
Compilation Principle
编译原理

第15讲：语义分析(1)
张献伟

xianweiz.github.io
DCS290, 4/23/2024

https://xianweiz.github.io/

Review Questions
• How does LR(1) improve SLR(1)?

• Drawbacks of LR(1)?

• How does LALR relate to SLR(1) and LR(1)?

• Can LALR introduce new shift-reduce conflicts?

• Can CFG be used for semantic analysis?

2

Use exact lookaheads, instead of the FOLLOW, to reduce; split states

No. Merging can only introduce new reduce-reduce conflicts

Compromise LR(1) and SLR(1), keep LR(1) parse power and SLR(1)
table size

More states, i.e., more rows, i.e., higher storage overhead

No. Semantic analysis relies on context, which cannot be described
by CFG.

Compilation Phases[编译阶段]

3

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

proj3

proj4

src à AST: Example

4

$<my_clang> -cc1 -ast-view ir_test.c
$dot -Tpng -o ir_test.png ir_test.dot

my_clang = ./llvm-project/build/bin/clang

ir_test.c

AST

AST à IR: Example

5

$<my_clang> -Xclang -ast-dump -fsyntax-only ir_test.c

$<my_clang> -emit-llvm -S ir_test.c

... cutting out internal declarations of clang ...

AST à IR: Example (cont.)

6

$clang -emit-llvm -S ir_test.c

$opt -dot-cfg ir_test.ll

$dot -Tpng -o ir_test.png .ir_test.dot

Semantic Analysis
• Deeper check into the source program[对程序进一步分析]

− Last stage of the front end[前端的最后阶段]

− Compiler’s last chance to reject incorrect programs[最后拒绝机会]

− Verify properties that aren’t caught in earlier phases
p Variables are declared before they’re used[先声明后使用]

p Type consistency when using IDs[变量类型一致]

p Expressions have the right types[表达式类型]
• E.g., string && bool

p … …

• Gather useful info about program for later phases[收集后续信息]
− Determine what variables are meant by each identifier
− Build an internal representation of inheritance hierarchies
− Count how many variables are in scope at each point
− … …

7
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Example

8

base class not defined

array index out of bounds (runtime)

1) y variable not declared
2) cannot multiply a string

cannot redefine functions

cannot add void to int

no main() function

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Example (cont.)

9

Semantic Analysis: Implementation
• Attribute grammars[属性文法]

− One-pass compilation
p Semantic analysis is done right in the middle of parsing

− Augment rules to do checking during parsing
− Approach suggested in the Compilers book

• AST walk[语法树遍历]
− Two-pass compilation

p First pass digests the syntax and builds a parse tree
p The second pass traverses the tree to verify that the program respects

all semantic rules

− Strict phase separation of Syntax Analysis and Semantic Analysis

10
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Syntax Directed Translation[语法制导翻译]

11

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Semantic Translation
(语义翻译)

Syntax Directed Translation
(语法制导翻译)

Semantic in Practice

12
https://funningboy.blogspot.com/2010/08/lex-yacc-case-study-ply.html

Semantic Actions

https://funningboy.blogspot.com/2010/08/lex-yacc-case-study-ply.html

Semantic in Practice (cont.)

13
https://capsl.udel.edu/courses/cpeg421/2008/slides/lex-yacc_tutorial.pdf

Proj1 Proj2

符号表

https://capsl.udel.edu/courses/cpeg421/2008/slides/lex-yacc_tutorial.pdf

Preview of Symbol Table[符号表]

• Symbol table records info of each symbol name in a program[
符号表记录每个符号的信息]

− symbol = name = identifier

• Symbol table is created in the semantic analysis phase[语义分
析阶段创建]

− Because it is not until the semantic analysis phase that enough info is
known about a name to describe it

• But, many compilers set up a table at lexical analysis time for
the various variables in the program[词法分析阶段准备]

− And fill in info about the symbol later during semantic analysis when
more information about the variable is known[语义分析阶段填充]

• Symbol table is used in code generation to output assembler
directives of the appropriate size & type[后续代码生成阶段使用]

14

LLVM: Semantic Analysis
• Clang does not traverse the AST after parsing

− Instead, it performs type checking on the fly, together with AST
node generation

− After the combined parsing and semantic analysis, the ParseAST
function invokes the method HandleTranslationUnit to trigger
any client that is interested in consuming the final AST

15

// perform semantic checking for the if statement, emitting diagnostics accordingly

https://github.com/llvm-mirror/clang/blob/master/lib/Parse/ParseStmt.cpp
https://clang.llvm.org/doxygen/ParseAST_8cpp_source.html

Bruno Cardoso Lopes and Rafael Auler, Getting Started with LLVM Core Libraries

combined

https://github.com/llvm-mirror/clang/blob/master/lib/Parse/ParseStmt.cpp
https://clang.llvm.org/doxygen/ParseAST_8cpp_source.html

LLVM: Module
• The Module class represents the top level structure

present in LLVM programs
− An LLVM module is effectively either a translation unit of the

original program or a combination of several translation units
merged by the linker

− The Module class keeps track of a list of Functions, a list of
GlobalVariables, and a SymbolTable

16
https://releases.llvm.org/7.1.0/docs/ProgrammersManual.html#symboltable

https://releases.llvm.org/7.1.0/docs/ProgrammersManual.html

LLVM: Symbol Table
• Public members of Module class

− SymbolTable *getSymbolTable()
p Return a reference to the SymbolTable for this Module

− Function *getOrInsertFunction(const std::string &Name, const
FunctionType *T)

p Look up the specified function in the Module SymbolTable. If it does not
exist, add an external declaration for the function and return it

− std::string getTypeName(const Type *Ty)
p If there is at least one entry in the SymbolTable for the specified Type,

return it. Otherwise return the empty string

− bool addTypeName(const std::string &Name, const Type *Ty)
p Insert an entry in the SymbolTable mapping Name to Ty. If there is

already an entry for this name, true is returned and the SymbolTable is
not modified

17
https://llvm.org/doxygen/classllvm_1_1Module.html

https://llvm.org/doxygen/classllvm_1_1Module.html

Syntax Directed Translation[语法制导翻译]

• To translate based on the program’s syntactic structure[语法结
构]

− Syntactic structure: structure of a program given by grammar
− The parsing process and parse trees are used to direct semantic

analysis and the translation of the program
p i.e., CFG-driven translation[CFG驱动的翻译]

• How? Augment the grammar used in parser:
− Attach semantic attributes[语义属性] to each grammar symbol

p The attributes describe the symbol properties
p An attribute has a name and an associated value: a string, a number, a type,

a memory location, an assigned register, …
− For each grammar production, give semantic rules or actions[语义规
则或动作]

p The actions describe how to compute the attribute values associated with
each symbol in a production

18
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf

Attributes[语义属性]

• Attributes can represent anything depending on the task[
属性可以表示任意含义]

− If computing expression: a number (value of expression)
− If building AST: a pointer (pointer to AST for expression)
− If generating code: a string (assembly code for expression)
− If type checking: a type (type for expression)

• Format: X.a (X is a symbol, a is one of its attributes)
• For Project 2 – Syntax Analysis

− Semantic attributes
p Name, type

− Semantic actions

19

How to Specify Syntax Directed Translation

• Syntax Directed Definitions (SDD)[语法制导定义]

− Attributes + semantic rules[语义规则] for computing them
p Attributes for grammar symbols[文法符号和语义属性关联]

p Semantic rules for productions[产生式和语义规则关联]

− Example rules for computing the value of an expression
E -> E1 + E2 RULE: {E.val = E1.val + E2.val}
E -> id RULE: {E.val = id.lexval}

• Syntax Directed Translation scheme (SDT)[语法制导翻译方案]

− Attributes + semantic actions[语义动作] for computing them
− Example actions for computing the value of an expression

E -> E1 + E2 {E.val = E1.val + E2.val}
E -> id {E.val = id.lexval}

20

SDD vs. SDT
• SDD[语法制导定义]: 是CFG的推广，翻译的高层次规则说明

− A CFG grammar together with attributes and semantic rules
p A subset of them are also called attribute grammars[属性文法]

• No side effects, i.e., rules are strictly local to each production

− Semantic rules imply no order to attribute evaluation

• SDT[语法制导翻译方案]: SDD的补充，具体翻译实施方案

− An executable specification of the SDD
p Fragments of progs are attached to different points in the production rules

− The order of execution is important

21

D -> T L
T -> int
T -> float
L -> L1, id
L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
id.type = L.inh

D -> T { L.inh = T.type } L
T -> int { T.type = int }
T -> float { T.type = float }
L -> { L1.inh = L.inh }L1, id
L -> { id.type = L.inh} id

Grammar SDD SDT

SDD vs. SDT (cont.)
• Syntax: A -> ⍺ {action1} β {action2} 𝛾 …
• Actions are executed “at that point” in the RHS

− action1 executes after ⍺ has been produced but before β
− action2 executes after ⍺, action1, β but before 𝛾

• Semantic rule vs. action[语义规则 vs. 语义动作]
− Semantic rules are not associated with locations in RHS

p SDD doesn’t impose any order other than dependences

− Location of action in RHS specifies when it should occur
p SDT specifies the execution order and time of each action

22

SDD[语法制导定义]

• SDD has two types of attributes[两种属性]
− For a non-terminal A at a parse-tree node N

• Synthesized attribute[综合属性]
− Defined by a semantic rule associated with the production at N

p The production must have A as its head (i.e., A -> …)

− A synthesized attribute of node N is defined only by attribute values
at N’s children and N itself[子节点或自身]

• Inherited attribute[继承属性]
− Defined by a semantic rule associated with the production at the

parent of N
p The production must have A as a symbol in its body (i.e., … -> …A…)

− An inherited attributed at node N is defined only by attribute values
at N’s parent, N itself, and N’s siblings[父节点、自身或兄弟节点]

23

P

C1 C2 C3

• Synthesized attribute for non-terminal A of parse-tree
node N[非终结符的综合属性]

− Only defined by N’s children and N itself
p Passed up the tree

− P.syn_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals can have synthesized attributes[终结符综合属性]
− Lexical values supplied by the lexical analysis
− Thus, no semantic rules in SDD for terminals

Synthesized Attribute[综合属性]

24

E.val

E1.val + T.val

E.val = E1.val + T.val

• Inherited attribute for non-terminal A of parse-tree node
N[非终结符继承属性]

− Only defined by N’s parent, N’s siblings and N itself
p Passed down a parse tree

− C2.inh_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals cannot have inherited attributes[终结符无继承属性]

− Only synthesized attributes from lexical analysis

Inherited Attribute[继承属性]

25

P

C1 C2 C3

D

T.type L.inh

D -> T L (L.inh = T.type)

SDD[语法制导定义]

• Attribute dependencies in a production rule[产生式中的属性依
赖]

• SDD has rule of the form for each grammar production
b = f(A.attrs, ⍺.attrs, β.attrs, 𝛾.attrs)

• b is either an attribute in LHS (an attribute of A)
− In which case b is a synthesized attribute
− Why?

• Or, b is an attribute in RHS (e.g., of β)
− In which case b is an inherited attribute
− Why?

26

A -> ⍺ β 𝛾

Inherited

Synthesized

From A’s perspective ⍺, β, 𝛾 are children

From β’s perspective A, ⍺, 𝛾 are parent or siblings

Example: Synthesized Attribute[综合]

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

27

SDD:

Arithmetic expressions with + and *
(1) Print the numerical value of the entire expression
(2) Compute value of summation
(3) Value copy
(4) Compute value of multiplication
(5) Value copy
(6) Value copy

Each non-terminal has a single
synthesized attribute val
Terminal digit has a synthesized
attribute lexval

Example: Synthesized Attribute (cont.)

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

28

SDD:

Input:
3 * 5 + 4

E.val = 19

E.val = 15 + T.val = 4

T.val = 15 F.val = 4

digit.lexval = 4T.val = 3 * F.val = 5

digit.lexval = 5F.val = 3

digit.lexval = 3

LSide effect (副作用)

Annotated parse tree (标注分析树)

https://www.icourse163.org/learn/HIT-1002123007

https://www.icourse163.org/learn/HIT-1002123007

Example: Inherited Attribute[继承]

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

29

SDD:

Variable declaration of type int/float followed by a list of IDs:
(1) Declaration: a type T followed by a list of L identifiers
(2) Evaluate the synthesized attribute T.type (int)
(3) Evaluate the synthesized attribute T.type (float)
(4) Pass down type, and add type to symbol table entry for the identifier
(5) Add type to symbol table

T has synthesized attribute type
L has inherited attribute inh

Pointing to a symbol-table[符号表] object

https://www.icourse163.org/learn/HIT-1002123007

https://www.icourse163.org/learn/HIT-1002123007

Example: Inherited Attribute (cont.)

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

30

SDD:

Input:
float a, b, c

L.inh = float id.lexeme = c

D

L.inh = float

,

L.inh = float id.lexeme = b,

id.lexeme = a

T.type = float

float

type depends on child
inh depends on sibling or parent

addtype(c, float)

addtype(b, float)

addtype(a, float)

https://www.icourse163.org/learn/HIT-1002123007

https://www.icourse163.org/learn/HIT-1002123007

The Concepts
• Side effect[副作用]

− 一般属性值计算（基于属性值或常量进行的）之外的功能

− 例如：code generation, print results, modify symbol table, …

• Attribute grammar[属性文法]
− 一个没有副作用的SDD

− The rules define the value of an attribute purely in terms of the
value of other attributes and constants[属性文法的规则仅仅通过
其他属性值和常量来定义一个属性值]

• Annotated parse-tree[标注分析树]
− 每个节点都带有属性值的分析树

p A parse tree showing the value(s) of its attribute(s)

− a.k.a., attribute parse tree[属性分析树]

− Can also have actions being annotated[也可标注语义动作]
31

Dependence Graph[依赖图]

• Dependence relationship[依赖关系]
− Before evaluating an attribute at a node of a parse tree, we

must evaluate all attributes it depends on[按照依赖顺序计算]

• Dependency graph[依赖图]
− While the annotated parse tree shows the values of attributes,

a dependency graph helps determine how those values can be
computed[依赖图决定属性值的计算]

− Depicts the flow of info among the attribute instances in a
particular parse tree[描绘了分析树的属性信息流]

p Directed graph where edges are dependence relationships between
attributes

p For each parse-tree node X, there’s a graph node for each attr of X
p If attr X.a depends on attr Y.b, then there’s one directed edge from Y.b

to X.a
32

Example: Dependency Graph

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

33

SDD:

Input:
float a, b, c

L id

D

L

,

L id,

id

T

float

lexeme

entryinh

inh entry

entryinhtype

lexeme

lexeme

‘entry’ is dummy attribute for the addtype()

https://www.icourse163.org/learn/HIT-1002123007

https://www.icourse163.org/learn/HIT-1002123007

Evaluation Order[属性值计算顺序]

• Ordering the evaluation of attributes[计算顺序]
− Dependency graph characterizes possible orders in which we can

evaluate the attributes at the various nodes of a parse-tree

• If the graph has an edge from node M to node N, then the
attribute associated with M must be evaluated before N[用图
的边来确定计算顺序]

− Thus, the only allowable orders of evaluation are those sequences of
nodes N1, N2, …, Nk such that if there is an edge of the graph from Ni
to Nj, then i < j

− Such an ordering embeds a directed graph into a linear order, and is
called a topological sort[拓扑排序] of the graph

p If there’s any cycle in the graph, then there are no topological sorts, i.e., no
way to evaluate the SDD on this parse tree

p If there are no cycles, then there is always at least one topological sort

34

Example: Evaluation Order

Production Rules Semantic Rules
(1) D -> T L
(2) T -> int
(3) T -> float
(4) L -> L1, id

(5) L -> id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh
addtype(id.lexeme, L.inh)
addtype(id.lexeme, L.inh)

35

SDD:

Input:
float a, b, c

L id

D

L

,

L id,

id

T

float

lexeme

entryinh

inh entry

entryinhtype

lexeme

lexeme

1

2

3

4 5 6

7 8

9 10

Topological sort:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

https://www.icourse163.org/learn/HIT-1002123007

https://www.icourse163.org/learn/HIT-1002123007

