler, {3}, object
5 int main() { 5: linker, {4}, image

int rst = x +y + z;

return rst;

Sclang -emit-llvm -S -O1 asm_test.c

@x = dso_local local_unnamed_addr global i32 1, align 4
@y = dso_local local_unnamed_addr global 132 2, align 4
@z = dso_local local_unnamed_addr global 132 3, align 4

; Function Attrs: norecurse nounwind readonly
define dso_local i32 @main() local_unnamed_addr #0 {

%1 = load 132, i32% @x, align 4, !tbaa !2
%2 = load 132, 132% Qy, align 4, !tbaa !2
%3 = add nsw 132 %2, %1
%4 = load 132, i32% @z, align 4, !tbaa !2
%5 = | nsw 132 %3, %4

s e Sllvm-as asm_test.ll -0 asm_test.bc
} Slic -filetype=0bj asm_test.bc -0 asm_test.o
Sclang asm_test.o -0 asm_test

O
X # >, I e

U SUN YAT-SEN UNIVERSITY w

IR = asm: Example

07 = tsc- Loa1 TocaL imnansd addx SISHEL 132 5. slined 0000000000000000 <main>:
@z = dso_local local_unnamed_addr global i32 3, align 4 0: 20000008 adrp x8, © <main>
; Function Attrs: norecurse nounwind readonly 4: 90000009 adrp X9' 4 <main+eX4>
define dso_local i32 @main() local_unnamed_addr #0 { 8: b9400108 ldr w8, [x8]
%1 = load i32, i32% @x, align 4, !tbaa !2 N
%2 = load 132, i32x @y, align 4, !tbaa !2 Gate 9400129 ldr w9, [x91] .
%3 = nsw 132 %2, %1 10: 9000000a adrp X190, 8 <main+0x8>
%4 = load 132, 132% @z, align 4, !tbaa !2 14 b940014a 1ldr wle, [x10]
%5 = add nsw 132 %3, %&4
ret i32 %5 18: 0b080128 add w8, w9, w8
} 1c: 0b0a0100 add wo, w8, wlo
20: d65f03co ret
Sllvm-as asm_test.ll -o asm_test.bc A Sobjdump -d asm_test.o

Slic -filetype=obj asm_test.bc -0 asm_test.o

o .
Sclang asm_test.o -0 asm_test m Sobjdump -d asm_test

0000000000400574 <main>:

400574 b0000088 adrp X8, 411000 <__libc_start_main@PGLIBC_2.17>
400578 b0000089 adrp X9, 411000 <__libc_start_main@PGLIBC_2.17>
40057c: b9402908 1dr w8, [x8, #40]

400580 b9402d29 1dr w9, [x9, #44]

400584 : b000008a adrp x10, 411000 <__libc_start_main@GLIBC_2.17>
400588 b940314a 1dr wlo, [x10, #48]

40058c: 0b080128 add w8, w9, w8

400590: 0b0a0100 add wo, w8, wlo

400594 d65f03co ret

400598: d503201f nop

40059c: d503201f nop

STt 23 IR

ARM vs. X86: IR

; ModuleID = 'asm_test.c'

source_filename = "asm_test.c"

target datalayout = "e-m:e-18:8:32-116:16:32-164:64-1128:128-n32:64-5128"
target triple = "aarché4-unknown-linux-gnu"

@x = dso_local local_unnamed_addr global i32 1, align 4

@y = dso_local local_unnamed_addr global i32 2, align 4

@z = dso_local local_unnamed_addr global i32 3, align 4

ARM

; Function Attrs: norecurse nounwind readonly
define dso_local i32 @®main() local_unnamed_addr #0 {

%1 = load i32, i32% @x, align 4, !tbaa !2
%2 = load 132, i32% @y, align 4, !tbaa !2
%3 = add nsw 132 %2, %1
%4 = load 132, 132% @z, align 4, !tbaa !2
%5 = add nsw 132 %3, %4

ret 132 %5
}

; ModuleID = 'asm_test.c'

source_filename = "asm_test.c"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-180:128-n8:16:32:64-5128"
target triple = "x86_64-pc-1linux—-gnu"

@x
Qy

X86 | @

; Function Attrs: norecurse nounwind readonly uwtable
define dso_local i32 @main() local_unnamed_addr #0 {

dso_local local_unnamed_addr global i32 1, align 4
dso_local local_unnamed_addr global i32 2, align 4
dso_local local_unnamed_addr global i32 3, align 4

%1 = load i32, i32% @x, align 4, !tbaa !2
%2 = load i32, i32% @y, align 4, !tbaa !2
%3 = add nsw i32 %2, %1

%4 = load i32, i32% @z, align 4, !tbaa !2
%5 = add nsw i32 %3, %4

ret i32 %5

SUN YAT-SEN UNIVERSITY

(D) Tk,

ARM vs. X86: assembly

ARM

X86

asm_test.o: file format elfé64-littleaarchés

Disassembly of section .text:

0000000000000000 <main>:

0: 90000008 adrp X8, © <main>
4: 90000009 adrp X9, 4 <main+0x4>
8: b9400108 ldr w8, [x8]
[0 b9400129 ldr w9, [x9]
10: 9000000a adrp x10, 8 <main+0x8>
14: b940014a ldr wle, [x1e]
18: 0b080128 add w8, w9, w8
1c: 0b0a0100 add wo, w8, wle
20: d65f03co ret
asm_test.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <main>:
0: 8b 05 00 00 00 00
6: 03 05 00 00 00 00
c: 03 05 00 00 00 00
12: c3

F b K %

U SUN YAT-SEN UNIVERSITY

mov 0x0(%rip) ,%eax
add 0x0(%rip) ,%eax
add 0x0(%rip) ,%eax
retq

25

6 <main+0x6>
¢ <main+0@xc>
12 <main+@x12>

Assembly vs. Assembler

* Assembly language: a programming language that is
close to machine language but not the same
- Symbolic representation of a computer’s binary machine
language
e Assembler: a program (a mini-compiler) that translates
assembly language into real machine code (long
sequences of Os and 1s)

— Translate commands in assembly language like addi t3 t6 t8 into
machine code

— Convert symbolic addresses such as main or loop into machine
addresses such as 100011010011010011010011010101001.
This task is sometimes deferred to the linker

"""""""" 01101101
"""""""" 11000110
| — w——P> | 00101111
,,,,,,,,,,,,,,, 10110001

,,,,,,,,,,,,,,,,,,,,

text binary »;hmlz

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

Assembler & Linker

* Assembler translates source files to object files, which are
machine code, but contains 'holes’ (basically references
to external code)

- Because of holes, object files (a.k.a., relocatable object file)
cannot be executed directly. The holes arise because the
assembler translates each file separately

* The linker gets all object files and libraries and puts the
right addresses into holes, yielding an executable

Source) [| [Object
Assembler >

_ file) g) _file

M\ e B ANt) ‘E
S?C.Lllrce Ao | I O?{ect L~ Linker Executable
Source Object

. Assembler .

|Ie \ flle)

27 , mﬂq
https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf WH

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

Translating IR to Machine Code[###]

* Machine code generation is machine ISA dependent”

— Complex instruction set computer (CISC): x86
- Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

software ~ —

. i __instructionset ISA
* Three primary tasks . N2/
— Instruction selection[{5 %1% Y] T,
o Choose appropriate target-machine instructions to implement the IR

statements

— Register allocation and assignment[&F 17 25 7> fic]
o Decide what values to keep in which registers

— Instruction ordering[+5 2 HE/7]
o Decide in what order to schedule the execution of instructions

* CPU M 45 2 FE il

https://zhuanlan.zhihu.com/p/363765166

Instruction Selection[#4 &)

* Code generation is to map the IR program into a code
sequence that can be executed by the target machine[it
P 2 1) H FrbL T 2 R ECHLIR]

— ISA of the target machine
o If thereis ‘INC’, thenfora=a+ 1, ‘INC a’ is better than ‘LD a; ADD a, 1’

— Desired quality of the generated code
o Many different generations, naive translation is usually correct but very

inefficient
Target code:
LD RO, b //RO=Db
LS ADDRO,RO,c //RO=RO+c
a=b+c ST a, RO // a=R0
d=a+e LD RO, a // RO =a
ADD RO, RO, e //RO=R0O+e
STd, RO //d=R0

29 Dhge

Register Allocation & Evaluation Order

* Register allocation: a key problem in code generation is
deciding what values to hold in what registers[#F 17#s 7 i

— Registers are the fastest storage unit but are of limited numbers

o Values not held in registers need to reside in memory
o Insts involving register operands are much shorter and faster

- Finding an optimal assignment of registers to variables is NP-
hard

* Evaluation order: the order in which computations are
performed can affect the efficiency of the target code[#k
AT MR

- Some computation orders require fewer registers to hold
intermediate results than others

- However, picking a best order in the general case is NP-hard

x86 =2 ARM > RISC-V[i#t47 i 2s #:

e The war started in mid 1980’s

— CISC won the high-end commercial war (1990s to today)
- RISC won the embedded computing war

* But now, things are changing ...
— Fugaku: ARM-based supercomputer, Apple ARM-based M1 chip

* RISC-V: a freely licensed open standard (Linux in hw)

— Builds on 30 years of experience with RISC architecture, “cleans
up” most of the short-term inclusions and omissions

o Leading to an arch that is easier and more efﬂuent to |mplement

: Y| RISC SRAEEF 20104

RISCT RISC-TI Rli(" 11 (SOAR) RISC IV (SPUR) RISC-V
1981 1983 1984 1988 2013

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and
- Hete 57 early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed

HEEF 19784 EEF 19855 with a similar philosophy which has become known as RISC

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

Stack Machine[# =i+ #1]

* A simple evaluation model[—“~{a] B Y]
— No variables or registers
— A stack of values for intermediate results

* Each instruction[f8 & 11:45]
— Takes its operands from the top of the stack[#& i BUEE/E %]
— Removes those operands from the stack[4% 1 #2 B& E1E 5

— Computes the required operation on them{[it %]
— Pushes the result on the stack[R i1 545 - AAR]

i

5 \
7 12
9 9 9

pop add push Dhide

Example

* Consider two instructions
— push i - place the integer i on top of the stack

— add - pop two elements, add them and put the result back on
the stack

* A program to compute 7+ 5
- push 7

- push 5
- add

i

5 \
7 12
9 9 9

pop add push WEE%

Optimize the Stack Machine

* The add instruction does 3 memory operations

. push 7
— Two reads and one write to the stack push 5
— The top of the stack is frequently accessed add

* ldea: keep the top of the stack in a register (called
accumulator) [F 27 17 23]
— Register accesses are much faster

e The “add” instruction is now

— acc €& acc + top_of stack
— Only one memory operation

acc 7 5 ——>®/v 12

annad

stack

acc « 7 acc . 5 acc « acc + top_of_stack
push acc Pop

M‘E‘Z

