
Compilation Principle
编译原理

第2讲：词法分析(2)
张献伟

xianweiz.github.io
DCS290, 3/5/2024

https://xianweiz.github.io/

Review Questions
• Q1: input and output of lexical analysis?

• Q2: lexical analysis of “while i>=1)”?

• Q3: Σ = {a, b}, L1 = {aa}, L2={bbb}. What are L1 | L2 and L1L2?

• Q4:L3
2?

• Q5: describe the meaning of L1
* | L2

*?

• Q6: RE of identifiers in C language?

2

(_letter)(_letter|digit)*

(keyword, ‘while’), (id, ‘i’), (sym, ‘>=’), (num, ‘1’), (sym, ‘)’)

L3 = L1 | L2 = {aa} | {bbb} = {aa, bbb}, L4 = L1L2 = {aabbb}

L3
2 = L3L3 = {aa, bbb}{aa, bbb} = {aaaa, aabbb, bbbaa, bbbbbb}

A language composed of ‘a’s and ‘b’s of length 2N and 3N,
respectively, including ε

Input: source code/char stream, output: tokens

Compound REs[组合表达式]

• Compound
− Large REs built from smaller ones

• Suppose r and s are REs denoting languages L(r) and L(s)
− (r) is a RE denoting the language L(r)

p We can add additional () around expressions without changing the
language they denote

− (r)|(s) is a RE denoting the language L(r) ∪ L(s)
− (r)(s) is a RE denoting the language L(r)L(s)
− (r)* is a RE denoting the language (L(r))*

• REs often contain unnecessary (), which could be dropped
− (A) ≡ A: A is a RE
− (a)|((b)*(c)) ≡ a|b*c

3

Operator Precedence[优先级]
• RE operator precedence

− (A)
− A*

− AB
− A|B

• Example: ab*c|d
− a(b*)c|d
− (a(b*))c|d
− ((a(b*))c)|d

4

Common REs[常用表达]

• At least one: A+ ≡ AA*

• Option: A? ≡ A | ε

• Characters: [a1a2…an] ≡ a1|a2|…|an

• Range: ‘a’ + ‘b’ + … + ‘z’ ≡ [a-z]

• Excluded range: complement of [a-z] ≡ [^a-z]

5

RE Examples
Regular Expression Explanation

a* 0 or more a’s (ε, a, aa, aaa, aaaa, …)

a+ 1 or more a’s (a, aa, aaa, aaaa, …)

(a|b)(a|b) (aa, ab, ba, bb)

(a|b)* all strings of a’s and b’s (including ε)

(aa|ab|ba|bb)* all strings of a’s and b’s of even length

[a-zA-Z] shorthand for “a|b|…z|A|B|…|Z”

[0-9] shorthand for “0|1|2|…|9”

0([0-9])*0 numbers that start and end with 0

1*(0|ε)1*

all binary strings that contain ‘00’ as substring

6

• Q: are (a|b)* and (a*b*)* equivalent?

binary strings that contain at most one zero

(0|1)*00(0|1)*

Different REs of the Same Language
• (a|b)* = ?

− (L(a|b))* = (L(a) ∪ L(b))* = ({a} ∪ {b})* = {a, b}*

− = {a, b}0 + {a, b}1 + {a, b}2 + …
− = {ε, a, b, aa, ab, ba, bb, aaa, …}

• (a*b*)* = ?
− (L(a*b*))* = (L(a*)L(b*))*

− = L({ε, a, aa, …}{ε, b, bb, …})*

− = L({ε, a, b, aa, ab, bb, …})*

− = ε + {ε, a, b, aa, ab, bb, …} + {ε, a, b, aa, ab, bb, …}2 + {ε, a, b,
aa, ab, bb, …}3 + …

7

More Examples
• Keywords: ‘if’ or ‘else’ or ‘then’ or ‘for’ …

− RE = ‘i’‘f’ + ‘e’‘l’‘s’‘e’ + … = ‘if’ + ‘else’ + ‘then’ + …

• Numbers: a non-empty string of digits
− digit = ‘0’ + ‘1’ + ‘2’ + ‘3’ + ‘4’ + ‘5’ + ‘6’ + ‘7’ + ‘8’ + ‘9’
− integer = digit digit*

− Q: is ‘000’ an integer?

• Identifier: strings of letters or digits, starting with a letter
− letter = ‘a’ + ‘b’ + ... ‘z’ + ‘A’ + ‘B’ + … + ‘Z’ = [a-zA-Z]
− RE = letter(letter + digit)*

− Q: is the RE valid for identifiers in C?

• Whitespace: a non-empty sequence of blanks, newline, tabs
− (‘ ’ + ‘\n’ + ‘\t’)+

8

‘+’ == ‘|’

REs in Programming Language
Symbol Meaning
\d Any decimal digit, i.e. [0-9]
\D Any non-digit char, i.e., [^0-9]
\s Any whitespace char, i.e., [\t\n\r\f\v]
\S Any non-whitespace char, i.e., [^ \t\n\r\f\v]
\w Any alphanumeric char, i.e., [a-zA-Z0-9_]
\W Any non-alphanumeric char, i.e., [^a-zA-Z0-9_]
. Any char \. Matching “.”
[a-f] Char range [^a-f] Exclude range
^ Matching string start $ Matching string end
(…) Capture matches

9

https://docs.python.org/3/howto/regex.html

https://docs.python.org/3/howto/regex.html

Lexical Specification of a Language
• S0: write a regex for the lexemes of each token class

− Numbers = digit+
− Keywords = ‘if’ + ‘else’ + …
− Identifiers = letter(letter + digit)*

• S1: construct R, matching all lexemes for all tokens
− R = numbers + keywords + identifiers + … = R1 + R2 + R3 + …

• S2: let input be xq … xn, for 1 ≤ i ≤ n, check x1 … xi ∈ L(R)
• S3: if successful, then we know x1 … xi ∈ L(Rj) for some j

− E.g., an identifier or a number …

• S4: remove x1 … xi from input and go to step S2

10

Lexical Spec. of a Language(cont.)
• How much input is used?

− x1 … xi ∈ L(R), x1 … xj∈ L(R), i ≠ j
− Which one do we want? (e.g., ‘==’ or ‘=’)
− Maximal match: always choose the longer one[最长匹配]

• Which token is used if more than one matches?
− x1 … xi ∈ L(R) where R = R1 + R2 + … + Rn

− x1 … xi ∈ L(Rm), x1 … xi ∈ L(Rn), m ≠ n
p E.g., keywords = ‘if’, identifier = letter(letter+digit)*

− Keyword has higher priority
− Rule of thumb: choose the one listed first[次序]

• What if no rule matches?
− x1 … xi ⊄ L(R) à Error

11

Summary: RE
• We have learnt how to specify tokens for lexical

analysis[定义]
− Regular expressions

p Concise notations for the string patterns

• Used in lexical analysis with some extensions[适度扩展]
− To resolve ambiguities
− To handle errors

• RE is only a language specification[只是定义了语言]
− An implementation is still needed
− Next: to construct a token recognizer for languages given by

regular expressions – by using finite automata[有穷自动机]

12

Impl. of Lexical Analyzer[实现]

• How do we go from specification to implementation?
− RE à finite automata (FA)

• Solution 1: to implement using a tool — Lex (for C), Flex
(for C++), Jlex (for java)

− Programmer specifies tokens using REs
− The tool generates the source code from the given REs

p The Lex tool essentially does the following translation: REs (specification)
⇒ FAs (implementation)

• Solution 2: to write the code yourself
− More freedom; even tokens not expressible through REs
− But difficult to verify; not self-documenting; not portable;

usually not efficient
− Generally not encouraged 13

Transition Diagram[转换图]

• REs à transition diagrams
− By hand
− Automatic

• Node[节点]: state
− Each state represents a condition that may occur in the process
− Initial state (Start): only one, circle marked with ‘start à’
− Final state (Accepting): may have multiple, double circle

• Edge[边]: directed, labeled with symbol(s)
− From one state to another on the input

14

Finite Automata[有穷自动机]

• Regular Expression = specification[正则表达是定义]

• Finite Automata = implementation[自动机是实现]

• Automaton (pl. automata): a machine or program
• Finite automaton (FA): a program with a finite number of

states

• Finite Automata are similar to transition diagrams
− They have states and labelled edges
− There are one unique start state and one or more than one final

states

15

FA: Language
• An FA is a program for classifying strings (accept, reject)

− In other words, a program for recognizing a language
− The Lex tool essentially does the following translation: REs

(specification) ⇒ FAs (implementation)
− For a given string ‘x’, if there is transition sequence for ‘x’ to

move from start state to certain accepting state, then we say ‘x’
is accepted by the FA

p Otherwise, rejected

• Language of FA = set of strings accepted by that FA
− L(FA) ≡ L(RE)

16

Example
• Are the following strings acceptable?

− 0
− 1
− 11110
− 11101
− 11100
− 1111110

• What language does the state graph recognize? ∑ = {0, 1}

17

✓

✓

✓

✗

✗
✗

L(FA): all strings of ∑{a, b}, ending with ‘abb’
L(RE) = (a|b)*abb

Any number of ‘1’s followed by a single 0

DFA and NFA
• Deterministic Finite Automata (DFA): the machine can

exist in only one state at any given time[确定]
− One transition per input per state
− No ε-moves
− Takes only one path through the state graph

• Nondeterministic Finite Automata (NFA): the machine can
exist in multiple states at the same time[非确定]

− Can have multiple transitions for one input in a given state
− Can have ε-moves
− Can choose which path to take

p An NFA accepts if some of these paths lead to accepting state at the end
of input

18

• 5 components（∑, S, n, F, 𝛿）
− An input alphabet Σ

− A set of states S

− A start state n ∈ S

− A set of accepting states F ⊆ S

− A set of transitions δ: Sa Sb

State Graph

19

input

a

Example: DFA
• There is only one possible sequence of moves --- either

lead to a final state and accept or the input string is
rejected

− Input string: aabb

− Successful sequence:

20

Example: NFA
• There are many possible moves: to accept a string, we

only need one sequence of moves that lead to a final
state

− Input string: aabb
− Successful sequence:

− Unsuccessful sequence:

21

Conversion Flow[转换流程]

• Outline: RE à NFA à DFA à Table-drive Implementation
−③ Converting DFAs to table-driven implementations
−① Converting REs to NFAs
−② Converting NFAs to DFAs

22

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

③
① ②

DFA à Table
• FA can also be represented using transition table

23

0 1

S

T

U

T U

T U

T x

alphabet

state

Q: which is/are accepted?
111
000
001

More on Table
• Implementation is efficient[表格是一种高效实现]

− Table can be automatically generated
− Need finite memory O(S x ∑)

p Size of transition table

− Need finite time O(input length)
p Number of state transitions

• Pros and cons of table[表格实现的优劣]
− Pro: can easily find the transitions on a given state and input
− Con: takes a lot of space, when the input alphabet is large, yet

most states do not have any moves on most of the input
symbols

24

