

Compilation Principle 编译原理

第3讲: 词法分析(3)

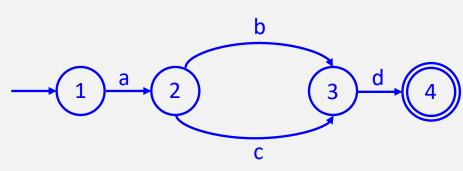
张献伟

xianweiz.github.io

DCS290, 3/2/2023

Review Questions

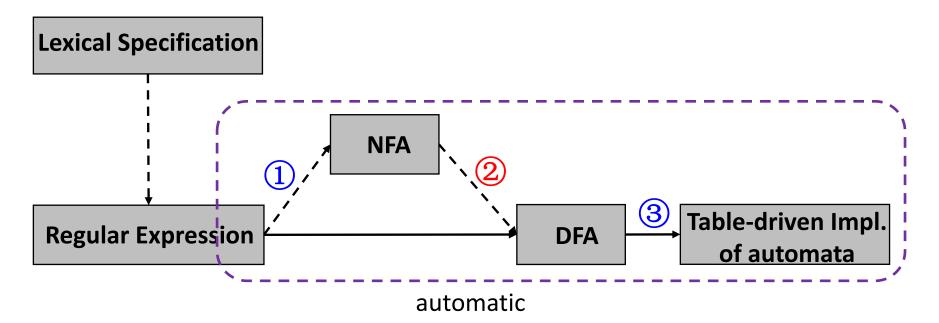
- Q1: usage of RE and FA in lexical analysis? RE: specify the token pattern; FA: implement the token recognizer
- Q2: the general workflow of RE to implementation?
 RE → NFA → DFA → Table
- Q3: the graph describes NFA or DFA? Why? NFA. A: ε-transition, B: 1-transition
- Q4: what's the use of M-Y-T algorithm? To convert RE to NFA.
- Q5: FA for the RE a(b|c)d



3

The Conversion Flow

- Outline: RE \rightarrow NFA \rightarrow DFA \rightarrow Table-driven Implementation
 - ③ Converting DFAs to table-driven implementations
 - 1 Converting REs to NFAs
 - 2 Converting NFAs to DFAs



NFA \rightarrow DFA: Steps

- The **initial state** of the DFA is the set of all states the NFA can be in without reading any input
- For any state {q_i,q_j,...,q_k} of the DFA and any input *a*, the next state of the DFA is the set of all states of the NFA that can result as next states if the NFA is in any of the states q_i,q_j,...,q_k when it reads *a*
 - This includes states that can be reached by reading *a* followed by any number of ε-transitions
 - Use this rule to keep adding new states and transitions until it is no longer possible to do so
- The **accepting states** of the DFA are those states that contain an accepting state of the NFA

NFA \rightarrow DFA: Algorithm

```
Initially, \varepsilon-closure(s<sub>0</sub>) is the only state in Dstates and it is unmarked

while there is an unmarked state T in Dstates do

mark T

for each input symbol a \in \Sigma do

U := \varepsilon-closure(move(T, a))

if U is not in Dstates then

add U as an unmarked state to Dstates

end if

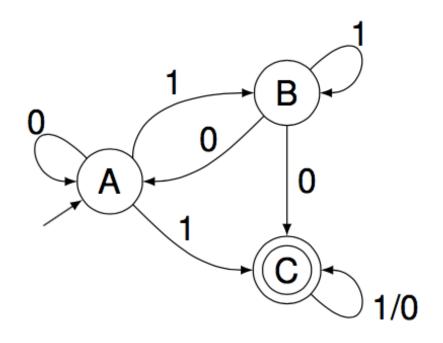
Dtran[T, a] := U

end do
```

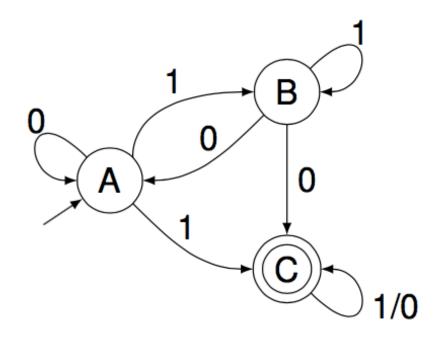
end do

- Operations on NFA states:
 - ε-closure(s): set of NFA states reachable from NFA state s on εtransitions alone
 - ε-closure(T): set of NFA states reachable from some NFA state s
 in set T on ε-transitions alone; = U_{s in T}ε-closure(s)
 - move(T, a): set of NFA states to which there is a transition on input symbol a from some state s in T

- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move(T, a*)) T: A, a: 0/1
- Stop, when there are no more new states

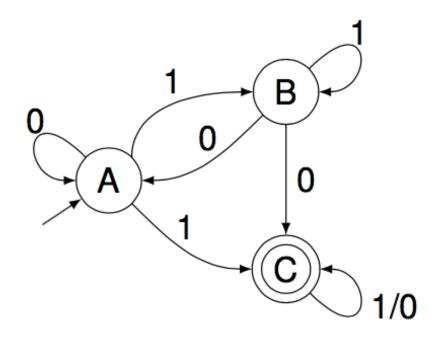


- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move(T, a*)) T: A, a: 0/1
- Stop, when there are no more new states



	0	1
A		

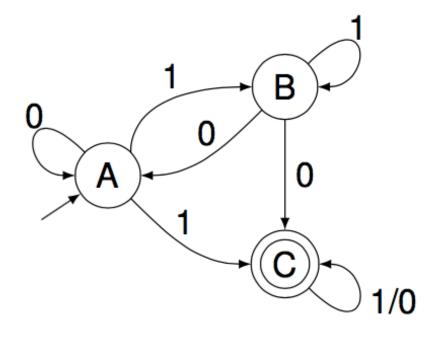
- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move(T, a*)) T: A, a: 0/1
- Stop, when there are no more new states

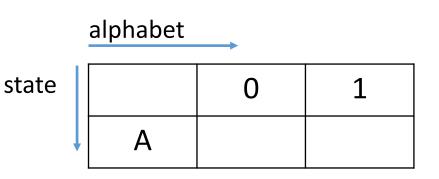


alphabet

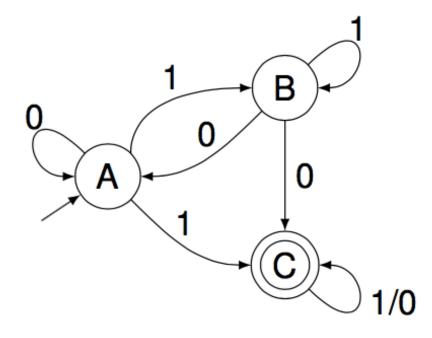
	0	1
А		

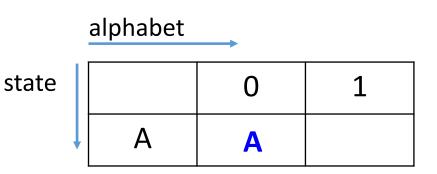
- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



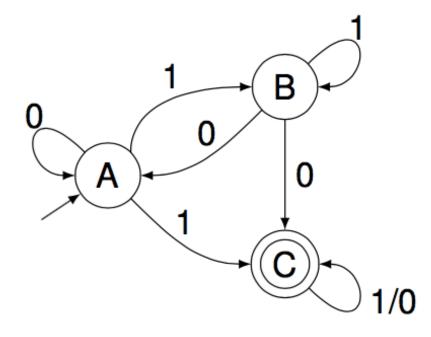


- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



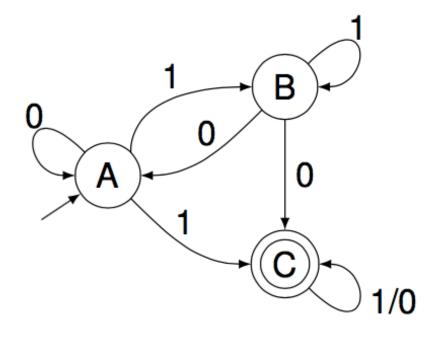


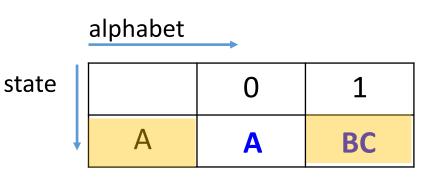
- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



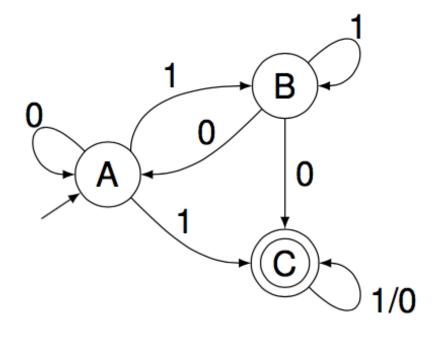
state A BC

- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



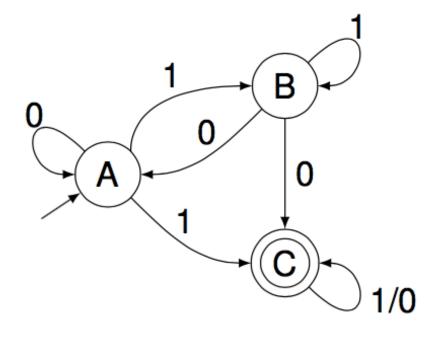


- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



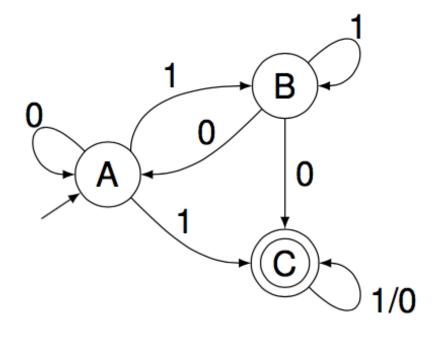
state 0 1 A A BC BC

- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move(T, a*)) T: A, a: 0/1
- Stop, when there are no more new states



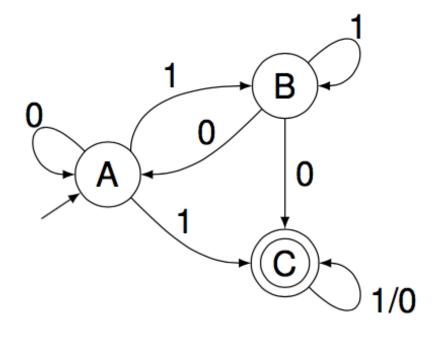
state O 1 A A BC BC AC

- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move(T, a*)) T: A, a: 0/1
- Stop, when there are no more new states



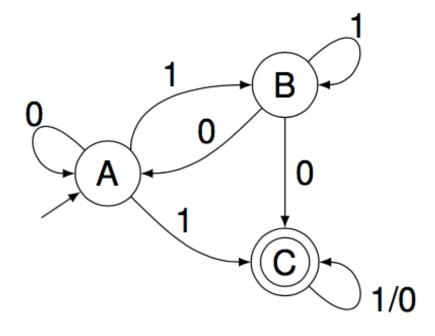
state O 1 A A BC BC AC BC

- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move(T, a*)) T: A, a: 0/1
- Stop, when there are no more new states



state O 1 A A BC BC AC BC

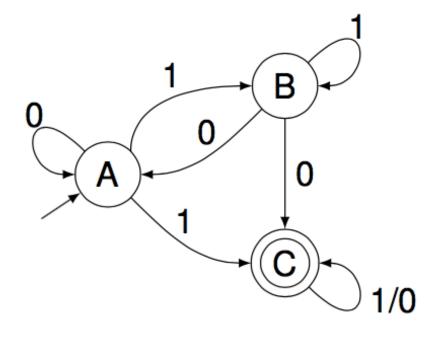
- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



state

	alphabet		
2		0	1
ļ	А	Α	BC
	BC	AC	BC
	AC		

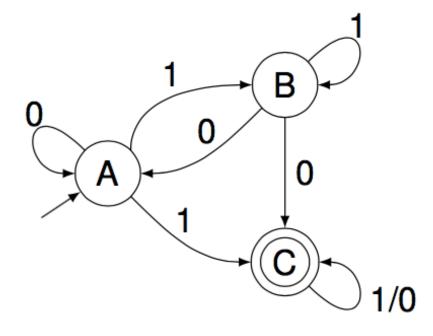
- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states



state

	alphabet		
e		0	1
ļ	А	Α	BC
	BC	AC	BC
	AC	AC	

- Start by constructing ε-closure of the start state
 ε-closure(A) = A
- Keep getting ε-closure(*move*(*T*, *a*)) *T*: A, *a*: 0/1
- Stop, when there are no more new states

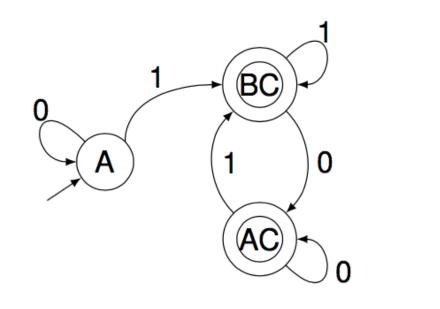


state

	alphabet		
2		0	1
ļ	А	Α	BC
	BC	AC	BC
	AC	AC	BC

NFA → DFA: Example (cont.)

- Mark the final states of the DFA
 - The accepting states of D are all those sets of N's states that include at least one accepting state of N



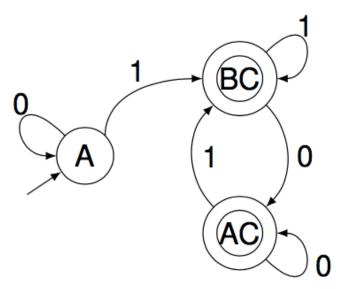
state

alphabet

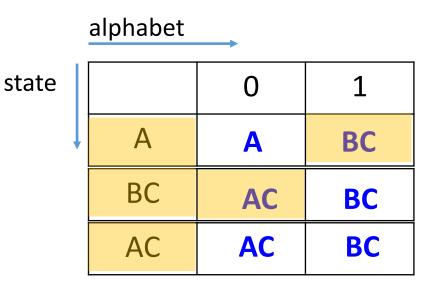
	-		
		0	1
ļ	А	Α	BC
	BC	AC	BC
	AC	AC	BC

NFA → DFA: Example (cont.)

- Mark the final states of the DFA
 - The accepting states of D are all those sets of N's states that include at least one accepting state of N



- Is the DFA minimal?
 - As few states as possible



NFA → DFA: Minimization[最小化]

- Any DFA can be converted to its minimum-state equivalent DFA
 - Discover sets of equivalent states
 - Represent each such set with just one state
- Two states are equivalent if and only if:
 - $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states
 - α -transitions to distinct sets \Rightarrow states must be in distinct sets

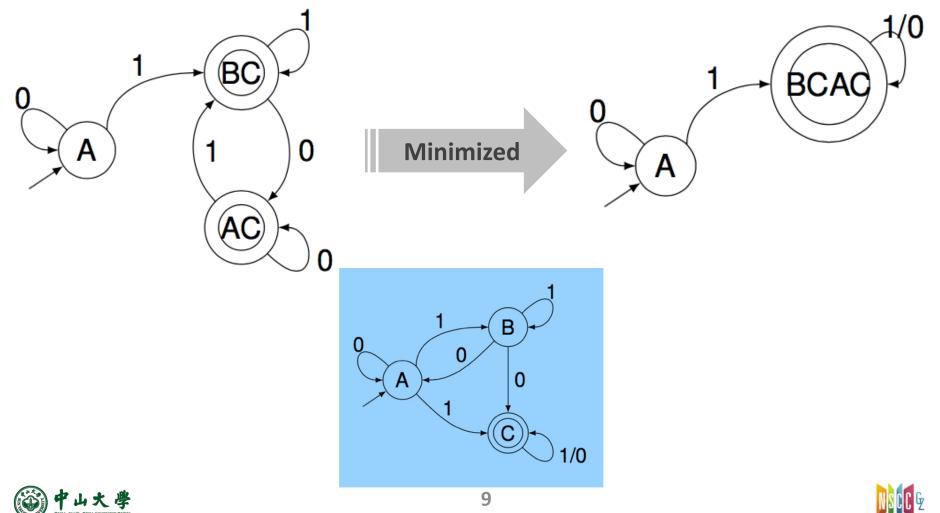
Initial: {A}, {BC, AC} BC I For {BC, AC} $For {BC, AC} {non-accepting states}, {accepting states}$ $<math>- BC on '0' \rightarrow AC, AC on '0' \rightarrow AC$ $- BC on '1' \rightarrow BC, AC on '1' \rightarrow BC$

> No way to distinguish BC from AC on any string starting with '0' or '1'

Final: {A}, {BCAC}

NFA \rightarrow DFA: Minimization (cont.)

- States BC and AC do not need differentiation
 - Should be merged into one



Minimization Algorithm

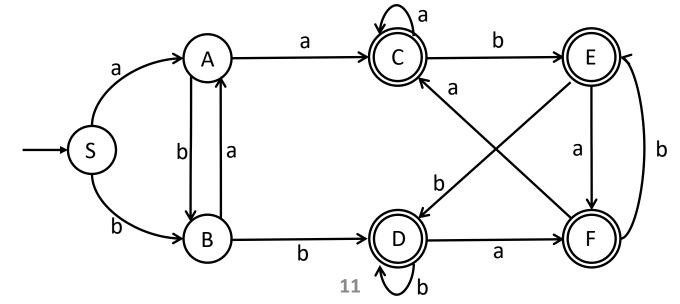
- The algorithm
 - Partitioning the states of a DFA into groups of states that cannot be distinguished (i.e., equivalent)
 - Each groups of states is then merged into a single state of the min-state DFA
- For a DFA $(\Sigma, S, n, F, \delta)$
 - The initial partition P₀, has two sets
 {F} and {S F}
 - Splitting a set (i.e., partitioning a set
 s by input symbol α)
 - □ Assume q_a and $q_b \in \mathbf{S}$, and $\delta(q_a, \alpha) = q_x$ and $\delta(q_b, \alpha) = q_y$
 - If q_x and q_y are not in the same set, then
 s must be split (i.e., α splits *s*)
 - Done state in the final DFA cannot have

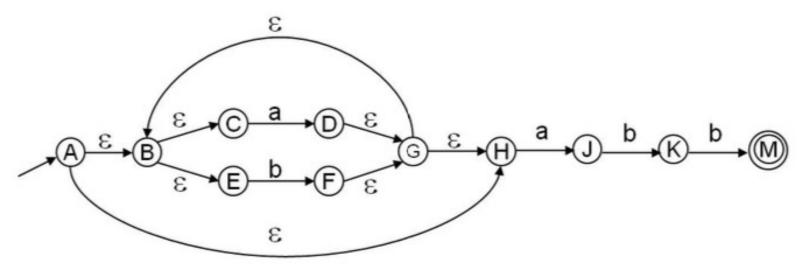
```
) 中山大學 two transitions on \alpha
```

```
P <- {F}, {S - F}
while (P is still changing)
T <- { }
for each state s \in P
for each \alpha \in \Sigma
partition s by \alpha into s_1 and s_2
T <- T U s_1 U s_2
if T \neq P then
P <- T
```


Example

- PO: s₁ = {S, A, B}, s₂ = {C, D, E, F}
- For s₁, further splits into {S}, {A}, {B}
 - a: S --> A \in s₁, A --> C \in s₂, B --> A \in s₁ \Longrightarrow a distincts s₁ => {S, B}, {A}
 - b: S --> B \in s₁, A --> B \in s₁, B --> D \in s₂ \Longrightarrow b distincts s₁ => {S}, {B}, {A}
- For s₂, all states are equivalent
 - a: C --> C \in s₂, D --> F \in s₂, E --> F \in s₂ , F --> C \in s₂ \Longrightarrow a doesn't
 - b: C --> E \in s₂, D --> D \in s₂, E --> D \in s₂ , F --> E \in s₂ \Longrightarrow b doesn't

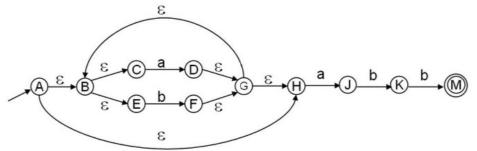




• Start state of the equivalent DFA

 $-\epsilon$ -closure(A) = {A, B, C, E, H} = A'

- ε-closure(move(A', a)) = ε-closure({D, J}) = {B, C, D, E, H, G, J} = B'
- ε-closure(move(A', b)) = ε-closure({F}) = {B, C, E, F, G, H} = C'

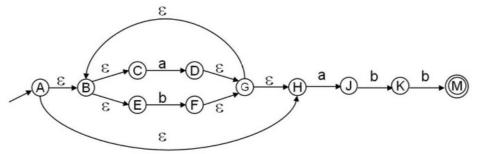


State table of the NFA \Rightarrow

NFA最对应的转换表

	ε	а	b
Α	BH		
В	CE		
С		D	
D	G		
E			F
F	G		
G	BH		
н		J	
I			
J			К
К			М
М			

Step 2: Update ε Column to ε-closure



e-closure of the NFA state
e.g., ε-closure(D) = {D,B,H,C,E}
求取ε闭包

	3	а	b
Α	ABHCE		
В	BCE		
С		D	
D	DBHCE		
E			F
F	FGBHCE		
G	GBHCE		
н		J	
I			
J			К
К			M
М			

Step 3: Update other cols based on the ε col



	З	а	b
Α	ABHCE A' for short	DJ	F
В	BCE	D	F
C		D	
D	DBHCE	DJ	F
E			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
I			
J			К
К			М
Μ			

	а	b
A'	DJ	F

	3	а	b
Α	ABHCE A' for short	DJ	F
В	BCE	D	F
С		D	
D	DBHCE	DJ	F
E			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
I			
J			К
К			Μ
М			

	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F

	3	а	b
Α	ABHCE A' for short	DJ	F
В	BCE	D	F
C		D	
D	DBHCE	DJ	F
E			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
I			
J			К
К			Μ
Μ			

	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM

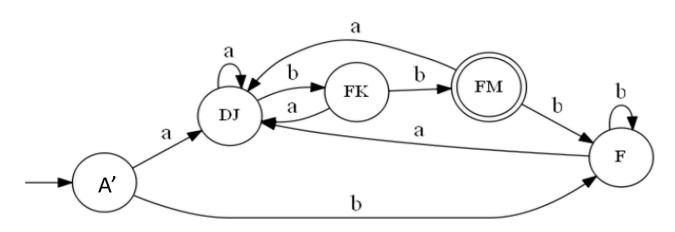
	3	а	b
Α	ABHCE A' for short	DJ	F
В	BCE	D	F
C		D	
D	DBHCE	DJ	F
E			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
Ι			
J			К
К			Μ
Μ			

	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

	3	а	b
Α	ABHCE A' for short	DJ	F
В	BCE	D	F
C		D	
D	DBHCE	DJ	F
E			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
I			
J			К
К			М
Μ			

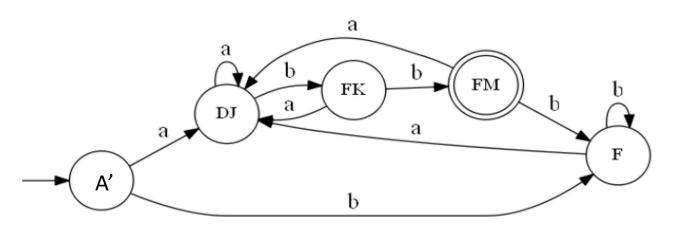
	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

• Is the DFA minimal?



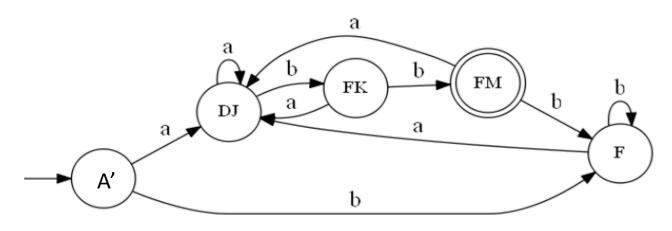
	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

- Is the DFA minimal?
 - States A' and F should be merged



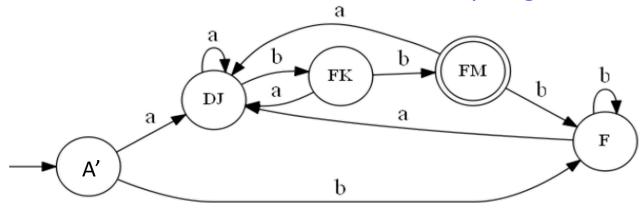
	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

- Is the DFA minimal?
 - States A' and F should be merged
- Should we merge states A' and FM?



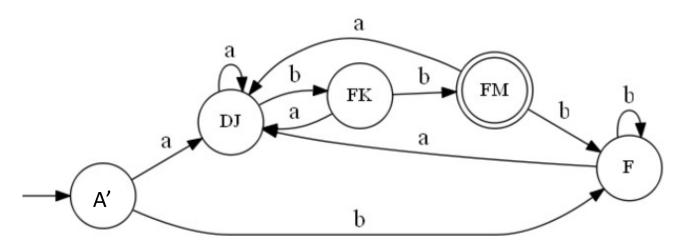
	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

- Is the DFA minimal?
 - States A' and F should be merged
- Should we merge states A' and FM?
 - NO. A' and FM are in different sets
 from the very beginning (FM is accepting, A' is not).

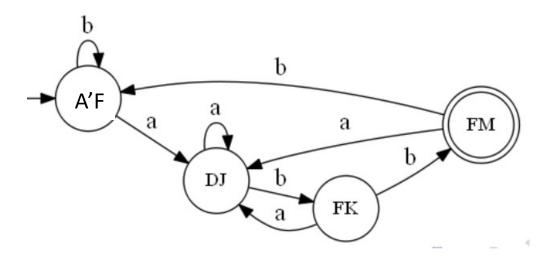


Step 5: (Optional) Minimize DFA

• Original DFA: before merging A' and F



• Minimized DFA: Do you see the original RE (a|b)*abb



NFA → DFA: Space Complexity[空间复杂度]

- NFA may be in many states at any time
- How many different possible states in DFA?
 - If there are N states in NFA, the DFA must be in some subset of those N states
 - How many non-empty subsets are there?

- 2^N-1

- The resulting DFA has O(2^N) space complexity, where N is number of original states in NFA
 - For real languages, the NFA and DFA have about same number of states

NFA → DFA: Time Complexity[时间复杂度]

- DFA execution
 - Requires O(|X|) steps, where |X| is the input length
 - Each step takes constant time

If current state is S and input is c, then read T[S, c]

- Update current state to state T[S, c]
- Time complexity = O(|X|)
- NFA execution
 - Requires O(|X|) steps, where |X| is the input length
 - Anyway, the input symbols should be completely processed
 - Each step takes $O(N^2)$ time, where N is the number of states
 - Current state is a set of potential states, up to N
 - On input c, must union all T[S_{potential},c], up to N times
 - Each union operation takes O(N) time
 - Time complexity = O(|X|*N²)

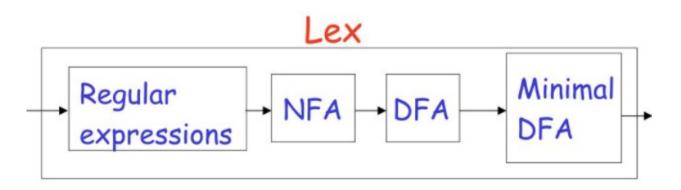
Non-deterministic: form current state, your can transit to any (including itself)

Deterministic:

unique transition

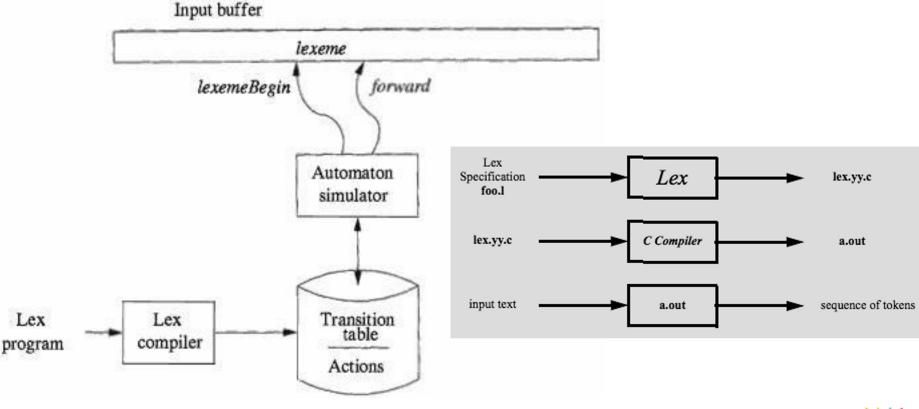
Implementation in Practice[实际实现]

- Lex: RE \rightarrow NFA \rightarrow DFA \rightarrow Table
 - Converts regular expressions to NFA
 - Converts NFA to DFA
 - Performs DFA state minimization to reduce space
 - Generate the transition table from DFA
 - Performs table compression to further reduce space
- Most other automated lexers also choose DFA over NFA
 - Trade off space for speed



Lexical Analyzer Generated by Lex

- A Lex program is turned into a transition table and actions, which are used by a FA simulator
- Automaton recognizes matching any of the patterns



22

Lex: Example

- Three patterns, three NFAs
- Combine three NFAs into a single NFA
 - Add start state 0 and ε-transitions

