WHEHILER (RE&FB)
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

Zm E R B

F241F: H AU A Hl(2)
K Bk

xianweiz.github.io
DCS290, 6/6/2023

B

https://xianweiz.github.io/

Review Questions S—

Program

* Q1: what is global constant propagation? AsmggmL:lT:l
Substituting values of known constants at Assamb
compile time, across basic blocks. ’ : ‘ 3

* Q2: usage of data flow analysis?

To determine the property at a given point through value calculation.

* Q3: input and output of target code genera’glgn?tw

Input: optimized IR; output: machine code wJQDJ e ey o
foo.o baro | wmachine code object files

°) —g o

e Q4: assembler vs. linker? Sl o e

5 . Machine code executable file
Assembler: assembly --> machine code, .o file, have address holes

Linker: machine code --> machine code, executable file, fill in holes

* Q5: primary tasks of target code generation?

Instruction selection, register allocation and assignment,
instruction ordering

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ }' GG [Z

Optimize the Stack Machine

* The add instruction does 3 memory operations

) push 7
— Two reads and one write to the stack push 5
— The top of the stack is frequently accessed add

* ldea: keep the top of the stack in a register (called
accumulator)[f# F 27 17 23]
— Register accesses are much faster

e The “add” instruction is now

— acc €& acc + top_of stack
— Only one memory operation

acc 7 5 ——>®/v 12

7 7 /

stack

acc « 7 acc < B acc « acc + top_of_stack
push acc pop

B

From Stack Machine to RISC-V

* The compiler generates code for a stack machine with
accumulator
— The accumulator is kept in RISC-V register a0

— Stack machine instructions are implemented using RISC-V
instructions and registers

— We want to run the resulting code on the RISC-V processor (or
simulator)] | secer

* The stack is kept in memory ==y
- The stack grows towards lower addresses (standard convention)
— The address of next stack location is kept in a register sp
o The top of the stack is now at address sp + 4

— A block of stack space, called stack frame, is allocated for each
function call

o A stack frame consists of the memory between fp which points to the
base of the current stack frame, and the sp

o Before func returns, it must pop its stack frame, and restore the stack

g
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf 4

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

The RISC-V Architecture[ZE#)
* Load/store architecture : 4 RISC

— Only load and store instructions can access memory

— All other instructions access only registers

o E.g., all arithmetic and logical operations involve only registers (or
constants that are stored as part of the instructions)

* Each instruction is 32 bits long in memory

* Byte addressable memories with 64-bit addresses

* Only immediate and displacement addressing modes (12-
bit field)
— Absolute: via the /ui instruction (i.e., x0-offset)
— PC-relative: via auipc, jal and br* instructions
— Register offset: via jalr, addi and all memory instructions

() ol
:’ ivﬂnl\;ﬁmﬁ 5 ﬂ' @G LZ

Th e R | SC_\/ Reg I Ste 'S [;Jlgit@] Numbers hardware understands

* 32, 64-bit general purpose Ry/ v
regiSterS (GPRS) + PC 32 integer registers

x0 Zer Always zero
- called x0, ..., x31 (x0 is hardwired * = Q\Ww Human-friendly
X2

sp Stack pointer ~ symbolic names in
to the value 0) -

1 x3 ap Global pointer ~ assembly code
o x0 can be used as target reg forany x4 tp Thread pointer
inSt Whose result is to be disca rded 1 x5 t0 Temporary / alternate return address
x6-7 t1-2 Temporary

o 32, 64'bit floating pOint regiSterS x8 s0/fp Saved register / frame pointer
- FPRs (each can hold a 32-bit . o, oo

x10-11 a0-1 Function argument / return value
Single prec:iSion Or a 64—bit x12-17 a2-7 Function argument
double pFECiSion Value) x18-27 | s2-11 Saved register
x28-31 t3-6 Temporary
- Ca I Ied fo’ fl’ tet f3 1 Name ABI Mnemonic Meaning
* Afew special purpose registers "1

(example: floating point status) «« |« P——

f12 - f17 fa2 - fa7 Argument Registers

f18 - 27 fs2 - fsl1 Saved Registers

f
6 f28 - 31 ft8 — ftll Temporary Registers H& Hhﬂ LZ

RISC-V Instructions[#s 4

* All RISC-V instructions are 32 bits long, have 6 formats
— R-type: instructions using register-register
- |-type: instructions with immediates, loads
— S-type: store instructions
- B-type: branch instructions (beq, bge)
- U-type: instructions with upper immediates
- J-type: jump instructions (jal)

31 25 24 20 19 15 14 12::1] 76 0

funct7 rs2 rsl funct3 rd opcode R

imm|[11:0] rsl funct3 rd opcode |
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode S
imm|[12]10:5] rs2 rsl funct3 | imm(4:1[11] opcode B
imm|[31:12] rd opcode U

imm[20[10:1|11] imm[19:12] rd opcode J

7 Big:

https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf

Example RISC-V Instructions

* la regl addr

— Load address into regl
* liregimm

- reg & imm
* lwregl offset(reg2)

- Load 32-bit word from address reg2 + offset into regl
* swregl offset(reg2)

— Store 32-bit word in regl at address reg2 + offset

* add regl reg2 reg3

- re 1 é re 2 + re 3 Pseudoinstruction Ba'se Instruction(s) Meaning
g g g la rd, symbol auipc rd, symbol[31:12] Load address
* mvreglreg2

addi rd, rd, symbol[11:0]
auipc rd, symbol[31:12]

1 2 1{b|h|w|d} rd, symbol 1¢blh|w|d} rd, symbolC11:e1(rd) Load global
- re <-re auipc rt, symbol[31:12]
g g s{b|h|w|d} rd, symbol, rt STBIKIWIAY Fd;: SyRBOLLIT:0TCFE) Store global
Y S/t rd rsl rsz lird, imm addi rd, x0, imm #reg=imm-+0

mv rd, rs addird, rs, O

—rd & (rsl<rs2)?1:0

8 | ’hﬂ
https://cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV CARD.pdf VIH z

https://cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf

Example RISC-V Assembly

 The stack-machine code for 7 + 5 in RISC-V:

Stack-machine RISC-V Comment
acc<-7 lia0 7 Load constant 7 into a0
push acc sw a0 O(sp) Copy the value to stack
addi sp sp -4 Decrement sp to make space
acc<-5 lia0 5 Load constant 5 into a0
acc <- acc + top_of stack | lw t1 4(sp) Load value from sp+4 into t1
add a0 a0 t1 Add a0+t1=5+7
pop add sp sp 4 Pop constant 7 off stack
:jgg 19696 — Stack top acc 7 5 —_’@ 12
el 7 7 /
stack
) = SP
acc <7 acc <« B acc <« acc + top_of_stack

push acc

pop Diode

A Small Language

* A language with integers and integer operations

P—>D;P|D

D - def id(ARGS) = E;

ARGS - id, ARGS | id

E->int|id|ifE;=E,then E;else E,
| E,+E, | E,-E, | id(E,,...,E,)

* Example: program for computing the Fibonacci numbers:

def fib(x) = if x = 0 then O else
if x=1then 1 else
fib(x - 1) + fib(x - 2)

MG‘Z

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

A Small Language (cont.

PRRPRPRRPRPRRRPR
(SN~ OV OoONODOTPHS~TWNPFP-

0 N O

“ W N R

#include<stdio.h>

typedef long long LL;
LL n, d¢
SLL fibo(LL
if (n == 0)
return 9;
else if (n == 1)
return 1;
else
: return fibo(n - 1) + fibo(n - 2);
i}

n=5;

printf("The fibonacci series is

for (1 '=43: 1 <= n? d+%+) o
printf("%1l1ld ", fibo(i));

}

%@?ﬁﬁ'dﬂ*i&?

SUN YAT-SEN UNIVERSITY

fibo:

Argument n is in a@

beqz a0,
addi te, a0, -1

beqz t@, is_one

is_zero

E-3

n > 1, do this the hard

addi sp, sp, -16

sd a0, 0(sp)
sd ra, 8(sp)

addi a0, a0, -1
jal fibo

1d to, 0(sp)

sd a0, 0(sp)
addi a0, to, -2
jal fibo

1d to, 0(sp)
add a0, a0, to

1d ra, 8(sp)
addi sp, sp, 16

Fall through

is_zero:

is_one:

ret

* ¥ B B H* H*

H

https://github.com/scotws/RISC-V-Fibonacci/blob/master/fibonacci-naive.s

n=07?
Hack: If a® == 1 then t0 == 0
n=12

way

Make room for two 64-Bit words on stack
Save original n
Save return address

Now n-1 in a@
Calculate fibo(n-1)

Get original n from stack

Save fibo(n-1) to stack in same place
Now n-2 in a@

Calculate fibo(n-2)

Get result of fibo(n-1) from stack
add fibo(n-1) and fibo(n-2)

Get return address from stack
clean up stack

Al E

https://github.com/scotws/RISC-V-Fibonacci/blob/master/fibonacci-naive.s

Code Generation Considerations[Z &)

* We used to store values in unlimited temporary variables, but
registers are limited --> must reuse registers[E & ff H & 17 #5]

* Must save/restore registers when reusing them[{rR{F-PK H]
— E.g. suppose you store results of expressions in a0
- When generating E->E; + E,,
o E; will first store result into a0

o E, will next store result into a0, overwriting E;’s result
o Must save a0 somewhere before generating E,

* Registers are saved on and restored from the stack

Note: sp - stack pointer register, pointing to the top of stack

— Saving a register a0 on the stack:
addiu sp, sp, -4 # Allocate (push) a word on the stack

1500 166

sw a0, 4(sp) # Store a0 on the top of the stack I —— — Stack top
— Restoring a value from stack to register a0: gl S

lw a0, 4(sp) # Load word from top of stack to a0 1484 —

addiu sp, sp,4 # Free (pop) word from stack Sp

f

Stack Operations[##/E)

* To push elements onto the stack
— To move stack pointer sp down to make room for the new data
— Store the elements into the stack

* For example, to push registers t1 and t2 onto stack

sw t1, O(sp)
sw t2, -4(sp)
sub sp, sp, 8

word 1

word 2

sp

sub sp, sp, 8

sw t1, 8(sp)
sw t2, 4(sp)
* Pop elements simply by adjusting the sp upwards

— Note that the popped data is still present in memory, but data
past the stack pointer is considered invalid / undefined

word 1

word 2

t1

t2

sp

word 1

word 2

t1

t2

MG‘Z

Code Generation Strategy

* For each expression e we generate RISC-V code that:

— Computes the value of e into a0 (i.e., the accumulator)
— Preserves sp and the contents of the stack

* We define a code generation function cgen(e)
— Its result is the code generated for e

* Code generation for constants

— The code to evaluate a constant simply copies it into the
register: cgen(i) =1lia0 i
o Note that this also preserves the stack, as required

14
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf

Mﬂ?

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Code Generation for ALU

e Default
cgen(el + e2): cgen(el + e2):

cgen(el) cgen(el)
addiu sp sp -4 mv t1 a0
sw a0 4(sp)

cgen(e2)
cgen(e2)

add a0 t1 a0
lw t1 4(sp)
addiu sp sp 4
add a0 t1 a0

* Possible optimization: put the result of el directly in register
t1? Whatif3+(7+5)?

15 , ’pﬂq
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf ﬂ“

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Code Generation for Conditional

* We need flow control
instructions

* New instruction: beqg reg1l
reg2 label

— Branch to label if reg1 ==
reg2

o Ow, does nothing and move on
to the next command

* New instruction: b label
- Unconditional jump to label

cgen(if el == e2 then e3 else e4):
cgen(el)

addiu sp sp -4
sw a0 4(sp)

cgen(e?)

lw t1 4(sp)
addiu sp sp 4

beq a0 tl

cgen(ed)
b end if

cgen(e3)
end_if:

A
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19 CodeGenerationl.pdf 4

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Example Memory Layout

Low

code of g()

executable

code of f()

image

code of main()

global data
segment

heap

free memory

stack

— code

_ data

 Code

- the size of the generated
target code is fixed at
compile time

* Global/static

- the size of some program
data objects, e.g., global
constants, are known at
compile time

e Stack

— store dynamic data
structures

* Heap

- manage long-lived data

MG‘Z

Activation[i&ah]

* Compiler typically allocates memory in the unit of
procedure[UL FE 1 FH B4]
. Ejzjach execution of a procedure is called as its activation[i%
z)]]
— An execution of a procedure starts at the beginning of the
procedure body

— When the procedure is completed, it returns the control to the
point immediately after the place where that procedure is
called

 Activation record (AR)[i#3l1c3%] is used to manage the
information needed by a single execution of a procedure

 Stack is to hold activation records that get generated
during procedure calls

»»’:ﬁ%

ARs in Stack Memory 7 & B

* Manage ARs like a stack in memory[ARF: & #]
— On function entry: AR instance allocated at top of stack
— On function return: AR instance removed from top of stack

* Hardware support[fif {437 #F]
— Stack pointer (SP) register[#fa4t]

o SP stores address of top of the stack
o Allocation/de-allocation can be done by moving SP

— Frame pointer (FP) register[iig4t]
o FP stores base address of current frame
o Frame: another word for activation record (AR)

o Variable addresses translated to an offset from FP
* Always points to the top of current AR as long as invocation is active

- FP and SP together delineate the bounds of current AR

19 , ’pﬂq
https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view ﬂ“

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Contents of ARs

* Example layout of a function AR

Temporaries

Local variables

Saved Caller/Callee Register Values

Saved Caller’s Return Address (ra)

Saved Caller’s AR Frame Pointer (FP)

Parameters

Return Value

Iy Fef 22

JRy AL

DRAF) &7 A7 4 1E

ORAF I 3R Bl
ORAT-HT I FH 2 i BT
28

y Y EINE|

e Registers such as FP and ra overwritten by callee - Must be
saved to/restored from AR on call/return

— Caller’s ra: where to execute next on function return (a.k.a.
instruction pointer: instruction following function call)

— Caller’s FP: where FP should point to on function return
— Saved Caller/Callee Registers: other registers (will discuss)

20

f
s
https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view 24

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Code of g()
Exal I |p|e Code of f()
. Code of main()
Int
gt() { 1 Global data segment
return 1;
} heap
int f(int x) {
Temporaries .
Local variables Int y’ y
Saved Caller/Callee Register Values If (==2)
Saved Caller’s Return Address (ra) y = 1 location (@)
?
Saved Caller’s AR Frame Pointer (FP)
FP,,, ——| FP
Parameters EISG f(2) f3)
Return Value y=X+ f(X-l), X=2
@ ... (result)
return Y, tmp=x -1
J y
. . location (@)
int main() { - ES—
f(3). f(3)
@ ’ x=3
) (result)
) F b % B ,1 FPmain ™ main’s AR -Fﬂlz
2 d Ve BO8BIE com/file/d/1geZit1bz7l0aa8UBduaAvO8XU8AFzpbt/view N

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Caller/Callee Conventions[#t3]

* Important registers should be saved across function calls
— Otherwise, values might be overwritten .0

* But, who should take the responsibility?

— The caller knows which registers are important to it and should
be saved [V 3 03 ke 2 5]

— The callee knows exactly which registers it will use and
potentially overwrite[# 1 F & fniE it <=4 78 5]

- However, in the typical “block box” programming, caller and
callee don’t know anything about each other’s implementation

e Potential solutions

- Sol1: caller to save any important registers that it needs before
calling a func, and to restore them after (but not all will be
overwrltten)[ﬁﬁﬁ FIRAE M EET A4, HHIERFEHSES]

- Sol2: callee saves and restores any registers it might overwrite
(but not ot all are important to caller)[# i & (547 F- K AT & 7T g

25, HIFAERTA A E E]
(@) TuX % 22 Diode

https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Caller/Callee Conventions (cont.)

 Caller and callee should cooperate
— Caller: the function making the call e O
— Callee: the function that is being called M

 Callee-saved registers (preserved registers): the registers
that a function promises to leave unchanged|[7l &5 & 17 %3]

— The caller may assume these registers are not changed by the
callee

 Caller-saved registers (non-preserved registers): the
registers that a function does not promise to leave

unchanged[dE T B & 17 5%

— The callee may freely modlfy these registers, under the
assumption that the caller already saved them

@tuxs B lingconent IR

https://cs61lc.org/sp23/projects/proj2/calling-convention/

https://cs61c.org/sp23/projects/proj2/calling-convention/

RISC-V Calling Conventions

 Caller: save and restore any of the following caller-saved
registers that it cares about

t0-t6 a0-a7/ ra

a0-a7 for function arguments, a0-al for return values

PY . Register | ABI Name | Description Saver
m * S ave a n d rEStO re a ny x0 zero Hard-wired zero —

. x1 ra Return address Caller

of the following callee-saved|= = Stack pointer Callee
x3 gp Global pointer —
. . x4 tp Thread pointer —

regi sters that it uses x5-7 | £0-2 Temporaries Caller

x8 s0/fp Saved register/frame pointer Callee

- x9 s1 Saved register Callee

SO S 1 1 S p x10-11 | a0-1 Function arguments/return values | Caller

; x12-17 | a2-7 Function arguments Caller

sO s fp x18-27 | s2-11 Saved registers Callee

x28-31 | t3-6 Temporaries Caller

a0 - a7 (x10 - x17): eight argument £0-7 ££0-7 FP temporaries Caller

reglste rs to pass pa ramete rs and £8-9 fsO0-1 FP saved registers Ca.llee

| 0-al £10-11 | fa0-1 FP arguments/return values Caller

two returnvalues (a -a) £12-17 | fa2-7 FP arguments Caller

£18-27 | fs2-11 FP saved registers Callee

£28-31 | ft8-11 FP temporaries Caller

) #F 24 I @ﬂﬁ
S o/ wpspontensfuploads/2015/01/riscv-calling. pdf#:~:text=In%20the%20standa rd%ZORISC—V%ZOcaIIing%ZOconvention%ZC%ZOthe%ZOStack,must%ZObesaved%ZOby%ZOthe%ZOcaIIer%ZOif%Hir Oused.

https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

Caller-saved: tO-t6 a0-a7 ra

The Caller Perspective cicesmed sosi1 o

* We we call a function, that function promises to not
modify any of the preserved registers[ifi F % : XTI &

1725 N2 el 0]

— |.e., when the function returns, we can be sure that the
preserved registers have not changed

o The called function may modify across the calling, but finally restores

* However, that function is allowed to freely modify any of
the non-preserved registers[ifl 3 : XLEIETNE T 748 =
b8 = B sl

- |.e., after calling a function and the function returns, every non-
preserved register now contains garbage

o Garbage refers to unknown values, even if the values in non-preserved
remain unchanged across the function call (just assume changed)
addi s0, x0, 5 addi t0, x0, 5
jal ra, func. jal ra, func
addi s0, sO, O addi t0, t0, O 'GLZ

https://cs61lc.org/sp23/projects/proj2/calling-convention/

https://cs61c.org/sp23/projects/proj2/calling-convention/

Caller-saved: tO-t6 a0-a7

The Callee Perspective ciceswed sosi1 s

ra

 We we write a function, we are
allowed to freely change any of
- : addi sp, sp, -12
the non-preserved registers 7 F,
- l.e., those non-preserved ones swso, 8(sp)
are supposed to be saved by the % s 12(sP)

caller # do stuff in the function

* However, we must promise to

lw ra, 4(sp)
not change any of the e Bl
preserved ones lw s1, 12(sp)

addi sp, sp, 12

- |.e., if to use the preserved
registers during the function, we ¢ finish up any loose ends
must save the values on the -
stack at the function start, then
restore at the function end

https://cs61lc.org/sp23/projects/proj2/calling-convention/

»»’:ﬁ%

https://cs61c.org/sp23/projects/proj2/calling-convention/

. ° Local variables
Saved Caller/Callee Register Values
e a I e a I I l g e p S Saved Caller’s Return Address ($ra)
S

aved Caller’s AR Frame Pointer (SFP)

Parameters

Return Value

* The caller sets up for the call via these steps[ifi 3]

- 1) Make space on stack for and save any caller-saved registers

- 2) Pass arguments by pushing them on the stack, one by one,
right to left[f£5 %]

- 3) Execute a jump to the function (saves the next inst in ra)

* The callee takes over and does the following[# i F 3]
— 4) Make space on stack for and save values of fp and ra
- 5) Configure frame pointer by setting fp to base of frame

- 6) Allocate space for stack frame (total space required for all
local and temporary variables)

- 7) Execute function body, code can access params at positive
offset from fp, locals/temps at negative offsets from fp

f
(g
https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view 24

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Detailed Calling Steps (cont.) é:f:vff::::ff:;;:ef;:::i::

aved Caller’s AR Frame Pointer (SFP)

Parameters

Return Value

* When ready to exit, the callee does following[if HiE]
— 8) Assign the return value (if any) to aO[i&[A]1&]

— 9) Pop stack frame off the stack (locals/temps/saved regs)
- 10) Restore the value of fp and ra

- 11) Jump to the address saved in ra

* When control returns to the caller, it cleans up from the
call with the steps[ii Fiz [a]]

- 12) Pop the parameters from the stack

- 13) Restore value of any caller-saved registers, pops spill space
from stack

f
(g
https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view 24

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

