
Compilation Principle
编译原理

第24讲：目标代码生成(2)
张献伟

xianweiz.github.io
DCS290, 6/6/2023

https://xianweiz.github.io/

Review Questions
• Q1: what is global constant propagation?

• Q2: usage of data flow analysis?

• Q3: input and output of target code generation?

• Q4: assembler vs. linker?

• Q5: primary tasks of target code generation?

2

Substituting values of known constants at
compile time, across basic blocks.

To determine the property at a given point through value calculation.

Assembler: assembly --> machine code, .o file, have address holes
Linker: machine code --> machine code, executable file, fill in holes

Instruction selection, register allocation and assignment,
instruction ordering

Input: optimized IR; output: machine code

Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called
accumulator)[使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation

3

push 7
push 5
add

From Stack Machine to RISC-V
• The compiler generates code for a stack machine with

accumulator
− The accumulator is kept in RISC-V register a0
− Stack machine instructions are implemented using RISC-V

instructions and registers
− We want to run the resulting code on the RISC-V processor (or

simulator)
• The stack is kept in memory

− The stack grows towards lower addresses (standard convention)
− The address of next stack location is kept in a register sp

p The top of the stack is now at address sp + 4
− A block of stack space, called stack frame, is allocated for each

function call
p A stack frame consists of the memory between fp which points to the

base of the current stack frame, and the sp
p Before func returns, it must pop its stack frame, and restore the stack

4
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

The RISC-V Architecture[架构]

• Load/store architecture
− Only load and store instructions can access memory
− All other instructions access only registers

p E.g., all arithmetic and logical operations involve only registers (or
constants that are stored as part of the instructions)

• Each instruction is 32 bits long in memory
• Byte addressable memories with 64-bit addresses
• Only immediate and displacement addressing modes (12-

bit field)
− Absolute: via the lui instruction (i.e., x0-offset)
− PC-relative: via auipc, jal and br* instructions
− Register offset: via jalr, addi and all memory instructions

5

The RISC-V Registers[架构]

• 32, 64-bit general purpose
registers (GPRs) + PC

− called x0, … , x31 (x0 is hardwired
to the value 0)

p x0 can be used as target reg for any
inst whose result is to be discarded

• 32, 64-bit floating point registers
- FPRs (each can hold a 32-bit
single precision or a 64-bit
double precision value)

− called f0, f1, … , f31

• A few special purpose registers
(example: floating point status)

6

Numbers hardware understands

Human-friendly
symbolic names in
assembly code

RISC-V Instructions[指令]

• All RISC-V instructions are 32 bits long, have 6 formats
− R-type: instructions using register-register
− I-type: instructions with immediates, loads
− S-type: store instructions
− B-type: branch instructions (beq, bge)
− U-type: instructions with upper immediates
− J-type: jump instructions (jal)

7
https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf

Example RISC-V Instructions
• la reg1 addr

− Load address into reg1
• li reg imm

− reg ← imm
• lw reg1 offset(reg2)

− Load 32-bit word from address reg2 + offset into reg1
• sw reg1 offset(reg2)

− Store 32-bit word in reg1 at address reg2 + offset
• add reg1 reg2 reg3

− reg1 ← reg2 + reg3
• mv reg1 reg2

− reg1 <- reg2
• slt rd rs1 rs2

− rd ← (rs1 < rs2) ? 1 : 0

8

Pseudo

Pseudo

Pseudo

Pseudo

Pseudo

https://cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf

Pseudo-instructions: shorthand syntax for common assembly idioms

li rd, imm addi rd, x0, imm #reg=imm+0
mv rd, rs addi rd, rs, 0

https://cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf

Example RISC-V Assembly
• The stack-machine code for 7 + 5 in RISC-V:

9

Stack-machine RISC-V Comment
acc <- 7 li a0 7 Load constant 7 into a0
push acc sw a0 0(sp)

addi sp sp -4
Copy the value to stack
Decrement sp to make space

acc <- 5 li a0 5 Load constant 5 into a0
acc <- acc + top_of_stack lw t1 4(sp)

add a0 a0 t1
Load value from sp+4 into t1
Add a0+t1 = 5 + 7

pop add sp sp 4 Pop constant 7 off stack

SP

Stack top

A Small Language
• A language with integers and integer operations

• Example: program for computing the Fibonacci numbers:

10

P → D; P | D
D → def id(ARGS) = E;
ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 - E2 | id(E1,…,En)

def fib(x) = if x = 0 then 0 else
if x = 1 then 1 else

fib(x - 1) + fib(x - 2)

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

A Small Language (cont.)

11
https://github.com/scotws/RISC-V-Fibonacci/blob/master/fibonacci-naive.s

https://github.com/scotws/RISC-V-Fibonacci/blob/master/fibonacci-naive.s

Code Generation Considerations[考虑]

• We used to store values in unlimited temporary variables, but
registers are limited --> must reuse registers[重复使用寄存器]
• Must save/restore registers when reusing them[保存-恢复]

− E.g. suppose you store results of expressions in a0
− When generating E -> E1 + E2,

p E1 will first store result into a0
p E2 will next store result into a0, overwriting E1’s result
p Must save a0 somewhere before generating E2

• Registers are saved on and restored from the stack
Note: sp - stack pointer register, pointing to the top of stack

− Saving a register a0 on the stack:
addiu sp, sp, -4 # Allocate (push) a word on the stack
sw a0, 4(sp) # Store a0 on the top of the stack

− Restoring a value from stack to register a0:
lw a0, 4(sp) # Load word from top of stack to a0
addiu sp, sp, 4 # Free (pop) word from stack

12
SP

Stack top

Stack Operations[栈操作]

• To push elements onto the stack
− To move stack pointer sp down to make room for the new data
− Store the elements into the stack

• For example, to push registers t1 and t2 onto stack

• Pop elements simply by adjusting the sp upwards
− Note that the popped data is still present in memory, but data

past the stack pointer is considered invalid / undefined

13

sw t1, 0(sp)
sw t2, -4(sp)
sub sp, sp, 8

sub sp, sp, 8
sw t1, 8(sp)
sw t2, 4(sp)

word 1

word 2

sp

word 1

word 2

t1

t2
sp

word 1

word 2

t1

t2

sp

Higher address

Code Generation Strategy
• For each expression e we generate RISC-V code that:

− Computes the value of e into a0 (i.e., the accumulator)
− Preserves sp and the contents of the stack

• We define a code generation function cgen(e)
− Its result is the code generated for e

• Code generation for constants
− The code to evaluate a constant simply copies it into the

register: cgen(i) = li a0 i
p Note that this also preserves the stack, as required

14
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Code Generation for ALU
• Default

• Possible optimization: put the result of e1 directly in register
t1?

15

cgen(e1 + e2):
stores result in a0
cgen(e1)
pushes a0 on stack
addiu sp sp -4
sw a0 4(sp)
overwrites result in a0
cgen(e2)
pops value of e1 to t1
lw t1 4(sp)
addiu sp sp 4
performs addition
add a0 t1 a0

cgen(e1 + e2):
stores result in a0
cgen(e1)
copy result of a0 to t1
mv t1 a0
stores result in a0
cgen(e2)
performs addition
add a0 t1 a0

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

What if 3 + (7 + 5)?

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Code Generation for Conditional
• We need flow control

instructions
• New instruction: beq reg1

reg2 label
− Branch to label if reg1 ==

reg2
p Ow, does nothing and move on

to the next command

• New instruction: b label
− Unconditional jump to label

16

cgen(if e1 == e2 then e3 else e4):
cgen(e1)
pushes a0 on stack
addiu sp sp -4
sw a0 4(sp)
overwrites a0
cgen(e2)
pops value of e1 to t1
lw t1 4(sp)
addiu sp sp 4
performs comparison
beq a0 t1 true_branch

false_branch:
cgen(e4)
b end_if

true_branch:
cgen(e3)

end_if:
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Example Memory Layout

17

• Code
− the size of the generated

target code is fixed at
compile time

• Global/static
− the size of some program

data objects, e.g., global
constants, are known at
compile time

• Stack
− store dynamic data

structures
• Heap

− manage long-lived data

…
code of g()
code of f()

code of main()
global data

segment

heap

free memory

stack

code

data

executable
image

High

Low

Activation[活动]

• Compiler typically allocates memory in the unit of
procedure[以过程调用为单位]
• Each execution of a procedure is called as its activation[活
动]

− An execution of a procedure starts at the beginning of the
procedure body

− When the procedure is completed, it returns the control to the
point immediately after the place where that procedure is
called

• Activation record (AR)[活动记录] is used to manage the
information needed by a single execution of a procedure
• Stack is to hold activation records that get generated

during procedure calls

18

ARs in Stack Memory[在栈中管理]

• Manage ARs like a stack in memory[AR栈管理]
− On function entry: AR instance allocated at top of stack
− On function return: AR instance removed from top of stack

• Hardware support[硬件支持]
− Stack pointer (SP) register[栈指针]

p SP stores address of top of the stack
p Allocation/de-allocation can be done by moving SP

− Frame pointer (FP) register[帧指针]
p FP stores base address of current frame
p Frame: another word for activation record (AR)
p Variable addresses translated to an offset from FP

• Always points to the top of current AR as long as invocation is active

− FP and SP together delineate the bounds of current AR

19
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

• Example layout of a function AR

• Registers such as FP and ra overwritten by callee → Must be
saved to/restored from AR on call/return

− Caller’s ra: where to execute next on function return (a.k.a.
instruction pointer: instruction following function call)

− Caller’s FP: where FP should point to on function return
− Saved Caller/Callee Registers: other registers (will discuss)

Contents of ARs

Temporaries
Local variables
Saved Caller/Callee Register Values
Saved Caller’s Return Address (ra)
Saved Caller’s AR Frame Pointer (FP)
Parameters
Return Value

20

临时变量

局部变量

保存的寄存器值

保存的调用者返回地址

保存的调用者帧指针

参数

返回值

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Example Code of g()

Code of f()

Code of main()

Global data segment

heap

y

location (②)

FPf(3)

X=2

(result)

main’s AR21

int g() {
return 1;

}

int f(int x) {
int y;
if (x==2)

y = 1;
else

y = x + f(x-1);
② ...
return y;

}

int main() {
f(3);
① ...

}
FPmain

tmp=x -1

y

location (①)

FPmain

x=3

(result)

FPf(3)

y

location (②)

FPf(3)

x=2

(result)

FPf(2)

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Temporaries
Local variables
Saved Caller/Callee Register Values
Saved Caller’s Return Address (ra)
Saved Caller’s AR Frame Pointer (FP)
Parameters
Return Value

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Caller/Callee Conventions[规范]

• Important registers should be saved across function calls
− Otherwise, values might be overwritten

• But, who should take the responsibility?
− The caller knows which registers are important to it and should

be saved[调用者知道哪些重要]
− The callee knows exactly which registers it will use and

potentially overwrite[被调用者知道哪些会被覆写]
− However, in the typical “block box” programming, caller and

callee don’t know anything about each other’s implementation
• Potential solutions

− Sol1: caller to save any important registers that it needs before
calling a func, and to restore them after (but not all will be
overwritten)[调用者保存任何重要寄存器，但并非所有都会覆写]

− Sol2: callee saves and restores any registers it might overwrite
(but not all are important to caller)[被调用者保存并恢复任意可能
覆写，但并非所有都重要]

22
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Caller/Callee Conventions (cont.)
• Caller and callee should cooperate

− Caller: the function making the call
− Callee: the function that is being called

• Callee-saved registers (preserved registers): the registers
that a function promises to leave unchanged[预留寄存器]

− The caller may assume these registers are not changed by the
callee

• Caller-saved registers (non-preserved registers): the
registers that a function does not promise to leave
unchanged[非预留寄存器]

− The callee may freely modify these registers, under the
assumption that the caller already saved them

23
https://cs61c.org/sp23/projects/proj2/calling-convention/

https://cs61c.org/sp23/projects/proj2/calling-convention/

RISC-V Calling Conventions
• Caller: save and restore any of the following caller-saved

registers that it cares about
t0-t6 a0-a7 ra
a0-a7 for function arguments, a0-a1 for return values

• Callee: save and restore any
of the following callee-saved
registers that it uses

s0-s11 sp
s0 is fp

24
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf#:~:text=In%20the%20standard%20RISC-V%20calling%20convention%2C%20the%20stack,must%20besaved%20by%20the%20caller%20if%20later%20used.

a0 - a7 (x10 - x17): eight argument
registers to pass parameters and
two return values (a0-a1)

https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

The Caller Perspective
• We we call a function, that function promises to not

modify any of the preserved registers[调用者：这些预留寄
存器不会被改动]

− I.e., when the function returns, we can be sure that the
preserved registers have not changed

p The called function may modify across the calling, but finally restores

• However, that function is allowed to freely modify any of
the non-preserved registers[调用者：这些非预留寄存器会被
随意改动]

− I.e., after calling a function and the function returns, every non-
preserved register now contains garbage

p Garbage refers to unknown values, even if the values in non-preserved
remain unchanged across the function call (just assume changed)

25

addi s0, x0, 5 # s0 contains 5
jal ra, func. # call a function
addi s0, s0, 0 # s0 still contains 5 here!

addi t0, x0, 5 # t0 contains 5
jal ra, func # call a function
addi t0, t0, 0 # t0 contains garbage!

https://cs61c.org/sp23/projects/proj2/calling-convention/

Caller-saved: t0-t6 a0-a7 ra
Callee-saved: s0-s11 sp

https://cs61c.org/sp23/projects/proj2/calling-convention/

The Callee Perspective
• We we write a function, we are

allowed to freely change any of
the non-preserved registers

− I.e., those non-preserved ones
are supposed to be saved by the
caller

• However, we must promise to
not change any of the
preserved ones

− I.e., if to use the preserved
registers during the function, we
must save the values on the
stack at the function start, then
restore at the function end

26
https://cs61c.org/sp23/projects/proj2/calling-convention/

Prologue
addi sp, sp, -12 # decrement stack
sw ra, 4(sp) # store ra value on the stack
sw s0, 8(sp) # store s0 value on the stack
sw s1, 12(sp) # store s1 value on the stack

do stuff in the function

Epilogue
lw ra, 4(sp) # restore ra value from the stack
lw s0, 8(sp) # restore s0 value from the stack
lw s1, 12(sp) # restore s1 value from the stack
addi sp, sp, 12 # increment stack

finish up any loose ends

ret # return from function

Caller-saved: t0-t6 a0-a7 ra
Callee-saved: s0-s11 sp

https://cs61c.org/sp23/projects/proj2/calling-convention/

Detailed Calling Steps
• The caller sets up for the call via these steps[调用者]

− 1) Make space on stack for and save any caller-saved registers
− 2) Pass arguments by pushing them on the stack, one by one,

right to left[传参数]
− 3) Execute a jump to the function (saves the next inst in ra)

• The callee takes over and does the following[被调用者]
− 4) Make space on stack for and save values of fp and ra
− 5) Configure frame pointer by setting fp to base of frame
− 6) Allocate space for stack frame (total space required for all

local and temporary variables)
− 7) Execute function body, code can access params at positive

offset from fp, locals/temps at negative offsets from fp

27
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Temporaries
Local variables
Saved Caller/Callee Register Values
Saved Caller’s Return Address ($ra)
Saved Caller’s AR Frame Pointer ($FP)
Parameters
Return Value

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Detailed Calling Steps (cont.)
• When ready to exit, the callee does following[调用退出]

− 8) Assign the return value (if any) to a0[返回值]
− 9) Pop stack frame off the stack (locals/temps/saved regs)
− 10) Restore the value of fp and ra
− 11) Jump to the address saved in ra

• When control returns to the caller, it cleans up from the
call with the steps[调用返回]

− 12) Pop the parameters from the stack
− 13) Restore value of any caller-saved registers, pops spill space

from stack

28
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Temporaries
Local variables
Saved Caller/Callee Register Values
Saved Caller’s Return Address ($ra)
Saved Caller’s AR Frame Pointer ($FP)
Parameters
Return Value

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

