1' e KB HENER (SRR)
N YAT-SEN UNIVERSITY SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

7 1°F R B

= N

B3 LS
INGE

xianweiz.github.

M (3)

10

DCS290, 3/2/2023

Dhig

https://xianweiz.github.io/

Review Questions

e Q1: usage of RE and FA in lexical analysis?

RE: specify the token pattern; FA: implement the token recognizer
* Q2: the general workflow of RE to implementation?

RE > NFA - DFA - Table

* Q3:the graph describes NFA or DFA? Why?
NFA. A: e-transition, B: 1-transition

* Q4: what’s the use of M-Y-T algorlthm?@
To convert RE to NFA.

e Q5: FA for the RE a(b|c)d

ny:

».‘:ﬂ%

The Conversion Flow

e Outline: RE &> NFA - DFA = Table-driven

Implementation

— (3) Converting DFAs to table-driven implementations
- (U Converting REs to NFAs

- (2) Converting NFAs to DFAs

Lexical Specification

|
|
I [
| 1
| I
|

I
5 .

Regular Express.'ion

G - S e e ey

| Table-driven Impl.

of automata

e o - o = =

o E—— E S S S S S B EEE EEE B B B S EEe SEe GEa G B B B e SEe Gae Bae B B e e e e o

automatic

3

NFA = DFA: Steps

* The initial state of the DFA is the set of all states the NFA
can be in without reading any input

* For any state {q;,q; ,...,qy} of the DFA and any input a, the
next state of the DFA is the set of all states of the NFA
that can result as next states if the NFA is in any of the
states q;,q; ,...,q, when it reads a

— This includes states that can be reached by reading a followed
by any number of e-transitions

— Use this rule to keep adding new states and transitions until it is
no longer possible to do so

* The accepting states of the DFA are those states that
contain an accepting state of the NFA

@)t ux 2 . Dhig:
2 sttt ps://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

NFA = DFA: Algorithm

Initially, €-closure(s,) is the only state in Dstates and it 1s unmarked
while there is an unmarked state 7 in Dstates do
mark T
for each input symbol ¢ € X do
U := e-closure(move(T,a))
if U is not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran|T,a] .= U
end do
end do

* Operations on NFA states:

— e-closure(s): set of NFA states reachable from NFA state s on &-
transitions alone

— e-closure(T): set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = U, te-closure(s)

- move(T, a): set of NFA states to which there is a transition on
input symbol a from some statesin T

AT el
@) tuxe 5 i

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

6 Dhge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

6 Dhge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

+ Keep getting e-closure(move(T, a))— 11+~ @:0/1

e Stop, when there are no more new states

alphabet

Dhge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet

Dhge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet

Dhge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet

Dhge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet

D

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet
0 1
A A BC
BC

D

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC

D

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet

BC AC BC

D

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC | BC

D

NFA = DFA: Example

e Start by constructing e-closure of the start state

— e-closure(A) = A

» Keep getting e-closure(move(T, a))

T:A a:0/1

e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC | BC
AC

D

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC | BC
AC AC

D

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

T:A a:0/1

» Keep getting e-closure(move(T, a))

e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

D

NFA = DFA: Example (cont.)

* Mark the final states of the DFA

- The accepting states of D are all those sets of N’s states that
include at least one accepting state of N

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

Dhge

NFA = DFA: Example (cont.)

* Mark the final states of the DFA

- The accepting states of D are all those sets of N’s states that
include at least one accepting state of N

0
’ 0 state |
0
e |Is the DFA minimal?

— As few states as possible

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

Dhge

NFA = DFA: Minimization{&/Mk]

* Any DFA can be converted to its minimum-state
equivalent DFA
— Discover sets of equivalent states
- Represent each such set with just one state

e Two states are equivalent if and only if:
- VYa € X, transitions on a lead to equivalent states
— a-transitions to distinct sets = states must be in distinct sets

Initial: {A}, {BC, AC}
Initial sets:

For {BC AC} {non-accepting states}, {accepting states}
-BCon ‘0’ =2 AC, ACon ‘0" =2 AC
- BCon ‘1’ 2 BC, ACon ‘1’ =2 BC
— No way to distinguish BC from AC on

‘ any string starting with ‘0" or ‘1’
0 FI n httDS /i:ér}é cs{.lmass%;l‘oss/m() slides/06.pdf

https://people.cs.umass.edu/~moss/610-slides/06.pdf

NFA = DFA: Minimization (cont.)

e States BC and AC do not need differentiation
— Should be merged into one

Minimized

5 E el

Minimization Algorithm

* The algorithm

— Partitioning the states of a DFA into groups of states that cannot
be distinguished (i.e., equivalent)

— Each groups of states is then merged into a single state of the
min-state DFA

e Fora DFA (5,S,n,F 8) P<-{F}, {S-F}

. .. while (P is still changing)
- The initial partition Py, has two sets | 1.)

{F}and {S - F} for each state s € P

- Splitting a set (i.e., partitioning a set| foreacha €2

. partition s by a into s; and s,
s by input symbol a) T<-TUs Us,

o Assume g, and g, €S, and 6(q,, a) =| if T#Pthen
qx and 6(qp, @) = q, P<-T

o If g, and g, are not in the same set, then
S must be split (i.e., a splits 5)

o One state in the final DFA cannot have
(@) T 4 X 2 two transitions on «

\ ’pEuL
https://people.cs.umass.edu/~moss/610-slides/06.pdf Py

https://people.cs.umass.edu/~moss/610-slides/06.pdf

Example

¢ PO: 51 - {S, A, B}; 52 = {C) D) El F}

* For sq, further splits into {S}, {A}, {B}
-a:S-->A€s;,,A-->CE€Es,, B-->A €s;, = adistincts s, => {S, B}, {A}
-b:S-->B€s;,,A-->B€s;, B-->D €s, = bdistincts s; => {S}, {B}, {A}

* Fors,, all states are equivalent
-a:C->Cegs, D->F€s,, E-->F€s,,F-->CEs, = adoesn’t
-b:C-->E€s, D-->DEs,,E-->DEs,,F-->EE€s,= bdoesn’t

NFA = DFA: More Example

(o

e Start state of the equivalent DFA
— e-closure(A) ={A, B, C, E, H} = A

* e-closure(move(A’, a)) = e-closure({D, J}) ={B, C, D, E, H, G,
J}=PB
e e-closure(move(A’, b)) = e-closure({F}) ={B, C, E, F, G, H} =

= IR

Step 1: Construct the NFA Table

State table of the NFA =

NFAON] N e 43R

5 b
A BH
B CE
C
D G
E F
F G
G BH
H
|
J K
K M
M

13

Step 2: Update € Column to e-closure

&

e-closure of the NFA state
e.g., e-closure(D) = {D,B,H,C,E}
SR H e A9

5 b

A ABHCE

B BCE

C

D DBHCE

E F
— F FGBHCE

G GBHCE

H

|

J K

K M

M

14

Step 3: Update other cols based on the € col

frored)
.b’gabb

Get the transitions of the € col .

e.g., {D,B,H,C,E} --a--> {D,J}

/ € a b
| A[]| ABHCE DJ F
| B/ BCE D F
¢/ D
\n DBHCE DJ F
E F
F | FGBHCE DJ F
A | GBHCE DJ F
[H| J
[1]
[} K
[| M

Step 4: Construct the DFA Table

€ a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F | FGBHCE DJ F
G GBHCE DJ F
H J
l
J K
K M
M

16

Step 4: Construct the DFA Table

€ a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F | FGBHCE DJ F
G GBHCE DJ F
H J
l
J K
K M
M

16

Step 4: Construct the DFA Table

a b
A DJ F
DJ DJ FK
F D) F

€ a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F | FGBHCE DJ F
G GBHCE DJ F
H J
l
J K
K M
M

16

Step 4: Construct the DFA Table

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM

€ a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F | FGBHCE DJ F
G GBHCE DJ F
H J
l
J K
K M
M

16

Step 4: Construct the DFA Table

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

€ a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F | FGBHCE DJ F
G GBHCE DJ F
H J
l
J K
K M
M

16

Step 4: Construct the DFA Table(cont.)

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

e |s the DFA minimal?

Step 4: Construct the DFA Table(cont.)

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

e |s the DFA minimal?

- States A’ and F should be merged

Step 4: Construct the DFA Table(cont.)

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

* |s the DFA minimal?
- States A’ and F should be merged

* Should we merge states A’ and
FM?

Step 4: Construct the DFA Table(cont.)

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

* |s the DFA minimal?
- States A’ and F should be merged

* Should we merge states A’ and
FM?
- NO. A’ and FM are in different sets
from the very beginning (FM is
accepting, A’ is not).

Step 5: (Optional) Minimize DFA

* Original DFA: before merging A’ and F

NFA = DFA: Space Complexity[4s[a] & 44]

* NFA may be in many states at any time

* How many different possible states in DFA?
— If there are N states in NFA, the DFA must be in some subset of
those N states
- How many non-empty subsets are there?

_ONq
* The resulting DFA has O(2N) space complexity, where N is
number of original states in NFA

— For real languages, the NFA and DFA have about same number
of states

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

NFA = DFA: Time Complexity[it & & 4%)

* DFA execution
— Requires O(|X]|) steps, where |X| is the input length
— Each step takes constant time

o If current state is S and input is ¢, then read TIS, c]
o Update current state to state TI[S, c]

- Time complexity = O(|X|)

Deterministic:
unique transition

* NFA execution
— Requires O(|X]|) steps, where |X| is the input length
o Anyway, the input symbols should be completely processed

— Each step takes O(N?) time, where N is the number of states

o Current state is a set of potential states, up to N Non-deterministic:
form current state,
your can transit to any

(including itself)

o Oninput ¢, must union all T[S tential ,Cl, Up to N times
* Each union operation takes O(N) time

— Time complexity = O(|X| *N?)

@ tuxs 20 IR

Implementation in Practice[szkzszi]

* Lex: RE 2 NFA - DFA = Table

— Converts regular expressions to NFA

— Converts NFA to DFA

— Performs DFA state minimization to reduce space

— Generate the transition table from DFA

— Performs table compression to further reduce space

* Most other automated lexers also choose DFA over NFA
— Trade off space for speed

Lex

| 4 . . l
_| | Regular L NFA IDFA Minima i

expressions | | DFA

@ turs = INE

Lexical Analyzer Generated by Lex

* A Lex program is turned into a transition table and
actions, which are used by a FA simulator

* Automaton recognizes matching any of the patterns

Input buffer

TR
~earea 4
lexemeBegin \ | forward

_
\

}

RROLISSOE K L

Lex
i Automton ' Speciﬁcadon ﬁq Lex [ﬁ lex.y)'.c

| simulator | e
! |

Lo T_
|
it

r\\ -";.‘
| S AT I INPUE TEXT — a.out —e- sequence of tokens

lex._vy-c ﬁ' [& Compi‘er [ﬁ a.out

Lex . Lex 1 ' Transition
> ———— table |

program compiler I T oot

22 Dhge

Lex: Example

* Three patterns, three NFAs

* Combine three NFAs into a single NFA
— Add start state O and s-transitions

start : a @

a { action, } o
abb { action,) _>O_>@b_>_>_>@
a*b+ | action, }

start

(>—>®
start >® a >O b >@
Any one is possbile, if you)C\
haven’t read any input symbol
23

