
Compilation Principle
编译原理

第23讲：代码优化(3)
张献伟

xianweiz.github.io
DCS290, 5/30/2023

https://xianweiz.github.io/


Review Questions
• Q1: what is a Basic Block?

• Q2: how to partition code into BBs?

• Q3: CFG of the listed code?

• Q4: Global vs local optimization?

• Q5: Usage of DAG?

2

w = 0
y = 0
x = x + y
if x > z: goto L1
y = z
z ++
goto L2

L1: y = x
x ++

L2: w = x + z

w = 0
y = 0
x = x + y
if x > z: goto L1
y = z
z ++
goto L2

L1: y = x
x ++

L2: w = x + z

A straight-line sequence of code with only one
entry point and only one exit.

Identify leader insts; a BB consists of a leader
inst and subsequent insts before next leader.

Across BBs vs. single BB.

B1

B2

B3

B4

B1

B2 B3
B4

Directed acyclic graph of a BB to identify local optimizations.



• If c is not live on exit from the 
block

− No need to keep c = b + c

• If both b and d are live
− Remove either (2) or (4) : 

common subexpr elimination
− Add a 4th statement to copy one to 

the other

• If only a is live on exit
− Then remove nodes from the DAG 

correspond to dead code
p c -> b,d -> d0

− This is actually dead code 
elimination

Local Opt.: Elimination

3

(1) a = b + c
(2) b = a - d
(3) c = b + c
(4) d = a - d

b0 c0

a+

b–

d0

+
c

,d



Local Opt.: Elimination (cont.)
• When finding common subexprs, 

we really are finding exprs that 
are guaranteed to compute the 
same value, no matter how that 
value is computed[过于严苛]

− Thus miss the fact that (1) and (4) 
are the same

p b + c = (b - d) + (c + d) = b0 + c0

• Solution: algebraic identities[代数
恒等式]

4

(1) a = b + c
(2) b = b - d
(3) c = c + d
(4) e = b + c

b0 c0

a+ c+

d0

b–

e+



Local Opt.: Algebraic Identities[代数恒等式]

• Eliminate computations by applying mathematical rules[
使用数学规则]

− Identities: a * 1 ≡ a, a * 0 ≡ 0, b & true ≡ b
− Reassociation and commutativity[重组合、交换]

p (a + b) + c ≡ a + (b + c) , a + b ≡ b + a

• Strength Reduction[强度削减]
− Replacing expensive operations (multiplication, division) by less 

expensive operations (add, sub, shift) 
− Some ops can be replaced with cheaper ops
− Examples

p x=y/8 --> x=y»3
p y=y*8 --> x=y«3
p x2 --> x * x
p 2 * x --> x + x

5



Local Opt.: Constant Folding[常量折叠]

• Constant Folding 
− Computing operations on constants at compile time 
− Example:

− After constant folding

− Dead code elimination can further remove the above if 
statement 

− Inherently local since scope limited to statement 

6

#define LEN 100 
x = 2 * LEN;
if (LEN < 0) print(”error”); 

x = 200;
if (false) print(”error”); 



Local Opt.: Constant Propagation[常量传播]

• Constant Propagation
− Substituting values of known constants at compile time
− Local Constant Propagation (LCP) 

• Some optimizations have both local and global versions 
− Global Constant Propagation (GCP) 

− GCP more powerful than LCP but also more complicated
p Must determine x is constant across all paths reaching x

7

x = 3;
y = x * 2;

x = 3;
y = 3 * 2;

x = 3;
y = 6;

a = 1;
x = 3;
if (…)

x = a + 2;
y = x;

a = 1;
x = 3;
if (…)

x = 1 + 2;
y = x;

a = 1;
x = 3;
if (…)

x = 3;
y = 3;



## Global Optimizations
• Extend optimizations to flow of control, i.e. CFG

− Along all paths, the last assignment to X is “X=C”  
− Optimization must be stopped if incorrect in even one path 

8

X = 3;
if (B>0)

Y = Z + W; Y = 0;

A = 2 * X;

X = 3;
if (B>0)

Y = Z + W; Y = 0;

A = 2 * 3;

X = 3;
if (B>0)

Y = Z + W;
X = Y;

Y = 0;

A = 2 * X;



Global Opt.: Conservative[需保守]

• Compiler must prove some property X at a particular 
point

− Need to prove at that point property X holds along all paths
− Need to be conservative to ensure correctness 

p An optimization is enabled only when X is definitely true
p If not sure if it is true or not, it is safe to say don’t know
p If analysis result is don’t know, no optimization done
p May lose opt. opportunities but guarantees correctness 

• Property X often involves data flow of program
− E.g. Global Constant Propagation (GCP): 

X = 7;
...
Y = X + 3; // Does value of 7 flow into this use of X?

− Needs knowledge of data flow, as well as control flow
p Whether data flow is interrupted between points A and B

9



Global Opt.: Data Flow[数据流]

• Most optimizations rely on a property at given point
− For Global Constant Propagation (GCP):

A = B + C; // Property: {A=?, B=10, C=?} 
− After optimization: 

A = 10 + C; 
• For this discussion, let’s call these properties values
• Dataflow analysis: compiler analysis that calculates values for 

each point in a program 
− Values get propagated from one statement to the next 
− Statements can modify values (for GCP, assigning to variables)
− Requires CFG since values flow through control flow edges 

• Dataflow analysis framework: a framework for dataflow 
analysis that guarantees correctness for all paths 

− Does not traverse all possible paths (could be infinite)
− To be feasible, makes conservative approximations 

10



Global Constant Propagation (GCP)
• Let’s apply dataflow analysis to compute values for GCP 

− Emulates what human does when tracing through code 

• Let’s use following notation to express the state of a var: 
− x=*: not assigned (default) 
− x=1, x=2, ...: assigned to a constant value
− x=#: assigned to multiple values 

• All values start as x=* and are iteratively refined
− Until they stabilize and reach a fixed point 

• Once fixed point is reached, can replace with constants: 
− x=*: replace with any constant (typically 0)
− x=1, x=2, ...: replace with given constant value
− x=#: cannot do anything 

11



Example
• In this example, constants can be propagated to X+1, 2*X 
• Statements visited in reverse postorder (predecessor first) 

Y = 0;
X = X + 1;

X = 3;
if (B>0)

Y = Z + W;
X = 4;

A = 2 * X;

x=*: not assigned (default) 
x=1, x=2, ...: assigned to a constant value
x=#: assigned to multiple values 

X = *

X = *

X = * X = *

X = *X = *

X = * X = *

X = *

X = 3

X = 3 X = 3

X = 3 X = 3

X = 4 X = 4

X = 4

12

3

4



Example (cont.)
• Once constants have been globally propagated, we would 

like to eliminate the dead code 

13

X = 3;
if (B>0)

Y = Z + W;
X = 4;

Y = 0;
X = X + 1

A = 2 * X;
4

X = 3;
if (B>0)

Y = Z + W; Y = 0;

A = 2 * 4;



IR Optimization of LLVM

14
https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation


LLVM Optimization Flags
• O0: no optimization

− Compiles the fastest and generates the most debuggable code 
• O1: somewhere between O0 and O2
• O2: moderate level of optimization enabling most 

optimizations 
• O3: like O2,

− except that it enables opts that take longer to perform or that 
may generate larger code (in an attempt to make the program 
run faster)

• Os: like O2 with exta opts to reduce code size
• Oz: like Os, but reduce code size further
• O4: enables link-time opt Clang has support for O4, but 

not opt
15

Book: Getting Started with LLVM Core Libraries, C5



Performance at Varying Flags

16
https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html#x1-12003r1

• Compare the performance of the benchmark when 
compiled with either GCC or LLVM

− Compile benchmark at six optimization levels
− Each workload was run 3 times with each executable on the 

Intel Core i7-2600 machines

https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html


LLVM Passes
• Optimizations are implemented as Passes that traverse 

some portion of a program to either collect information 
or transform the program
• A Pass receives an LLVM IR and performs analyses and/or 

transformations
− Using opt, it is possible to run each Pass

• A Pass can be executed in a middle of compiling process 
from source code to binary code

− The pipeline of Passes is arranged by Pass Manager

17
https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation


LLVM Passes (cont.)
• Analysis passes: compute info that other passes can use 

or for debugging or program visualization purposes
− -memdep: Memory Dependence Analysis 

(https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html)

− -instcount: Counts the various types of Instructions 
(https://llvm.org/doxygen/InstCount_8cpp_source.html)

− … (https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html)

• Transform passes: can use (or invalidate) the analysis 
passes, all mutating the program in some way

− -dce: Dead Code Elimination (https://llvm.org/doxygen/DCE_8cpp_source.html)

− -loop-unroll: Unroll loops (https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html)

− … (https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html) 

• Utility passes: provides some utility but don’t otherwise 
fit categorization

− -view-cfg: View CFG of function
− …

18
https://www.llvm.org/docs/Passes.html

https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html
https://llvm.org/doxygen/InstCount_8cpp_source.html
https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html
https://llvm.org/doxygen/DCE_8cpp_source.html
https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html
https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html
https://www.llvm.org/docs/Passes.html


Example
• $clang -emit-llvm -S sum.c
• $opt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.ll

• $opt sum.ll -time-passes -mem2reg -o sum-tim.ll

19

$opt sum.ll -debug-pass=Structure -O1 -S -o sum-O1.ll
$opt sum.ll -time-passes -O1 -o sum-tim.ll

Book: Getting Started with LLVM Core Libraries, C5



Compilation Principle
编译原理

第23讲：目标代码生成(1)
张献伟

xianweiz.github.io
DCS290, 5/30/2023

https://xianweiz.github.io/


Target Code Generation[目标代码生成]

• What we have now
− Optimized IR of the source program

p And, symbol table

• Target code
− Binary (machine) code
− Assembly code

• Goals of target code generation
− Correctness: the target program must 

preserve the semantic meaning of the 
source program

− High-quality: the target program must 
make effective use of the available 
resources of the target machine

− Fast: the code generator itself must 
runs efficiently

21

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate 
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）



src à IR à exe: Example

22

$llvm-as asm_test.ll -o asm_test.bc
$llc -filetype=obj asm_test.bc -o asm_test.o
$clang asm_test.o -o asm_test

$clang -emit-llvm -S -O1 asm_test.c



IR à asm: Example

23

$llvm-as asm_test.ll -o asm_test.bc
$llc -filetype=obj asm_test.bc -o asm_test.o

$clang asm_test.o -o asm_test

$objdump -d asm_test.o

$objdump -d asm_test



ARM vs. X86: IR

24



ARM vs. X86: assembly

25
RIP (instruction pointer) register points to next instruction to be executed.

ADRP: Address of 4KB page at a PC-relative offset.



Assembly vs. Assembler

26

• Assembly language: a programming language that is 
close to machine language but not the same

− Symbolic representation of a computer’s binary machine 
language

• Assembler: a program (a mini-compiler) that translates 
assembly language into real machine code (long 
sequences of 0s and 1s)

− Translate commands in assembly language like addi t3 t6 t8 into 
machine code

− Convert symbolic addresses such as main or loop into machine 
addresses such as 100011010011010011010011010101001. 
This task is sometimes deferred to the linker

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf
text binary

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf


Assembler & Linker

27

• Assembler translates source files to object files, which are 
machine code, but contains ’holes’ (basically references 
to external code)

− Because of holes, object files (a.k.a., relocatable object file) 
cannot be executed directly. The holes arise because the 
assembler translates each file separately

• The linker gets all object files and libraries and puts the 
right addresses into holes, yielding an executable

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf


Translating IR to Machine Code[翻译]

• Machine code generation is machine ISA dependent*
− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR 
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions

28

* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

ISA

https://zhuanlan.zhihu.com/p/363765166


Instruction Selection[指令选取]

• Code generation is to map the IR program into a code 
sequence that can be executed by the target machine[选
择适当的目标机器指令来实现IR]

− ISA of the target machine
p If there is ‘INC’, then for a = a + 1, ‘INC a’ is better than ‘LD a; ADD a, 1’

− Desired quality of the generated code
p Many different generations, naïve translation is usually correct but very 

inefficient

29

TAC code:

a = b + c
d = a + e

Target code:

LD R0, b // R0 = b
ADD R0, R0, c // R0 = R0 + c
ST a, R0 // a = R0
LD R0, a // R0 = a
ADD R0, R0, e // R0 = R0 + e
ST d, R0 // d = R0



Register Allocation & Evaluation Order
• Register allocation: a key problem in code generation is 

deciding what values to hold in what registers[寄存器分配]
− Registers are the fastest storage unit but are of limited numbers

p Values not held in registers need to reside in memory
p Insts involving register operands are much shorter and faster

− Finding an optimal assignment of registers to variables is NP-
hard

• Evaluation order: the order in which computations are 
performed can affect the efficiency of the target code[执
行顺序]

− Some computation orders require fewer registers to hold 
intermediate results than others

− However, picking a best order in the general case is NP-hard

30



x86 à ARM à RISC-V[进行中的变革]

• The war started in mid 1980’s
− CISC won the high-end commercial war (1990s to today)
− RISC won the embedded computing war

• But now, things are changing …
− Fugaku: ARM-based supercomputer, Apple ARM-based M1 chip

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans 

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement

31

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and 
early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed 
with a similar philosophy which has become known as RISC

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html


Stack Machine[栈式计算机]

• A simple evaluation model[一个简单模型]
− No variables or registers
− A stack of values for intermediate results

• Each instruction[指令任务]
− Takes its operands from the top of the stack[栈顶取操作数]
− Removes those operands from the stack[从栈中移除操作数]
− Computes the required operation on them[计算]
− Pushes the result on the stack[将计算结果入栈]

32



Example
• Consider two instructions

− push i - place the integer i on top of the stack
− add - pop two elements, add them and put the result back on 

the stack

• A program to compute 7 + 5
− push 7
− push 5
− add

33



Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called 
accumulator)[使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation

34

push 7
push 5
add


