
Compilation Principle
编译原理

第4讲：词法分析(4)
张献伟

xianweiz.github.io
DCS290, 3/7/2023

https://xianweiz.github.io/

Quiz Questions
• Q1: write RE for binary numbers that are multipliers of 4?

• Q2: lexical analysis of ‘if (a != b’?

• Q3: regard lexer implementation, why NFA à DFA?

• Q4: RE of the FA?

• Q5: start state of the equivalent DFA?

2

ε-closure(A) = {A, B}

(0|1)*00

ABC

(0|1)*1

AB ABC

ε-closure(move({AB}, 0)) = ε-closure({A}) ⟹ {A, B}

ε-closure(move({AB}, 1)) = ε-closure({A,C}) ⟹ {A, B, C}

AB
0 1

ABC

Trade-off space for speed; DFA is more efficient

0

1AB

1

ABC
0

AB

(keyword, ‘if’), (sym, ‘(’), (id, ‘a’), (sym, ‘!=‘), (id, ‘b’)

0/1 ε

ε 1A B C

Lexical Analyzer Generated by Lex
• A Lex program is turned into a transition table and

actions, which are used by a FA simulator
• Automaton recognizes matching any of the patterns

3

Lex: Example
• Three patterns, three NFAs
• Combine three NFAs into a single NFA

− Add start state 0 and ε-transitions

4

Any one is possbile, if you
haven’t read any input symbol

⟹

Lex: Example (cont.)

5

$flex lex.l
$clang lex.yy.c -o mylex -ll

Lex: Example (cont.)
• NFA’s for lexical analyzer
• Input: aaba

− ε-closure(0) = {0, 1, 3, 7}
− Empty states after reading the fourth input symbol

p There are no transitions out of state 8
p Back up, looking for a set of states that include an accepting state

− State 8: a*b+ has been matched
p Select aab as the lexeme, execute action3

p Return to parser indicating that token w/ pattern p3=a*b+ has been found

6
aaba (a*b+, aab), (a, a)

Lex: Example (cont.)
• DFA’s for lexical analyzer
• Input: abba

− Sequence of states entered: 0137 à 247 à 58 à 68
− At the final a, there is no transition out of state 68

p 68 itself is an accepting state that reports pattern p2 = abb

7

How Much Should We Match?[匹配多少]

• In general, find the longest match possible
− We have seen examples
− One more example: input string aabbb …

p Have many prefixes that match the third pattern
p Continue reading b’s until another a is met
p Report the lexeme to be the intial a’s followed by as many b’s as there

are

• If same length, rule appearing first takes precedence
− String abb matches both the second and third
− We consider it as a lexeme for p2, since that pattern listed first

8

<ptn2, abb> <ptn3, abb>

How to Match Keywords?[匹配关键字]

• Example: to recognize the following tokens
− Identifiers: letter(letter|digit)*
− Keywords: if, then, else

• Approach 1: make REs for keywords and place them
before REs for identifiers so that they will take
precedence

− Will result in more bloated finite state machine

• Approach 2: recognize keywords and identifiers using
same RE but differentiate using special keyword table

− Will result in more streamlined finite state machine
− But extra table lookup is required

• Usually approach 2 is more efficient than 1, but you can
implement approach 1 in your projects for simplicity

9

The Conversion Flow[转换流程]

10

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

③
① ②

• Outline: RE à NFA à DFA à Table-driven
Implementation

−③ Converting DFAs to table-driven implementations
−① Converting REs to NFAs (M-Y-T algorithm)
−② Converting NFAs to DFAs (subset construction)
−③’ DFA minimization (partition algorithm)

Beyond Regular Languages
• Regular languages are expressive enough for tokens

− Can express identifiers, strings, comments, etc.

• However, it is the weakest (least expressive) language
− Many languages are not regular
− C programming language is not

p The language matching braces “{{{...}}}” is also not
− FA cannot count # of times char encountered

p L = {anbn | n ≥ 1}
p Crucial for analyzing languages with nested structures (e.g. nested for

loop in C language)

• We need a more powerful language for parsing
− Later, we will discuss context-free languages (CFGs)

11

RE/FA is NOT Powerful Enough
• L = {anbn | n≥1} is NOT a Regular Language

− Suppose L were the language defined by regular expression
− Then we could construct a DFA D with k states to accept L
− Since D has only k states, for an input beginning with more than k a’s,

D must enter some state twice, say si
− Suppose that the path from si back to itself is labeled with aj-i

− Since aibi is in L, there must be a path labeled bi from si to an
accepting state f

− But, there is also a path from s0 through si to f labelled ajbi

− Thus, D also accepts ajbi, which is not in L, contradicting the
assumption that L is the language accepted by D

12

s0 si f…path labeled ai …path labeled bi

path labeled aj-i…

RE/FA is NOT Powerful Enough(cont.)
• L = {anbn | n≥1} is not a Regular Language

− Proof à Pumping Lemma (泵引理)
− FA does not have any memory (FA cannot count)

p The above L requires to keep count of a’s before seeing b’s

• Matching parenthesis is not a RL
• Any language with nested structure is not a RL

− if … if … else … else

• Regular Languages
− Weakest formal languages that are widely used

13

Compilation Principle
编译原理

第4讲：语法分析(1)
张献伟

xianweiz.github.io
DCS290, 3/7/2023

https://xianweiz.github.io/

Compilation Phases[编译阶段]

15

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

Example
• $vim test.c

• $clang -cc1 -dump-tokens ./test.c
• $clang -o test test.c

16

void main() {
int;
int a,;
int b, c;

}

Syntax Analysis[语法分析]

• Second phase of compilation[第二阶段]
− Also called as parser

• Parser obtains a string of tokens from the lexical
analyzer[以token作为输入]

− Lexical analyzer reads the chars of the source program, groups
them into lexically meaningful units called lexemes

− and produces as output tokens representing these lexemes
p Token: <token name, attribute value>

− Token names are used by parser for syntax analysis
p tokens à parse tree/AST

• Parse tree[分析树]
− Graphically represent the syntax structure of the token stream

17

Parsing Example
• Input: if(x==y) … else …[源程序输入]

• Parser input (Lexical output)[语法分析输入]

• Parser output[语法分析输出]

18

KEY(IF) ‘(‘ ID(x) OP(‘==‘) ID(y) ‘)’ … KEY(ELSE) …

Parsing Example (cont.)
• Example: <id, x> <op, *> <op, %>

− Is it a valid token stream in C language?
− Is it a valid statement in C language (x *%)?

• Not every sequence of tokens are valid
− Parser must distinguish between valid and invalid token

sequence

• We need a method to describe what is valid sequence?
− To specify the syntax of a programming language

19

YES
NO

How to Specify Syntax?
• How can we specify a syntax with nested structures?

− Is it possible to use RE/FA?
− L(Regular Expression) ≡ L(Finite Automata)

• RE/FA is not powerful enough
− L = {anbn | n≥1} is not a Regular Language

• Example: matching parenthesis: # of ‘(‘ == # of ‘)’
− (x+y)*z
− ((x+y)+y)*z
− (...(((x+y)+y)+y)...)
− ((x+y)+y)+y)*z

20

✓
✓
✓
✗

What Language Do We Need?
• C-language syntax: Context Free Language (CFL)[上下文无
关语言]

− A broader category of languages that includes languages with
nested structures

• Before discussing CFL, we need to learn a more general
way of specifying languages than RE, called Grammars[文
法]

− Can specify both RL and CFL
− and more ...

• Everything that can be described by a regular expression
can also be described by a grammar

− Grammars are most useful for describing nested structures
21

e.g., ‘else’ is always ‘else’, wherever you place it

Concepts
• Language[语言]

− Set of strings over alphabet
p String: finite sequence of symbols
p Alphabet: finite set of symbols

• Grammar[文法]
− To systematically describe the syntax of programming language

constructs like expressions and statements

• Syntax[语法]
− Describes the proper form of the programs
− Specified by grammar

22

Grammar[文法]

• Formal definition[形式化定义]: 4 components {T, N, s, δ}
• T: set of terminal symbols[终结符]

− Basic symbols from which strings are formed
− Essentially tokens from lexer - leaves in the parse tree

• N: set of non-terminal symbols[非终结符]
− Each represents a set of strings of terminals – internal nodes
− E.g.: declaration, statement, loop, ...

• s: start symbol[开始符号]
− One of the non-terminals

• 𝜎: set of productions[产生式]
− Specify the manner in which the terminals and non-terminals

can be combined to to form strings
− “LHS → RHS”: left-hand-side produces right-hand-side

23

Grammar (cont.)
• Usually, we can just write the 𝜎[简写]

• Merge rules sharing the same LHS[规则合并]
− ⍺à β1, ⍺à β2 , …, ⍺à βn

− ⍺à β1 | β2 | … | βn

24

G = ({id, +, *, (,)} , {E}, E, P)
P = { E à E + E,

E à E * E,
E à (E),
E à id }

G: E à E + E,
E à E * E,
E à (E),
E à id }

E à E + E | E * E | (E) | id

Syntax Analysis[语法分析]

• Informal description of variable declarations in C[变量声明]
− Starts with int or float as the first token[类型]
− Followed by one or more identifier tokens, separated by token
comma[逗号分隔的标识符]

− Followed by token semicolon[分号]

• To check whether a program is well-formed requires a
specification of what is a well-formed program[语法定义]

− The specification be precise[正确]
− The specification be complete[完备]

p Must cover all the syntactic details of the language
− The specification must be convenient[便捷] to use by both

language designer and the implementer

• A context free grammar meets these requirements
25

https://www.cse.iitb.ac.in/~uday/courses/cs324-07/syntax-analysis.pdf

https://www.cse.iitb.ac.in/~uday/courses/cs324-07/syntax-analysis.pdf

