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Review Questions

e Ql:is add a0, a0, 5(t0) a valid RISC-V instruction?

NO. RISC-V is load-store architecture, i.e., only load and store can
access memory (all others must use registers).

* Q2: what are fp and sp registers for?
Frame and stack pointer, indicating the stack bounds.
* Q3: what is activation record?

Info of a procedure execution, i.e. stack frame.

* Q4: why a calling convention is needed?

Caller and callee cooperate to effectively save registers across
function calling.

* Q5: explain preserved registers.

Registers that a function (callee) promises to leave unchanged. So
the caller can directly use them after a function call ends.
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. . Local variables
Saved Caller/Callee Register Values
e a I e a I I Ig ( ! p S Saved Caller’s Return Address (Sra)
S

aved Caller’s AR Frame Pointer (SFP)

Parameters

Return Value

* The caller sets up for the call via these steps[ifi 3]

- 1) Make space on stack for and save any caller-saved registers

- 2) Pass arguments by pushing them on the stack, one by one,
right to left[{f£5 %]

- 3) Execute a jump to the function (saves the next inst in ra)

* The callee takes over and does the following[# i F 3]
— 4) Make space on stack for and save values of fp and ra
- 5) Configure frame pointer by setting fp to base of frame

- 6) Allocate space for stack frame (total space required for all
local and temporary variables)

- 7) Execute function body, code can access params at positive
offset from fp, locals/temps at negative offsets from fp
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Detailed Calling Steps (cont.) g:::: St e

aved Caller’s AR Frame Pointer (SFP)

Parameters

Return Value

* When ready to exit, the callee does following[if HiE ]
— 8) Assign the return value (if any) to aO[i&[A]1&]

— 9) Pop stack frame off the stack (locals/temps/saved regs)
- 10) Restore the value of fp and ra

—11) Jump to the address saved in ra

* When control returns to the caller, it cleans up from the
call with the steps[ii Fiz [a]]
- 12) Pop the parameters from the stack

- 13) Restore value of any caller-saved registers, pops spill space
from stack
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Code Generation for Function Call

* The calling sequence is ~ enlflel, .. en)):

the instructions (of both o
caller and callee) to set addiu sp sp -4
up a function invocation sw a0 4(sp)
cgen(el)
* New instruction: jal label G ep &
. sw a0 4(sp)
- Jump to label, after
saving address of next addiu sp sp -4
instruction in ra sw fp 4(sp)

— Actually, jal ra label
o Store PC+4 in ra

o Similar to jal x0 label for
jumping inside a loop

addiu sp, sp, -4
Sw ra, 4(sp)

mv fp, sp

jal f_entr
https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view
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Code Generation for Function Definition

* New instruction: jr reg
— Jump to address in register reg

— Acutally, jalr ra rd rmm, jump to rd + imm
o Setthe PCto rd +imm
cgen(def f(x1,...,xn) = e):

f _entry:
cgen(e)

mv sp fp

RISC-V uses jal to invoke a function

SW ra 4(s
( p) and jr to return from a function

addiu sp sp 4

lw fp 4(sp)
addiu sp sp 4

jrra

f
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Code Generation for Variables

* The “variables” of a function are just its ‘parameters’
- They are all in the AR
— Pushed by the caller

* Problem: because the stack grows when intermediate
results are saved, the variables are not at a fixed offset
from sp

— Thus, access to locations in the stack frame cannot use sp-
relative addressing

 Solution: use the frame pointer fp instead
— Always points to the return address on the stack
— Since it does not move, it can be used to find the variables
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Example

 Local variables are referenced from an offset from fp
— fp is pointing to ra (return address)

* For a function def f(x,y) = e the activation and frame
pointer are set up as follows:

y
X X: +8(fp)
Old FP y: +12(fp)
fp Return addr First local variable: -4(fp)

Local variables

Temporaries

sp

The parameters are pushed right to left by the caller
The locals are pushed left to right by the callee
@tuxe 8
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Example

double funi(int p1, double p2, int p3) {
inti, j;
res = fun2(pl*p2,j);
return res;

}

double fun2(double ar, int ib) {
inti, rl;
double res;

return res;

sp

Sp

Old FP

Return addr

j

ib

ar

Old FP

Return addr

rl

res
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Code Generation for OO

* Objects are like structs in C
— Objects are laid out in contiguous memory
— Each member variable is stored at a fixed offset in object

* Unlike structs, objects have member methods

* Two types of member methods:

— Nonvirtual member methods: cannot be overridden

Parent obj = new Child();
obj.nonvirtual(); // Parent::nonvirtual() called

Method called depends on (static) reference type
Compiler can decide call targets statically

- Virtual member methods: can be overridden by child class

Parent obj = new Child();
obj.virtual(); // Child::virtual() called

Method called depends on (runtime) type of object
Need to call different targets depending on runtime type

10 , ’pﬂq
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Static and Dynamic Dispatch

 Dispatch: to send to a particular place for a purpose
- |.e., to jump to a (particular) function

 Static Dispatch: selects call target at compile time
- Nonvirtual methods implemented using static dispatch

— Implication for code generation:
o Can hard code function address into binary

* Dynamic Dispatch: selects call target at runtime
- Virtual methods implemented using dynamic dispatch

— Implication for code generation:
o Must generate code to select correct call target

* How?
— At compile time, generate a dispatch table for each class,
containing call targets for all virtual methods of that class

— At runtime, each object has a pointer to its dispatch table,

~ which isindexed into to find call target for its runtime type
(&) Tux 2
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Typical Object Layout

class tag (A) - class A’s Table
dispatch ptr |-~ addr of f1()

X addr of f2()

y addr of 3()

z

* Class tag is used for dynamic type checking
 Dispatch ptr is a pointer to the dispatch table

* Compiler translates member accesses to offset accesses
if(...) obj = new Parent()
else obj = new Child();
obj.x = 10; // move 10, x_offset(obj)
obj.f2(); // call f2_offset(obj.dispatch_ptr)

e Offsets must remain identical regardless of object type
- How to layout object and dispatch table to make it so?

©tuxt 12 IR
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Inheritance and Subclasses

e |nvariant: the offset of a member variable or member
method is the same in a class and all of its subclasses

class A1 { class tag (A1) A1’s table
int x; dispatch ptr - f1()
virtual void f1() { ... } X f2()
virtual void f2() { ... }
} class tag (A2) A2's table
class A2 inherits A1 { dispatch ptr -+ f ’()
inty; X f2'()
virtual void f2() { ... } y
}
class A3 inherits A2 { class tag (A3) A3's table
e dispatch ptr Lo f1()
. . f2'()
virtual void f3() { ... X
} 0{.} : =
z
o B
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A Question ...

#include <iostream> ¢ What iS the OUtpUt?

' " { o - 24 (on my 64-bit
public: MBA)
virt oid f1() { cout << "base.fl\n"; }
Vois 130 { cout << "base. s 3 * How come?
i+ — Fields (12B)
_ int ; o chara:1-->4
i R o intx: 4
int main(int argc, char* argv([]) { o int y:4
it e MR AR L S — Functions (8B)
return 0; o virtual: 8B

— Alignment
o 12+8 --> 24

[1] Determining the Size of a Class Object
[2] sizeof class in C++

14 Dhige
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Heap Memory Management

* Heap data

- Lives beyond the lifetime of the procedure that creates it
TreeNode* createTREE() {

TreeNode* p = (TreeNode*)malloc(sizeof(TreeNode));
return p;

}
— Cannot reclaim memory automatically using a stack

* Problem: when and how do we reclaim that memory?

* Two approaches
— Manual memory management
o Programmer inserts deallocation calls. E.g. “free(p)”

— Automatic memory management

o Runtime code automatically reclaims memory when it determines that
data is no longer needed

15 , ’pﬂq
https://drive.google.com/file/d/1ge7it1bz7l0aa8UBduaAvO8XU8AFzpbt/view ﬂ“



https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Heap Memory Management (cont.)

* Manual memory management is typically more efficient

— Programmers know when data is no longer needed

o With automatic management, runtime must somehow detect when
data is no longer needed and recycle it, incurring overheads

e Automatic management leads to fewer bugs
— Disallowing programmer free() calls is essential for security

 Common functionality in both automatic and manual

— Runtime code maintains used/unused spaces in heap (e.g.
linked together in the form of a list)

- malloc(int size): move size bytes from unused to used
— free(void *p): move given memory from used to unused

* Only in automatic memory management
- Routines to perform detection of unused memory

f
(g
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Heap Memory Management (cont.)

* Detection: determining an object wil

no longer be used

- In general, impossible for compiler to tell exactly
o Requires knowledge of program beyond what compiler has

— But compiler can tell when it can no longer be used

* An object x is reachable iff

— A named object contains a reference to x, or
— A reachable object y contains a reference to x

* An unreachable object is referred to as garbage
— Garbage can no longer be used and its memory can be

reclaimed

— This reclamation is process is called garbage collection

| ’hﬁtz
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Garbage Collection Schemes

 Reference Counting[5] A%

- Maintain a reference counter inside each object
o Counts the number of references to object

— When counter becomes 0, the object is no longer usable
o Garbage collect unreachable object
* Tracing[i& & /Fric i B
- When the heap runs out of memory to allocate:

o 1. Pause the program counter = 1 counter = 2
o 2. Trace through all reachable objects }) . ?
o 3. Garbage collect remaining objects O O E
o 4. Restart the program v
root — — ﬁ counter =0, free counter = 1
marked=Tal se marked =T alseh marked—=Talse O O
<)
marked=Ffalse

18 _ ’hﬂtz
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Machine Optimizations[#l 2= 4k]

* After performing IR optimizations

- We need to further convert the optimized IR into the target
language (e.g. assembly, machine code)

e Specific machines features are taken into account to
produce code optimized for the particular architecture[*%
JEFT IE AR ]

- E.g., specialized instructions, hardware pipeline abilities,
register details

* Typical machine optimizations[$t 54 i Ak 77 %]
— Instruction selection and scheduling: select and reorder insts
to implement the operators in IR
— Register allocation: map values to registers and manage
- Peephole optimization: locally improve the target code




Instruction Selection[#4 &)

* To find an efficient mapping from the IR of a program to a
target-specific assembly listing[IRZ]JL 2 ) I 5]

* Instruction selection is particularly important when
targeting architectures with CISC (e.g., x86)

- In these architectures there are typically several possible
implementations of the same IR operation, each with different
properties

- e.g., on x86 an addition of one can be implemented by an inc,
add, or lea instruction

X=Yy+z a=a+l

MOV y,RO MOV a,R0 MOV a,R0O
ADD z,RO ADD #1,R0 INC RO
MOV RO,x MOV RO,a MOV RO,a

() Nl




Instruction Cost[{g4 miA]

* Instruction cost = 1 + cost(source-mode) +
cost(destination-mode)

Mode Form Address Added Cost
Absolute M M 1
Register R R 0
Indexed c(R) c+contents(R) 1
Indirect register *R contents(R) 0
Indirect indexed | *c(R) | contents(c+contents(R)) 1
Literal #c N/A 1
* Examples
Instruction Operation Cost
MOV RO,R1 Store content(RO) into register R1 1
MOV RO,M Store content(RO) into memory location M 2
MOV M, RO Store content(M) into register RO 2
MOV 4 (RO) ,M Store contents(4+contents(R0)) into M 3
MOV *4 (RO) ,M Store contents(contents(4+contents(R0))) into M 3
MOV #1,R0 Store 1 into RO 2
ADD 4 (RO),*12(R1) Add contents(4+contents(R0O))
to contents(12+contents(R1)) 3

21 Qﬂtz
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Instruction Cost (cont.)

e Suppose we translate TAC x:=y+z to:

- MOV y, RO
- ADD z, RO
- MOV RO, x

ca:=b+c
MOQV b, RO
ADD c, RO
MOV RO, a

cost=6
*a:=a+l

MOV a, RO
ADD #1, RO

MOV RO, a

cost=6

MOQV b, a
ADDc, a

cost=6

ADD #1, a

cost=3

22

Mode Form Address Added Cost
Absolute M M 1
Register R R 0
Indexed c(R) c+contents(R) 1

Indirect register *R contents(R) 0
Indirect indexed | *c(R) | contents(c+contents(R)) 1
Literal #c N/A 1

MOV *R1, *RO Assuming RO, R1 and R2 contain

ADD *R2, *RO

cost=2

INC a

cost=2

the addresses of a, b, and ¢

Dhige




Instruction Scheduling[#& 4 &

e Some facts
- Instructions take clock cycles to execute (latency)

- Modern machines issue several operations per cycle (Out-of-
Order execution)

— Cannot use results until ready, can do something else
— Execution time is order-dependent

* Goal: reorder the operations to minimize execution time
- Minimize wasted cycles
— Avoid spilling registers
- Improve locality

A=x"y; A=x"*y;
B=A+1; C=y,
C=vy; B=A+1;

(Now C=y; can execute while waiting for A=x*y;)
@tuxs IR




Register Allocation[Z 725/ i)

* In TAC, there are an unlimited number of variables
— On a physical machine there are a small number of registers

* Register allocation is the process of assigning variables to
registers and managing data transfer in and out of
registers

— How to assign variables to finitely many registers?
— What to do when it can't be done?
- How to do so efficiently?

* Using registers intelligently is a critical step in any
compiler
— Accesses to memory are costly, even with caches
— A good register allocator can generate code orders of
magnitude better than a bad register allocator




Register Allocation (cont.)

* Goals of register allocation
- Keep frequently accessed variables in registers
— Keep variables in registers only as long as they are live

* Local register allocation[J7 ]
— Allocate registers basic block by basic block
- Makes decisions on a per-block basis (hence ‘local’)

* Global register allocation[4: 5]

- Makes global decisions about register allocation such that
o Var to reg mappings remain consistent across blocks
o Structure of CFG is taken into account on decisions

* Three well-known register allocation algorithms
— Graph coloring allocator[H% 1]
— Linear scan allocator[g {4 F9F#]
— LP (Integer Linear Programming) allocator[#& %2k 4 5 kil

»Q‘GLZ



Graph Coloring[&# )

* Register interference graph (RIG)[#H%Z E]
— Each node represents a variable
- An edge between two nodes V, and V, represents an
interference in live ranges[y& ik i1 /4= 73]
* Based on RIG,

— Two variables can be allocated in the same register if there is no
edge between them [ L HE, F R — 2747 48]
- Otherwise, they cannot be allocated in the same register

* Problem of register allocation maps to graph coloring
— Once solved, k colors can be mapped back to k registers
— If the graph is k-colorable, it’s k-register-allocatable

a
R2

f = L

e A\ B C

\/R2

R3




Register Spilling[ 277 28 1)

* Determining whether a graph is k-colorable is NP-
complete
- Therefore, problem of k-register allocation is NP-complete

- In practice: use heuristic polynomial algorithm that gives close
to optimal allocations most of the time

— Chaitin’s graph coloring is a popular heuristic algorithm
o E.g. most backends of GCC use Chaitin’s algorithm

* What if k-register allocation does not exist?
— Spill a variable to memory to reduce RIG and try again
— Spilled var stays in memory and is not allocated a reg

* Spilling is slow
— Placed into memory, loaded into register when needed, and
written back to memory when no longer used

() Nl




Peephole Optimization[@ifLi4k]

* Optimization ways
— Usual: produce good code through careful inst selection and
register allocation

— Alternative: generate naive target code and then improve
* A simple but effective technique for locally improving the

target code[1R FmEERIPLAL, 1E0] B8+ KM BE IR ORTETH]
— Done by examining a sliding window of target instructions

(called peephole) and replacing instruction sequences within
the peephole by a shorter or faster sequence, whenever psbl

— Can also be applied directly after IR generation to improve IR

* Example transformations ifa<bgotoll

- Redundant-instruction elimination

c e . L1: goto L2
- Flow-of-control optimizations | .
. . o . ump tOJumps

— Algebraic smphﬂcgtmns if a < b goto L2

— Use of machine idioms
@ tuxs L1: goto L2 IR




LLVM

e [lc: LLVM static compiler
- Input: ./l or .bc

— Output: assembly language for a specified
architecture

* End-user options

-march=<arch>: e.g., x86
-mcpu=<cpuname>: e.g., corei7-avx

* Tuning/Configuration Options

--print-after-isel: print generated machine code
after instruction selection (useful for debugging)

--regalloc=<allocator>: specify the register
allocator to use, basic/fast/greedy/pdqp

--spiller=<spiller>: simple/local

29

https://www.llvm.org/docs/CommandGuide/llc.html
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Optimizations[m 4]

* Code can be optimized at different levels with various
techniques
- Peephole, local, loop, global
- |R: local, global, common subexpression elimination, constant
folding and propagation, ...
— Target: instruction, register, peephole, ...

* Interactions between the various optimization techniques
- Some transformations may expose possibilities for others
— One opt. may obscure or remove possibilities for others

» Affect of compiler opts are intertwined and hard to
separate
- Finding optimal opt combinations is in itself research

— Compilers package opts that typically go together into levels

e.g -01, -02, -03
(&)t *“("‘; »02,-03) Diode
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