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Quiz
• Q1: how does BB relate to CFG?

• Q2: how to partition code into BBs?

• Q3: leader instructions of the code?

• Q4: CFG of the code?

• Q5: optimize the code.
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Each BB is a node of the control flow graph.
BBs are connected with directed edges.

Identify leader insts; a BB consists of a leader
inst and subsequent insts before next leader.
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chenhq79@mail2.sysu.edu.cn 

(1)       w = 5
(2)       if w != 0: goto L1
(3)       y = w
(4)       x = x + y
(5)       goto L2
(6) L1: y = 3
(7)       x = w
(8) L2: x = x + y

(1) w = 5
(2)       if w != 0: goto L1
(3)       y = w
(4)       x = x + y
(5)       goto L2
(6) L1: y = 3
(7)       x = w
(8) L2: x = x + y
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Target Code Generation[目标代码生成]

• What we have now
− Optimized IR of the source program

p And, symbol table

• Target code
− Binary (machine) code
− Assembly code

• Goals of target code generation
− Correctness: the target program must 

preserve the semantic meaning of the source 
program

− High-quality: the target program must make 
effective use of the available resources of the 
target machine

− Fast: the code generator itself must runs 
efficiently
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src à IR à exe: Example
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$llvm-as asm_test.ll -o asm_test.bc
$llc -filetype=obj asm_test.bc -o asm_test.o
$clang asm_test.o -o asm_test

$clang -emit-llvm -S -O1 asm_test.c



IR à asm: Example
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$llvm-as asm_test.ll -o asm_test.bc
$llc -filetype=obj asm_test.bc -o asm_test.o

$clang asm_test.o -o asm_test

$objdump -d asm_test.o

$objdump -d asm_test



ARM vs. X86: IR
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ARM vs. X86: assembly
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RIP (instruction pointer) register points to next instruction to be executed.

ADRP: Address of 4KB page at a PC-relative offset.



Assembly vs. Assembler
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• Assembly language: a programming language that is 
close to machine language but not the same

− Symbolic representation of a computer’s binary machine lang

• Assembler: a program (a mini-compiler) that translates 
assembly language into real machine code (long 
sequences of 0s and 1s)

− Translate commands in assembly language like addi t3 t6 t8 into 
machine code

− Convert symbolic addresses such as main or loop into machine 
addresses like 100011010011010011010011010101001

p This task is sometimes deferred to the linker

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf
text binary

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf


Assembler & Linker
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• Assembler translates source files to object files, which are 
machine code, but contains ‘holes’ (basically references 
to external code)

− Because of holes, object files (a.k.a., relocatable object file) 
cannot be executed directly

− The holes arise because the assembler translates each file 
separately

• The linker gets all object files and libraries and puts the 
right addresses into holes, yielding an executable

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf


Translating IR to Machine Code[翻译]

• Machine code generation is machine ISA dependent*
− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR 
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions
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* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

ISA

https://zhuanlan.zhihu.com/p/363765166


Instruction Selection[指令选取]

• Code generation is to map the IR program into a code 
sequence that can be executed by the target machine[选
择适当的目标机器指令来实现IR]

− ISA of the target machine
p If there is ‘INC’, then for a = a + 1, ‘INC a’ is better than ‘LD a; ADD a, 1’

− Desired quality of the generated code
p Many different generations, naïve translation is usually correct but very 

inefficient
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TAC code:

a = b + c
d = a + e

Target code:

LD R0, b // R0 = b
ADD R0, R0, c // R0 = R0 + c
ST a, R0 // a = R0
LD R0, a // R0 = a
ADD R0, R0, e // R0 = R0 + e
ST d, R0 // d = R0



Register Allocation & Evaluation Order
• Register allocation: a key problem in code generation is 

deciding what values to hold in what registers[寄存器分配]
− Registers are the fastest storage unit but are of limited numbers

p Values not held in registers need to reside in memory
p Insts involving register operands are much shorter and faster

− Finding an optimal assignment of registers to variables is NP-
hard

• Evaluation order: the order in which computations are 
performed can affect the efficiency of the target code[执
行顺序]

− Some computation orders require fewer registers to hold 
intermediate results than others

− However, picking a best order in the general case is NP-hard
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x86 à ARM à RISC-V[进行中的变革]

• The war started in mid 1980’s
− CISC won the high-end commercial war (1990s to today)
− RISC won the embedded computing war

• But now, things are changing …
− Fugaku ARM supercomputer, Apple M1 chip, Nvidia Superchip

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans 

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement
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https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and 
early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed 
with a similar philosophy which has become known as RISC

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html


Stack Machine[栈式计算机]

• A simple evaluation model[一个简单模型]
− No variables or registers
− A stack of values for intermediate results

• Each instruction[指令任务]
− Takes its operands from the top of the stack[栈顶取操作数]

− Removes those operands from the stack[从栈中移除操作数]

− Computes the required operation on them[计算]

− Pushes the result on the stack[将计算结果入栈]
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Example
• Consider two instructions

− push i - place the integer i on top of the stack
− add - pop two elements, add them and put the result back on 

the stack

• A program to compute 7 + 5
− push 7
− push 5
− add
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Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called 
accumulator)[使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation
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push 7
push 5
add


