WHEHILER (RE&FB)
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

7 1°F R B

= N

A LS
INGE

xianweiz.github.

T (4)

10

DCS290, 3/7/2023

Dhge

https://xianweiz.github.io/

Quiz Questions

* Q1: write RE for binary numbers that are multipliers of 47

(0]1)*00
e Q2: lexical analysis of ‘if (a |=b’?

(keyword, ‘if’), (sym, ‘(’), (id, ‘@’), (sym, ‘=), (id, ‘b’)

* Q3: regard lexer implementation, why NFA - DFA?
Trade-off space for speed; DFA is more efficient

» Q4: RE of the FA? A
011)*1 @ 0 | 1

e Q5: start state of the equivalent DFA? AB | AB | ABC
e-closure(A) = {A, B} ABC | AB | ABC

e-closure(move({AB}, 0)) = e-closure({A}) = {A, B}
e-closure(move({AB}, 1)) = e-closure({A,C}) = {A, B, C}

2 Dig:

Lexical Analyzer Generated by Lex

* A Lex program is turned into a transition table and
actions, which are used by a FA simulator

* Automaton recognizes matching any of the patterns

Input buffer

= 1
B Iexeme

\ OO S ey r e

IexemeBegm \ | joman!
Lex

Automaton Speciﬁca[jon ﬁ Lex [ﬂ Iex.yy-c
simulator el

l

1 lex.yy-c ﬁ C Compile" [ﬁ a.out

5 INPUEL TEXT e— a.out —e- sequence of tokens
Transition
table

Actions

R el

Lex Lex

program compiler |

-

3 Dhge

Lex: Example

* Three patterns, three NFAs

* Combine three NFAs into a single NFA
— Add start state O and s-transitions

start -2 @
a { action, }

abb { action,) ﬂ>@—>@

a*b+ { action,))&)’
start
start : : ' b .

e

Any one is possbile, if you

. =
haven’t read any input symbol

Lex: Example (cont.)

(G *
(2)

b KB

SUN YAT-SEN UNIVERSITY

ptnl a
ptn2 abb
ptn3 axb+

{ptn1} { printf("\n<%s, %s>", "ptnl", yytext); }
fpEn2)} { printT("Xn=NE, Mas>"; "ptn2*; yytext): ¥
{pin3F 4« printf("\n<Xs, %s>" "ptnl3®, yytext): 2

5%
int main(){
yylex();
return 0;
¥
Sflex lex.|
Sclang lex.yy.c -o mylex -II
'root@Paab5ldde@6c76:~/test# echo "aaba" | ./mylex
<ptn3, aab>
<ptnl, a>

Toot@Paabldde@6c76:~/test# echo "abba" | ./mylex

<ptn2, abb>
<ptnl, a>

Lex: Example (cont.)

* NFA’s for lexical analyzer

a
* Input: aaba e
- e-closure(0) ={0, 1, 3, 7} a*b+

- Empty states after reading the fourth input symbol

o There are no transitions out of state 8

o Back up, looking for a set of states that include an accepting state
— State 8: a*b+ has been matched

o Select aab as the lexeme, execute action;

o Return to parser indicating that token w/ pattern p;=a*b+ has been found
AO—20)

l// a a a b a
P, [—— % ~— ——) — — - o
A 10 |2 | | 1_8 | none
tart 4 o=, [b2 | %
g oo L < T P O o, W | 1 4
G)= — -
-\\.. ' 3 | 7 |
X ~
M bt
\\\4/.7.._\. e —b- ’{/8 \\.." *
FAT) aaba (a*b+, aab), (a, a)

BN ° IR

Lex: Example (cont.)

e DFA’s for lexical analyzer

* Input: abba
— Sequence of states entered: 0137 - 247 - 58 - 68

— At the final a, there is no transition out of state 68
o 68 itself is an accepting state that reports pattern p, = abb

»
)
\

| L 8
A\ b b ()
S &)
a*h” abb a*h”’
7

abb
a*b+

Dhge

How Much Should We Match?[JLit £ /)

* In general, find the longest match possible
a { action, }

— We have seen examples
abb { action, }

— One more example: input string aabbb ... &b Laction:)
o Have many prefixes that match the third pattern
o Continue reading b’s until another g is met

o Report the lexeme to be the intial a’s followed by as many b’s as there
are

* If same length, rule appearing first takes precedence

— String abb matches both the second and third
— We consider it as a lexeme for p,, since that pattern listed first

ptnl a ptnl

ptn2 abb ptnz

ptn3 axb+ ptn3

%% <ptn2, abb> %% <ptn3, abb>

{ptnl} | pr%ntf("\n<%s, %s>", "ptnl", yytext); } {ptni} { printf("\n<%s, %s>", "ptnl", yytext); }
{ptn2} pr}ntf("\n<%s, %s>", "ptn2", yytext); } {ptn3} { printf("\n<%s, %s>", "ptn3", yytext); }
{ptn3} { printf("\n<%s, %s>", "ptn3", yytext); } {ptn2} { printf("\n<%s, %s>", "ptn2", yytext); }

@) TuXx 8 M ks

How to Match Keywords? VL 4]

* Example: to recognize the following tokens
- ldentifiers: letter(letter | digit)*
- Keywords: if, then, else

* Approach 1: make REs for keywords and place them
before REs for identifiers so that they will take
precedence

— Will result in more bloated finite state machine

e Approach 2: recognize keywords and identifiers using
same RE but differentiate using special keyword table
— Will result in more streamlined finite state machine
— But extra table lookup is required

e Usually approach 2 is more efficient than 1, but you can
|mplement approach 1 in your projects for simplicity
Dhid:

The Conversion Flow[## i #5)

e Outline: RE &> NFA - DFA = Table-driven
Implementation

— (3) Converting DFAs to table-driven implementations
- (U Converting REs to NFAs (M-Y-T algorithm)

- (2) Converting NFAs to DFAs (subset construction)

— (37 DFA minimization (partition algorithm)

Lexical Specification

G E— EEE E— EEE EEE EEE EEE EEE EEE EE EEE S EE EEE EE EE En EEn mEn mEn S S mEn S S mEn S mam mae S S mee mem

|
I [\
! I NFA . :
: : @ ’/ \\® 1
‘] ,/ \\ @ |
/ - 1 |
Regular Expression \‘(SR | Table-driven Impl.| !
\ of automata |
N -, ——————————————_—,—_,_, /7

automatic

1o Dhig:

Beyond Regular Languages

* Regular languages are expressive enough for tokens
— Can express identifiers, strings, comments, etc.

* However, it is the weakest (least expressive) language
- Many languages are not regular
— C programming language is not
o The language matching braces “{{{...}}}” is also not
— FA cannot count # of times char encountered
a L={a"b" | n21}

o Crucial for analyzing languages with nested structures (e.g. nested for
loop in C language)

* We need a more powerful language for parsing
— Later, we will discuss context-free languages (CFGs)

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

RE/FA is NOT Powerful Enough

e [={a"b" | n>1}is NOT a Regular Language
— Suppose L were the language defined by regular expression
— Then we could construct a DFA D with k states to accept L

— Since D has only k states, for an input beginning with more than k a’s,
D must enter some state twice, say s;

— Suppose that the path from s; back to itself is labeled with &/

- Since a@'b’ is in L, there must be a path labeled b’ from s; to an
accepting state f

— But, there is also a path from s, through s; to f labelled &/b’

— Thus, D also accepts a/b’, which is not in L, contradicting the
assumption that L is the language accepted by D

path labeled all

. path labeled a') path labeled b .

u‘.lﬂ“ﬁ

RE/FA is NOT Powerful Enough(cont.)

[={a"b" | n>1}is not a Regular Language
— Proof = Pumping Lemma (% 5|)

- FA does not have any memory (FA cannot count)
o The above L requires to keep count of a’s before seeing b’s

* Matching parenthesis is hot a RL

* Any language with nested structure is not a RL
- if ... if ... else ... else

* Regular Languages
— Weakest formal languages that are widely used

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Compilation Principle

gm VE I
Favr: WEIRI(1)
HNUINGE

xianweiz.github.io
DCS290, 3/7/2023

Dhge

https://xianweiz.github.io/

Compilation Phases 4B

Source Code

, l N
/ N
/ \
! v
! 1
1
'
1

Lexical Analysis

. Token Stream]

Front End

Syntax Analysi
ynax Ananysis (Analysis)

Syntax Tree"

Semantic Analysis

Syntax Tree

Intermediate
Code Generation
IR

\ 4
Optimization . Back End
IR . (Synthesis)

\ 4

Code Generation

v

Target Code

¥ X & 15

SUN YAT-SEN UNIVERSITY

Example

void 'void'

. void main g B s .
o SVIm test.c -~—----_ Q|{ identifier 'main’
:Int | 1_paren '('
, Inta,; I Tr.paren: ')
. |
intb, ¢ _| 1 brace_'{!__,
} g i B e] g et I
:semi el l
- = | |
* Sclang -cc1l -dump-tokens ./test.c ang it .
I1dent1f1er 'a'
[|
* Sclang -o test test.c e |
55:3.2213%; ¥arning: return type of 'main' is not 'int' [—Wmain-retur1int Wiét' :
A iidentifier 'b':
test.c:1:1: note: change return type to 'int' lcomma ', I
void main() { identifier 'c'!
. iIsemi ';' :
int _'1;"'_"F}1'_"|
test.c:2:3: warning: declaration does not declare anything [—Wmissing-r-:race
ns] eof '! i
inkt:
e DAt . — m — — — — — — —————— — — —
jtest.c:3:9: error: expected identifier or '(' !
| int a,; :

2 warnings and 1 error generated.

‘> ‘ ‘ 16 }rﬂ
!&g“; iYﬁENﬁEﬁ v' : LZ

Syntax Analysis[i& i #]

* Second phase of compilation[Zf — []
— Also called as parser

* Parser obtains a string of tokens from the lexical
analyzer[LLtokentE % A\]

— Lexical analyzer reads the chars of the source program, groups
them into lexically meaningful units called lexemes

— and produces as output tokens representing these lexemes
o Token: <token name, attribute value>

— Token names are used by parser for syntax analysis
o tokens = parse tree/AST

* Parse tree[/> HT]
— Graphically represent the syntax structure of the token stream

“‘ : k)
@ tuxt bl

Parsing Example

* Input: if(x==y) ... else ...[JFFE ¥ % \]

* Parser input (Lexical output)[i& %7 Al

KEY(IF) (“ ID(x) OP(‘==") ID(y) *)’ ... KEY(ELSE) ..

* Parser output[i&E fri]
IF-STMT

I

== STMT STMT

ID ID

18

Dhge

Parsing Example (cont.)

* Example: <id, x> <op, *> <op, %>
- |Is it a valid token stream in C language? YES
- |Is it a valid statement in C language (x *%)? NO

* Not every sequence of tokens are valid

— Parser must distinguish between valid and invalid token
seguence

* We need a method to describe what is valid sequence?
— To specify the syntax of a programming language

@ turs 19 INE

How to Specity Syntax?

 How can we specify a syntax with nested structures?
— Is it possible to use RE/FA?
— L(Regular Expression) = L(Finite Automata)

* RE/FA is not powerful enough
- L={a"b" | n>1}is not a Regular Language

* Example: matching parenthesis: # of ‘(‘ == # of)’
- (x+y)*z
- ((x+y)+y)*2 v
— (o (((x+y)+y)+y)..)
- ((x+y)+y)+y)*z X

@ tuxs 20 IR

What Language Do We Need?

* C-language syntax: Context Free Language (CFL)[. NG
?%i%%] e.g., ‘else’ is always ‘else’, wherever you place it
— A broader category of languages that includes languages with
nested structures

* Before discussing CFL, we need to learn a more general
way of specifying languages than RE, called Grammars[
A

— Can specify both RL and CFL
- and more ...

* Everything that can be described by a regular expression
can also be described by a grammar
— Grammars are most useful for describing nested structures

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Concepts

* Language[it =
— Set of strings over alphabet

o String: finite sequence of symbols
o Alphabet: finite set of symbols

e Grammar[(%]

— To systematically describe the syntax of programming language
constructs like expressions and statements

 Syntax[iZi£]
— Describes the proper form of the programs
- Specified by grammar

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

Grammar[]

* Formal definition[JE=\{t € X]: 4 components {T, N, s, 6}

* T: set of terminal symbols[£454F]
— Basic symbols from which strings are formed
— Essentially tokens from lexer - leaves in the parse tree

* N: set of non-terminal symbols[JE£& 45 4F]
— Each represents a set of strings of terminals — internal nodes
- E.g.: declaration, statement, loop, ...

R A/v‘/v‘l:l]

e s: start symbol[H 5555
— One of the non-terminals

* g set of productions[F=4: 1]

- Specify the manner in which the terminals and non-terminals
can be combined to to form strings

= "“LHS - RHS": left-hand-side produces right-hand-side |
@ turt IR

Grammar (cont.)

* Usually, we can just write the o[# 5]

* Merge rules sharing the same LHS[#1 & 3]
-—a=2PB,a=2B,,..,a=2pB,
-~ By | Bl | By

G=({id,+%* ()} {ELE P)

P={EDE+E, G:EQEIE’
' EDE*E, |
E>E*E, E>E+E|E*E|(E)|id
E (),
E> (E) £ id}
E-id}

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

Syntax Analysis[i& i #]

* Informal description of variable declarations in C[Z% & = HH]
— Starts with int or float as the first token[284Y]
- Followed by one or more identifier tokens, separated by token
commaiZ 555 b IR IR FF)
- Followed by token semicolon[/r5]
* To check whether a program is well-formed requires a
specification of what is a well-formed program[i&i% & X]
- The specification be precise[1FH]

— The specification be complete[5& 4]
o Must cover all the syntactic details of the language

— The specification must be convenient[{###] to use by both
language designer and the implementer

_ wow!

A context free grammar meets these rEQU|rementS @@
\

25 '

s
https://www.cse.iitb.ac.in/~uday/courses/cs324-07/syntax-analysis.pdf 4

https://www.cse.iitb.ac.in/~uday/courses/cs324-07/syntax-analysis.pdf

