(@) T v K & tsaEs (Ha4FRE)
N YAT-SEN UNIVERSITY SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Comp|\at|on Principle

= N

Zm E R B
70 1EVES

NINGE

xianweiz.github.

T (4)

10

DCS290, 3/16/2023

Dhige


https://xianweiz.github.io/

Frontend

preprocessor|—20de )/ Jexer | TokenFlowfy,pger|_JasonAST \[gepera tor
SEHR— EX SH=

I
LLVM-IR

Your Well Being

¥
Carrregie Mellorr is krmown for its stressful-environment, and we realize that the pace and expectations of 213/513 can
contribute to that stress. If you find yourself having trouble keeping up, please realize the following:

e It's Only a Class. Your life and personal welfare are more important than your performance in this or any course.

« Manage your Time Wisely. Students struggling in 213/513 often follow a pattern where they fall behind and
then try to catch up with a marathon effort just before an assignment is due. Instead, they start having health
problems, skip or fall asleep in lectures, do poorly in this and other classes, and fall further behind. The key is to
never fall behind in the first place. When an assignment goes out that is due on 2 weeks, that's because we expect
it to require 2 weeks of concentrated effort to complete.

+ Take Care of Yourself. Do your best to maintain a healthy lifestyle this semester by eating well, exercising,
avoiding drugs and alcohol, getting enough sleep and taking some time to relax. This will help you achieve your
goals and cope with stress.

 Don't Resort to Cheating. As a deadline draws near and you aren't making progress, it can become very
tempting to start searching the Web or asking your friends for help. Don't do it! If you get caught, the
consquences will be much worse than not doing the assignment at all. If you don't get caught, you will still do
permanent damage to your own sense of personal integrity, your own learning, and the ability of others to put
their trust in you.

e It's OK to Ask for Help. Some students believe that asking for help makes them look bad in the eyes of the
instructor, or that it demonstrates they shouldn't be in the course in the first place. We want you to succeed, and
we want to help! If you've thought about an issue and are stuck, spending a few minutes with one of the teaching
staff may save you hours of frustration.

* You are Not Alone. All of us benefit from support during times of struggle. There are many helpful resources
available on campus and in Pittsburgh. An important part of the college experience is learning how to ask for help.

Asking for support sooner rather than later is often helpful.
CMU15213
T X %

et/ A e https://www.cs.cmu.egu/”213/personal.html WEG[Z



https://www.cs.cmu.edu/~213/personal.html

Review Questions

e GrammarG: E>T/E|T ,resultof6-4/2?
T>T-T|id
(6-4)/2=1
* Regard id - id - id, is G ambiguous?
Yes. No associativity is specified for operator -.

* How to remove the ambiguity?
T>T-FF->id

» Regard AST tree build, how to classify parser?
Top-down (root to leaves), bottom-up (leaves to root).

* Which parser type is more similar to derivation?
Top-down, mimics leftmost derivation.



Top-down Parsers[ T R

* Recursive descent parser (RDP, i#:/H T B&%#7) with
backtracking|[a] ]

- Implemented using recursive calls to functions that implement
the expansion of each non-terminal[dF 4 45 7F-FE ]

— Goes through all possible expansions by trial-and-error until
match with input; backtracks when mismatch detected[i -7l

]
- Simple to implement, but may take exponential time
* Predictive parser[Till /> #7]
— Recursive descent parser with prediction (no backtracking)
— Predict next rule by looking ahead kK number of symbols

— Restrictions on the grammar to avoid backtracking
o Only works for a class of grammars called LL(k)

@tuxs IR




RDP with Backtrackingl=li]

e Approach: for a non-terminal in the derivation,
productions are tried in some order until[N: & H]

— A production is found that generates a portion of the input, or|
i) F A 2]

- No production is found that generates a portion of the input, in
which case backtrack to previous non-terminal[[n] j [F]3]

* Terminals of the derivation are compared against input[T:
L)
— Match: advance input, continue parsing
— Mismatch: backtrack, or fail

 Parsing fails if no derivation generates the entire input

»’ri‘ﬁ“ﬁ




Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S

‘  e ; T




Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S

‘  e ; T




Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S
— The input pointer pointing to ¢, the first symbol of w

‘  e ; T
‘\.“ s;tmgs‘mvﬁnﬁ 6 ﬂ' Hhﬂ LZ




Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S
— The input pointer pointing to ¢, the first symbol of w

‘  e ; T
‘\.“ s;tmgs‘mvﬁnﬁ 6 ﬂ' Hhﬂ LZ




Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S
— The input pointer pointing to ¢, the first symbol of w

— S has only one production, so we use it to expand S and obtain
the tree

(e 2 |
‘\“ s;tmgs‘mvﬁnﬁ 6 ﬂ' HFE LZ




Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S
— The input pointer pointing to ¢, the first symbol of w
— S has only one production, so we use it to expand S and obtain

the tree
/ ] \
C A d

(e 2 |
‘\“ s;tmgs‘mvﬁnﬁ 6 ﬂ' HFE LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

 To construct a parse tree top-down for input string w=cad

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

7 | E
iv&m&nﬁ ﬂ' Hh LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=CTd

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

() 7 | E
\.‘ s;tmgs‘mvﬁnﬁ ﬂ' Hh LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=CTd

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

— Next, expand A using A 2 ab

o Have a match for the 2" input symbol, a, so advance the input pointer
to d, the 3 input symbol

7 | E
iv&m&nﬁ ﬂ' Hh LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=CTd

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

— Next, expand A using A 2 ab

o Have a match for the 2" input symbol, a, so advance the input pointer
to d, the 3 input symbol

AN 2N

/

a b
7 Diode




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=caf

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

— Next, expand A using A 2 ab

o Have a match for the 2" input symbol, a, so advance the input pointer
to d, the 3 input symbol

AN 2N

/

a b
7 Diode




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=caf

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

(e 2 |
‘\“ s;tmgs‘mvﬁnﬁ 8 ﬂ' HFE LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

 To construct a parse tree top-down for input string w=cad

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

(e 2 |
‘\“ s;tmgs‘mvﬁnﬁ 8 ﬂ' HFE LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=CTd

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

/\\ /j(\

‘  e ; T




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=CTd

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

— Leaf a matches the 2" symbol of w, and leaf d matches the 3rd

- We have produced a parse tree for w, we halt and announce
successful completion of parsing

/\\ /j(\

( ‘e ; [
‘\J‘ ivﬂnl\;ﬁmﬁ }' QG LZ




Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string W=CTd

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

— Leaf a matches the 2" symbol of w, and leaf d matches the 3rd

- We have produced a parse tree for w, we halt and announce
successful completion of parsing

AN A N
\b |

( ‘e ; [
‘\J‘ ivﬂnl\;ﬁmﬁ 8 }' QG LZ




Left Recursion Problem{Z: 3 13 ja) &)

e Recursive descent doesn’t work with left recursion
— Right recursion is OK

* Why is left recursion[/£i£ ] a problem?
— For left recursive grammar
A->Ab|c
— We may repeatedly choose to apply A b
A=>Ab=>Abb..

- Sentential form can grow indefinitely w/o consuming input[#]%
76 BRI 1 A T FE 5]
o Non-terminal: expand, terminal: match
— How do you know when to stop recursion and choose c?

. )Rewrite the grammar so that it is right recursive[ 47 i3
9]

— Which expresses the same language[Z5:1/1]

(e 2 |
‘\“ s;tmgs‘mvﬁnﬁ 9 ﬂ' HFE LZ




Left Recursion[Z i 1H]

* A grammar is left recursive if

— |t has a nonterminal A such that there is a derivation A =+ Ax
for some string a

* Recursion types [ B #Ha) 4% 2 i3 )]
- Immediate left recursion, where there is a production A 2 Ax
- Non-immediate: left recursion involving derivation of 2+ steps
S2>Aa|b
A—>Sd| e
- S = Aa = Sda

* = Algorithm to systematically eliminates left recursion
from a grammar

Mm‘i




Remove Left Recursion(iy & A i M)

e Grammar: A 2 Aa | B (a#pB, B doesn’t start with A)
A= Aa
= Aax

= Ad...qQQ
= Ba...ax

* Rewrite to:
A > BA // begins with B (A’ is a new non-terminal)

A 2 oA’ |e // A is to produce a sequence of a
= aoA’

= o...0A" = o...a

(&) T X% 11 Djud:




Remove Left Recursion(iy & A i M)

e Grammar: A 2 Aa | B (a#pB, B doesn’t start with A)
A= Aa
= Aax

= Ad...qQQ
= Ba...ax

r=pBa*

* Rewrite to:
A > BA // begins with B (A’ is a new non-terminal)

A 2 oA’ |e // A is to produce a sequence of a
= aoA’

= o...0A" = o...a

(&) T X% 11 Djud:




Remove Left Recursion (cont.)

* Grammar:
A->Aa| B
to
A BA
A =2 oA |e
" EDE+T|T E->TE
x B E' 2> +TE | €
a B T =2 *FT' | ¢
« F- () | id F-> (E) | id

12 Dhige




Summary of RD-backtrack[/gh]

* RD-backtrack is a simple and general parsing strategy

— Left-recursion must be eliminated first
o Can be eliminated automatically using some algorithm

— L(Recursive _descent) = L(CFG) = CFL

 However it is not popular because of backtracking
— Backtracking requires re-parsing the same string
- Which is inefficient (can take exponential time)

— Also undoing semantic actions may be difficult
o E.g. removing already added nodes in parse tree

Parser
. I
Top—doan parser Bottom-up parser
| |
RD-backtrack Predictive
parser parser

13 Dhige




Predictive Parsers[#iiil 4> #7

* In recursive descent with backtracking[ & [ali#]:

— At each step, many choices of production to use
- Backtracking used to undo bad choices

* A parser with no backtracking[Jz[=li#]: predict correct

next production given next input terminal(s) [LA T T — &%
AR

— If first terminal of every alternative production is unique, then
parsing requires no backtracking[fik =4 2 75—
- If not unique, grammar cannot use predictive parsers[/AME—]
A->aBD | bBB
B—>c | bce
D->d

parsing input “abced” requires no backtracking

»’ri‘ﬁ?



Predictive Parsers[#iiil 4> #7

* In recursive descent with backtracking[& [=]3#]:

— At each step, many choices of production to use
- Backtracking used to undo bad choices

* A parser with no backtracking[Jz[li#]: predict correct

next production given next input terminal(s)’[LL T [ — L& %
KT

— If first terminal of every alternative production is unique, then
parsing requires no backtracking[fik =4 2 75—
- If not unique, grammar cannot use predictive parsers[/AME—]
A->aBD | bBB
B—>c | bce
D->d

parsing input “abced” requires no backtracking

»’ri‘ﬁ“‘



Predictive Parsers[#iiil 4> #7

* In recursive descent with backtracking[& [=]3#]:

— At each step, many choices of production to use
- Backtracking used to undo bad choices

* A parser with no backtracking[Jz[li#]: predict correct

next production given next input terminal(s)’[LL T [ — L& %
KT

— If first terminal of every alternative production is unique, then
parsing requires no backtracking[fik =4 2 75—
- If not unique, grammar cannot use predictive parsers[/AME—]
A->aBD | bBB
B—>c | bce
D->d

parsing input “abced” requires no backtracking

2 MR HAEETE—A, 4 next terminal 525k & current terminal, B[l
&) 4w ZILECHIRA (FER backtrack/z 5e A ED JrL"ELZ




Predictive Parsers (cont.)

* A predictive parser chooses the production to apply solely
on the basis of [1% B = A= A K HE]
— Next input symbol(s)[ F —#i N\ 5 /44555
— Current nonterminal being processed|47ij IF 4L (1) JE £ 45 7]
 Patterns in grammars that prevent predictive parsing[J3E
J= e BE T 70 7]
— Common prefix[3L[FFT43]:
A->af | ay
Given input terminal(s) a, cannot choose between two rules
— Left recursion[ /i 4]:

AZAB | a WARILE (—E R

Lookahead symbol changes only when a terminal is matched

() o
:’ im‘i‘mﬁnﬁ }' QG LZ




Rewrite Grammars for Prediction[#E]

o Left factoring[ = A KT #2HX]: removes common left prefix
— In previous example: A= af | ay
- can be changed to simt - if expr then stmt else stmt | if expr then stmt

A->aA 1€ stmt = if expr then stmt S’
A->B1y S’ > else stmt | €

— After processing a, A’ can can choose between 3 ory
(assuming B or y do not start with a) e FEIRIEFE, EHIP X4
* Left-recursion removal[ /= i# 975 ER]: same as recursive
descent
— In previous example: A>AB | a
— can be changed to
A->aA
AN->BA | € F I
— After processing a, A’ can can choose between B or €
(assuming B doesn’t start with o or A’ isn’t followed by a)

©tuxt 16 IR




LL(k) Parser / Grammar / Language

 LL(k) Parser

— A predictive parser that uses k lookahead tokens
— L: scans the input from left to right[ )\ 2 4E 4]
— L: produces a leftmost derivation[4: il fx /£ #E 5]

- k: using k input symbols of lookahead at each step to decide[[
AT B KRS
e LL(k) Grammar
— A grammar that can be parsed using an LL(k) parser
- LL(k) < CFG
o Some CFGs are not LL(k): common prefix or left-recursion
* LL(k) Language
- A language that can be expressed as an LL(k) grammar

 Many languages are LL(k) ...
- In fact many are LL(1)!

() o
‘\/‘ ivﬂnl\‘ﬁnﬁ )' GG [Z




LL(k) Parser Implementation[szi]

* Implemented in a recursive or non-recursive fashion[i# 7/
EIStE)
— Recursive: recursive descent (recursive function calls, implicit
stack)

— Non-recursive: explicit stack to keep track of recursion[#k]

* Recursive LL(1) parser for: A>B | C, B=>b, C—>c

— Parser consists of small functions, one for each non-terminal

void A() {
token = peekNext(); // lookahead token
switch(token) {
case 'b’: //'B’ starts with ’b’
B(); // call procedure B()
case’c’: //’'C’ starts with ’c’
C(); // call procedure C()
default: // Reject
return;

} Dhige




LL(k) Parser Implementation (cont.)

* Recursive LL(1) parser for: A->B | C, B—>b, C—>c

void A() {
token = peekNext(); // lookahead token
switch(token) {
case ’b’: // 'B’ starts with ’b’
B(); // call procedure B()
case’c’: //’'C’ starts with ’c’
C(); // call procedure C()
default: // Reject
return;

}
* |s there a way to express above code more concisely?[ 4]

- Non-recursive LL(k) parsers use a state transition table (just like
finite automata)[ R A F]

— Easier to automatically generate a non-recursive parser[Hz{t]

19 i
(@) Tux 2 L




