
Compilation Principle
编译原理

第25讲：目标代码生成(3)
张献伟

xianweiz.github.io
DCS290, 6/13/2023

https://xianweiz.github.io/

Review Questions
• Q1: is add a0, a0, 5(t0) a valid RISC-V instruction?

• Q2: what are fp and sp registers for?

• Q3: what is activation record?

• Q4: why a calling convention is needed?

• Q5: explain preserved registers.

2

NO. RISC-V is load-store architecture, i.e., only load and store can
access memory (all others must use registers).

Frame and stack pointer, indicating the stack bounds.

Caller and callee cooperate to effectively save registers across
function calling.

Registers that a function (callee) promises to leave unchanged. So
the caller can directly use them after a function call ends.

Info of a procedure execution, i.e. stack frame.

Detailed Calling Steps
• The caller sets up for the call via these steps[调用者]

− 1) Make space on stack for and save any caller-saved registers
− 2) Pass arguments by pushing them on the stack, one by one,

right to left[传参数]
− 3) Execute a jump to the function (saves the next inst in ra)

• The callee takes over and does the following[被调用者]
− 4) Make space on stack for and save values of fp and ra
− 5) Configure frame pointer by setting fp to base of frame
− 6) Allocate space for stack frame (total space required for all

local and temporary variables)
− 7) Execute function body, code can access params at positive

offset from fp, locals/temps at negative offsets from fp

3
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Temporaries
Local variables
Saved Caller/Callee Register Values
Saved Caller’s Return Address ($ra)
Saved Caller’s AR Frame Pointer ($FP)
Parameters
Return Value

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Detailed Calling Steps (cont.)
• When ready to exit, the callee does following[调用退出]

− 8) Assign the return value (if any) to a0[返回值]
− 9) Pop stack frame off the stack (locals/temps/saved regs)
− 10) Restore the value of fp and ra
− 11) Jump to the address saved in ra

• When control returns to the caller, it cleans up from the
call with the steps[调用返回]

− 12) Pop the parameters from the stack
− 13) Restore value of any caller-saved registers, pops spill space

from stack

4
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Temporaries
Local variables
Saved Caller/Callee Register Values
Saved Caller’s Return Address ($ra)
Saved Caller’s AR Frame Pointer ($FP)
Parameters
Return Value

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Code Generation for Function Call
• The calling sequence is

the instructions (of both
caller and callee) to set
up a function invocation

• New instruction: jal label
− Jump to label, after

saving address of next
instruction in ra

− Actually, jal ra label
p Store PC+4 in ra
p Similar to jal x0 label for

jumping inside a loop

5

cgen(f(e1, …, en)):
pushes arguments (reverse order)
cgen(en)
addiu sp sp -4
sw a0 4(sp)
…
cgen(e1)
addiu sp sp -4
sw a0 4(sp)
saves FP
addiu sp sp -4
sw fp 4(sp)
pushes return address
addiu sp, sp, -4
sw ra, 4(sp)
begins new AR in stack
mv fp, sp
jumps to func entry (update ra)
jal f_entry

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Code Generation for Function Definition
• New instruction: jr reg

− Jump to address in register reg
− Acutally, jalr ra rd rmm, jump to rd + imm

p Set the PC to rd + imm

6

cgen(def f(x1,…,xn) = e):
f_entry: # save registers ra and si

cgen(e)
removes AR from stack
mv sp fp
pops return address
sw ra 4(sp)
addiu sp sp 4
pops old FP
lw fp 4(sp)
addiu sp sp 4
jumps to return address
jr ra

RISC-V uses jal to invoke a function
and jr to return from a function

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Code Generation for Variables
• The “variables” of a function are just its ‘parameters’

− They are all in the AR
− Pushed by the caller

• Problem: because the stack grows when intermediate
results are saved, the variables are not at a fixed offset
from sp

− Thus, access to locations in the stack frame cannot use sp-
relative addressing

• Solution: use the frame pointer fp instead
− Always points to the return address on the stack
− Since it does not move, it can be used to find the variables

7

Example
• Local variables are referenced from an offset from fp

− fp is pointing to ra (return address)

• For a function def f(x,y) = e the activation and frame
pointer are set up as follows:

8

y
x

Old FP
Return addr

Local variables
Temporaries

…sp

fp

x: +4($fp)
y: +8($fp)
First local variable: -8($fp)

+8(fp)
+12(fp)

-4(fp)

The parameters are pushed right to left by the caller
The locals are pushed left to right by the callee

Example

9

double fun1(int p1, double p2, int p3) {
int i, j;
res = fun2(p1*p2, j);
return res;

}

p3

p2

p1

Old FP

Return addr

i

jsp

fp

double fun2(double ar, int ib) {
int i, r1;
double res;
…
return res;

} fp

sp

ib

ar

Old FP

Return addr

i

r1

res

Code Generation for OO
• Objects are like structs in C

− Objects are laid out in contiguous memory
− Each member variable is stored at a fixed offset in object

• Unlike structs, objects have member methods
• Two types of member methods:

− Nonvirtual member methods: cannot be overridden
Parent obj = new Child();
obj.nonvirtual(); // Parent::nonvirtual() called
Method called depends on (static) reference type
Compiler can decide call targets statically

− Virtual member methods: can be overridden by child class
Parent obj = new Child();
obj.virtual(); // Child::virtual() called
Method called depends on (runtime) type of object
Need to call different targets depending on runtime type

10
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Static and Dynamic Dispatch
• Dispatch: to send to a particular place for a purpose

− I.e., to jump to a (particular) function
• Static Dispatch: selects call target at compile time

− Nonvirtual methods implemented using static dispatch
− Implication for code generation:

p Can hard code function address into binary

• Dynamic Dispatch: selects call target at runtime
− Virtual methods implemented using dynamic dispatch
− Implication for code generation:

p Must generate code to select correct call target

• How?
− At compile time, generate a dispatch table for each class,

containing call targets for all virtual methods of that class
− At runtime, each object has a pointer to its dispatch table,

which is indexed into to find call target for its runtime type
11

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Typical Object Layout

• Class tag is used for dynamic type checking
• Dispatch ptr is a pointer to the dispatch table
• Compiler translates member accesses to offset accesses

if(...) obj = new Parent()
else obj = new Child();
obj.x = 10; // move 10, x_offset(obj)
obj.f2(); // call f2_offset(obj.dispatch_ptr)

• Offsets must remain identical regardless of object type
− How to layout object and dispatch table to make it so?

12
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Inheritance and Subclasses
• Invariant: the offset of a member variable or member

method is the same in a class and all of its subclasses

13

class A1 {
int x;
virtual void f1() { ... }
virtual void f2() { ... }

}
class A2 inherits A1 {

int y;
virtual void f2() { ... }

}
class A3 inherits A2 {

int z;
virtual void f3() { ... }

}

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

A Question …
• What is the output?

− 24 (on my 64-bit
MBA)

• How come?
− Fields (12B)

p char a: 1 --> 4
p int x: 4
p int y: 4

− Functions (8B)
p virtual: 8B

− Alignment
p 12+8 --> 24

14

[1] Determining the Size of a Class Object
[2] sizeof class in C++

https://www.cprogramming.com/tutorial/size_of_class_object.html
https://stackoverflow.com/questions/9439240/sizeof-class-with-int-function-virtual-function-in-c

Heap Memory Management
• Heap data

− Lives beyond the lifetime of the procedure that creates it
TreeNode* createTREE() {

TreeNode* p = (TreeNode*)malloc(sizeof(TreeNode));
return p;

}
− Cannot reclaim memory automatically using a stack

• Problem: when and how do we reclaim that memory?
• Two approaches

− Manual memory management
p Programmer inserts deallocation calls. E.g. “free(p)”

− Automatic memory management
p Runtime code automatically reclaims memory when it determines that

data is no longer needed
15

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Heap Memory Management (cont.)
• Manual memory management is typically more efficient

− Programmers know when data is no longer needed
p With automatic management, runtime must somehow detect when

data is no longer needed and recycle it, incurring overheads

• Automatic management leads to fewer bugs
− Disallowing programmer free() calls is essential for security

• Common functionality in both automatic and manual
− Runtime code maintains used/unused spaces in heap (e.g.

linked together in the form of a list)
− malloc(int size): move size bytes from unused to used
− free(void *p): move given memory from used to unused

• Only in automatic memory management
− Routines to perform detection of unused memory

16
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Heap Memory Management (cont.)
• Detection: determining an object will no longer be used

− In general, impossible for compiler to tell exactly
p Requires knowledge of program beyond what compiler has

− But compiler can tell when it can no longer be used

• An object x is reachable iff
− A named object contains a reference to x, or
− A reachable object y contains a reference to x

• An unreachable object is referred to as garbage
− Garbage can no longer be used and its memory can be

reclaimed
− This reclamation is process is called garbage collection

17
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Garbage Collection Schemes
• Reference Counting[引用计数]

− Maintain a reference counter inside each object
p Counts the number of references to object

− When counter becomes 0, the object is no longer usable
p Garbage collect unreachable object

• Tracing[追踪/标记清除]
− When the heap runs out of memory to allocate:

p 1. Pause the program
p 2. Trace through all reachable objects
p 3. Garbage collect remaining objects
p 4. Restart the program

18
https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

https://drive.google.com/file/d/1qe7it1bz7Ioaa8UBduaAv08XU8AFzpbt/view

Machine Optimizations[机器相关优化]

• After performing IR optimizations
− We need to further convert the optimized IR into the target

language (e.g. assembly, machine code)

• Specific machines features are taken into account to
produce code optimized for the particular architecture[考
虑特定的架构特性]

− E.g., specialized instructions, hardware pipeline abilities,
register details

• Typical machine optimizations[典型的优化方案]
− Instruction selection and scheduling: select and reorder insts

to implement the operators in IR
− Register allocation: map values to registers and manage
− Peephole optimization: locally improve the target code

19

Instruction Selection[指令选取]

• To find an efficient mapping from the IR of a program to a
target-specific assembly listing[IR到汇编的映射]

• Instruction selection is particularly important when
targeting architectures with CISC (e.g., x86)

− In these architectures there are typically several possible
implementations of the same IR operation, each with different
properties

− e.g., on x86 an addition of one can be implemented by an inc,
add, or lea instruction

20

MOV y,R0
ADD z,R0
MOV R0,x

x = y + z

MOV a,R0
ADD #1,R0
MOV R0,a

a = a + 1

MOV a,R0
INC R0
MOV R0,a

Instruction Cost[指令成本]

• Instruction cost = 1 + cost(source-mode) +
cost(destination-mode)

• Examples

21
https://www.cs.fsu.edu/~engelen/courses/COP562107/Ch9a.pdf

https://www.cs.fsu.edu/~engelen/courses/COP562107/Ch9a.pdf

Instruction Cost (cont.)
• Suppose we translate TAC x:=y+z to:

− MOV y, R0
− ADD z, R0
− MOV R0, x

• a := b + c

• a := a + 1

22

MOV a, R0
ADD #1, R0
MOV R0, a

MOV b, R0
ADD c, R0
MOV R0, a

MOV b, a
ADD c, a

MOV *R1, *R0
ADD *R2, *R0

cost = 6 cost = 6 cost = 2

Assuming R0, R1 and R2 contain
the addresses of a, b, and c

cost = 6

ADD #1, a

cost = 3

INC a

cost = 2

Instruction Scheduling[指令调度]

• Some facts
− Instructions take clock cycles to execute (latency)
− Modern machines issue several operations per cycle (Out-of-

Order execution)
− Cannot use results until ready, can do something else
− Execution time is order-dependent

• Goal: reorder the operations to minimize execution time
− Minimize wasted cycles
− Avoid spilling registers
− Improve locality

23

A = x * y;
B = A + 1;
C = y;

A = x * y;
C = y;
B = A + 1;

(Now C=y; can execute while waiting for A=x*y;)

Register Allocation[寄存器分配]

• In TAC, there are an unlimited number of variables
− On a physical machine there are a small number of registers

• Register allocation is the process of assigning variables to
registers and managing data transfer in and out of
registers

− How to assign variables to finitely many registers?
− What to do when it can't be done?
− How to do so efficiently?

• Using registers intelligently is a critical step in any
compiler

− Accesses to memory are costly, even with caches
− A good register allocator can generate code orders of

magnitude better than a bad register allocator
24

Register Allocation (cont.)
• Goals of register allocation

− Keep frequently accessed variables in registers
− Keep variables in registers only as long as they are live

• Local register allocation[局部]
− Allocate registers basic block by basic block
− Makes decisions on a per-block basis (hence ‘local’)

• Global register allocation[全局]
− Makes global decisions about register allocation such that

p Var to reg mappings remain consistent across blocks
p Structure of CFG is taken into account on decisions

• Three well-known register allocation algorithms
− Graph coloring allocator[图着色]
− Linear scan allocator[线性扫描]
− LP (Integer Linear Programming) allocator[整数线性规划]

25

Graph Coloring[图着色]
• Register interference graph (RIG)[相交图]

− Each node represents a variable
− An edge between two nodes V1 and V2 represents an

interference in live ranges[活跃期/生存期]

• Based on RIG,
− Two variables can be allocated in the same register if there is no

edge between them[若无边相连，可使用同一寄存器]
− Otherwise, they cannot be allocated in the same register

• Problem of register allocation maps to graph coloring
− Once solved, k colors can be mapped back to k registers
− If the graph is k-colorable, it’s k-register-allocatable

26

Register Spilling[寄存器溢出]

• Determining whether a graph is k-colorable is NP-
complete

− Therefore, problem of k-register allocation is NP-complete
− In practice: use heuristic polynomial algorithm that gives close

to optimal allocations most of the time
− Chaitin’s graph coloring is a popular heuristic algorithm

p E.g. most backends of GCC use Chaitin’s algorithm

• What if k-register allocation does not exist?
− Spill a variable to memory to reduce RIG and try again
− Spilled var stays in memory and is not allocated a reg

• Spilling is slow
− Placed into memory, loaded into register when needed, and

written back to memory when no longer used

27

Peephole Optimization[窥孔优化]

• Optimization ways
− Usual: produce good code through careful inst selection and

register allocation
− Alternative: generate naïve target code and then improve

• A simple but effective technique for locally improving the
target code[很局部的优化，但可能带来性能的极大提升]

− Done by examining a sliding window of target instructions
(called peephole) and replacing instruction sequences within
the peephole by a shorter or faster sequence, whenever psbl

− Can also be applied directly after IR generation to improve IR
• Example transformations

− Redundant-instruction elimination
− Flow-of-control optimizations
− Algebraic simplifications
− Use of machine idioms

28

if a < b goto L1
…

L1: goto L2

if a < b goto L2
…

L1: goto L2

Jump to jumps

LLVM
• llc: LLVM static compiler

− Input: .ll or .bc
− Output: assembly language for a specified

architecture

• End-user options
-march=<arch>: e.g., x86
-mcpu=<cpuname>: e.g., corei7-avx

• Tuning/Configuration Options
--print-after-isel: print generated machine code
after instruction selection (useful for debugging)
--regalloc=<allocator>: specify the register
allocator to use, basic/fast/greedy/pdqp
--spiller=<spiller>: simple/local

29
https://www.llvm.org/docs/CommandGuide/llc.html

https://www.llvm.org/docs/CommandGuide/llc.html

Optimizations[总结]
• Code can be optimized at different levels with various

techniques
− Peephole, local, loop, global
− IR: local, global, common subexpression elimination, constant

folding and propagation, …
− Target: instruction, register, peephole, …

• Interactions between the various optimization techniques
− Some transformations may expose possibilities for others
− One opt. may obscure or remove possibilities for others

• Affect of compiler opts are intertwined and hard to
separate

− Finding optimal opt combinations is in itself research
− Compilers package opts that typically go together into levels

(e.g -O1, -O2, -O3)
30

Final Exam
•考试时间:

− 6.27/周二，14:30 – 16:30

•关于试卷
−中文（专业术语标注英文）
− A、B卷，学院指定

•成绩计算
−期末：60%
−平时：40%

p 课堂：15%
p 作业：25%

31

•题型及分值
一、判断题（10分）

p 10小题，每小题1分
二、填空题（10分）

p 几个小题，10个空，每空1分
三、简答题（20 - 25分）

p 3小题，每小题5 - 10分
四、应用题（55 - 60分）

p 3小题，每小题10 - 25分

•主要内容
−词法分析
−语法分析
−语义分析
−代码生成及优化

