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Quiz Questions
• Q1: write RE for binary numbers that are multipliers of 4?

• Q2: lexical analysis of ‘if (a != b’?

• Q3: regard lexer implementation, why NFA à DFA?

• Q4: RE of the FA?

• Q5: start state of the equivalent DFA?

2

ε-closure(A) = {A, B}

(0|1)*00

ABC

(0|1)*1

AB ABC

ε-closure(move({AB}, 0)) = ε-closure({A}) ⟹ {A, B} 

ε-closure(move({AB}, 1)) = ε-closure({A,C}) ⟹ {A, B, C} 

AB
0 1

ABC

Trade-off space for speed; DFA is more efficient

0

1AB

1

ABC
0

AB

(keyword, ‘if’), (sym, ‘(’), (id, ‘a’), (sym, ‘!=‘), (id, ‘b’)

0/1 ε

ε 1A B C



Lexical Analyzer Generated by Lex
• A Lex program is turned into a transition table and 

actions, which are used by a FA simulator
• Automaton recognizes matching any of the patterns
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Lex: Example
• Three patterns, three NFAs
• Combine three NFAs into a single NFA

− Add start state 0 and ε-transitions
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Any one is possbile, if you 
haven’t read any input symbol

⟹



Lex: Example (cont.)
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$flex lex.l
$clang lex.yy.c -o mylex -ll



Lex: Example (cont.)
• NFA’s for lexical analyzer
• Input: aaba

− ε-closure(0) = {0, 1, 3, 7}
− Empty states after reading the fourth input symbol

p There are no transitions out of state 8
p Back up, looking for a set of states that include an accepting state

− State 8: a*b+ has been matched
p Select aab as the lexeme, execute action3

p Return to parser indicating that token w/ pattern p3=a*b+ has been found
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aaba (a*b+, aab), (a, a)



Lex: Example (cont.)
• DFA’s for lexical analyzer
• Input: abba

− Sequence of states entered: 0137 à 247 à 58 à 68
− At the final a, there is no transition out of state 68

p 68 itself is an accepting state that reports pattern p2 = abb
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How Much Should We Match?[匹配多少]

• In general, find the longest match possible
− We have seen examples
− One more example: input string aabbb …

p Have many prefixes that match the third pattern
p Continue reading b’s until another a is met
p Report the lexeme to be the intial a’s followed by as many b’s as there 

are

• If same length, rule appearing first takes precedence
− String abb matches both the second and third
− We consider it as a lexeme for p2, since that pattern listed first
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<ptn2, abb> <ptn3, abb>



How to Match Keywords?[匹配关键字]

• Example: to recognize the following tokens
− Identifiers: letter(letter|digit)*
− Keywords: if, then, else

• Approach 1: make REs for keywords and place them 
before REs for identifiers so that they will take 
precedence

− Will result in more bloated finite state machine

• Approach 2: recognize keywords and identifiers using 
same RE but differentiate using special keyword table

− Will result in more streamlined finite state machine 
− But extra table lookup is required

• Usually approach 2 is more efficient than 1, but you can 
implement approach 1 in your projects for simplicity
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The Conversion Flow[转换流程]
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Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

③
① ②

• Outline: RE à NFA à DFA à Table-driven 
Implementation

−③ Converting DFAs to table-driven implementations
−① Converting REs to NFAs (M-Y-T algorithm)
−② Converting NFAs to DFAs (subset construction)
−③’ DFA minimization (partition algorithm)



Beyond Regular Languages
• Regular languages are expressive enough for tokens

− Can express identifiers, strings, comments, etc.

• However, it is the weakest (least expressive) language
− Many languages are not regular
− C programming language is not

p The language matching braces “{{{...}}}” is also not
− FA cannot count # of times char encountered

p L = {anbn | n ≥ 1}
p Crucial for analyzing languages with nested structures (e.g. nested for 

loop in C language)

• We need a more powerful language for parsing
− Later, we will discuss context-free languages (CFGs)
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RE/FA is NOT Powerful Enough
• L = {anbn | n≥1} is NOT a Regular Language

− Suppose L were the language defined by regular expression
− Then we could construct a DFA D with k states to accept L
− Since D has only k states, for an input beginning with more than k a’s, 

D must enter some state twice, say si
− Suppose that the path from si back to itself is labeled with aj-i

− Since aibi is in L, there must be a path labeled bi from si to an 
accepting state f

− But, there is also a path from s0 through si to f labelled ajbi

− Thus, D also accepts ajbi, which is not in L, contradicting the 
assumption that L is the language accepted by D
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s0 si f…path labeled ai …path labeled bi

path labeled aj-i…



RE/FA is NOT Powerful Enough(cont.)
• L = {anbn | n≥1} is not a Regular Language

− Proof à Pumping Lemma (泵引理)
− FA does not have any memory (FA cannot count)

p The above L requires to keep count of a’s before seeing b’s

• Matching parenthesis is not a RL
• Any language with nested structure is not a RL

− if … if … else … else

• Regular Languages
− Weakest formal languages that are widely used
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Compilation Phases[编译阶段]
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Intermediate 
Code Generation
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Token Stream

Syntax Tree

Syntax Tree

IR
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Example
• $vim test.c

• $clang -cc1 -dump-tokens ./test.c
• $clang -o test test.c
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void main() {
int;
int a,;
int b, c;

}



Syntax Analysis[语法分析]

• Second phase of compilation[第二阶段]
− Also called as parser

• Parser obtains a string of tokens from the lexical 
analyzer[以token作为输入]

− Lexical analyzer reads the chars of the source program, groups 
them into lexically meaningful units called lexemes

− and produces as output tokens representing these lexemes
p Token: <token name, attribute value>

− Token names are used by parser for syntax analysis
p tokens à parse tree/AST

• Parse tree[分析树]
− Graphically represent the syntax structure of the token stream
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Parsing Example
• Input: if(x==y) … else …[源程序输入]

• Parser input (Lexical output)[语法分析输入]

• Parser output[语法分析输出]
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KEY(IF) ‘(‘ ID(x) OP(‘==‘) ID(y) ‘)’ … KEY(ELSE) …



Parsing Example (cont.)
• Example: <id, x> <op, *> <op, %>

− Is it a valid token stream in C language? 
− Is it a valid statement in C language (x *% )?

• Not every sequence of tokens are valid
− Parser must distinguish between valid and invalid token 

sequence

• We need a method to describe what is valid sequence?
− To specify the syntax of a programming language
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NO



How to Specify Syntax?
• How can we specify a syntax with nested structures? 

− Is it possible to use RE/FA? 
− L(Regular Expression) ≡ L(Finite Automata)

• RE/FA is not powerful enough
− L = {anbn | n≥1} is not a Regular Language

• Example: matching parenthesis: # of ‘(‘ == # of ‘)’
− (x+y)*z
− ((x+y)+y)*z
− (...(((x+y)+y)+y)...)
− ((x+y)+y)+y)*z
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✓
✓
✓
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What Language Do We Need?
• C-language syntax: Context Free Language (CFL)[上下文无
关语言]

− A broader category of languages that includes languages with 
nested structures

• Before discussing CFL, we need to learn a more general 
way of specifying languages than RE, called Grammars[文
法]

− Can specify both RL and CFL
− and more ...

• Everything that can be described by a regular expression 
can also be described by a grammar

− Grammars are most useful for describing nested structures
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e.g., ‘else’ is always ‘else’, wherever you place it



Concepts
• Language[语言]

− Set of strings over alphabet
p String: finite sequence of symbols
p Alphabet: finite set of symbols

• Grammar[文法]
− To systematically describe the syntax of programming language 

constructs like expressions and statements

• Syntax[语法]
− Describes the proper form of the programs
− Specified by grammar
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Grammar[文法]

• Formal definition[形式化定义]: 4 components {T, N, s, δ}
• T: set of terminal symbols[终结符]

− Basic symbols from which strings are formed
− Essentially tokens from lexer - leaves in the parse tree

• N: set of non-terminal symbols[非终结符]
− Each represents a set of strings of terminals – internal nodes
− E.g.: declaration, statement, loop, ...

• s: start symbol[开始符号]
− One of the non-terminals

• 𝜎: set of productions[产生式]
− Specify the manner in which the terminals and non-terminals 

can be combined to to form strings
− “LHS → RHS”: left-hand-side produces right-hand-side
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Grammar (cont.)
• Usually, we can just write the 𝜎[简写]

• Merge rules sharing the same LHS[规则合并]
− ⍺à β1, ⍺à β2 , …, ⍺à βn

− ⍺à β1 | β2 | … | βn
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G = ({id, +, *, (, )} , {E}, E, P )
P = { E à E + E,

E à E * E,
E à (E),
E à id }

G:  E à E + E,
E à E * E,
E à (E),
E à id }

E à E + E | E * E | (E) | id



Syntax Analysis[语法分析]

• Informal description of variable declarations in C[变量声明]
− Starts with int or float as the first token[类型]
− Followed by one or more identifier tokens, separated by token 
comma[逗号分隔的标识符]

− Followed by token semicolon[分号]

• To check whether a program is well-formed requires a 
specification of what is a well-formed program[语法定义]

− The specification be precise[正确]
− The specification be complete[完备]

p Must cover all the syntactic details of the language
− The specification must be convenient[便捷] to use by both 

language designer and the implementer

• A context free grammar meets these requirements
25

https://www.cse.iitb.ac.in/~uday/courses/cs324-07/syntax-analysis.pdf
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