
Compilation Principle
编译原理

第22讲：目标代码生成(1)
张献伟

xianweiz.github.io
DCS290, 6/6/2024

https://xianweiz.github.io/

Quiz
• Q1: how does BB relate to CFG?

• Q2: how to partition code into BBs?

• Q3: leader instructions of the code?

• Q4: CFG of the code?

• Q5: optimize the code.

2

Each BB is a node of the control flow graph.
BBs are connected with directed edges.

Identify leader insts; a BB consists of a leader
inst and subsequent insts before next leader.

B1

B2 B3
B4

x = 8

(1), (3), (6), (8)

Handwritten, or email to
chenhq79@mail2.sysu.edu.cn

(1) w = 5
(2) if w != 0: goto L1
(3) y = w
(4) x = x + y
(5) goto L2
(6) L1: y = 3
(7) x = w
(8) L2: x = x + y

(1) w = 5
(2) if w != 0: goto L1
(3) y = w
(4) x = x + y
(5) goto L2
(6) L1: y = 3
(7) x = w
(8) L2: x = x + y

B1

B2

B3

B4

Target Code Generation[目标代码生成]

• What we have now
− Optimized IR of the source program

p And, symbol table

• Target code
− Binary (machine) code
− Assembly code

• Goals of target code generation
− Correctness: the target program must

preserve the semantic meaning of the source
program

− High-quality: the target program must make
effective use of the available resources of the
target machine

− Fast: the code generator itself must runs
efficiently

3

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

src à IR à exe: Example

4

$llvm-as asm_test.ll -o asm_test.bc
$llc -filetype=obj asm_test.bc -o asm_test.o
$clang asm_test.o -o asm_test

$clang -emit-llvm -S -O1 asm_test.c

IR à asm: Example

5

$llvm-as asm_test.ll -o asm_test.bc
$llc -filetype=obj asm_test.bc -o asm_test.o

$clang asm_test.o -o asm_test

$objdump -d asm_test.o

$objdump -d asm_test

ARM vs. X86: IR

6

ARM vs. X86: assembly

7
RIP (instruction pointer) register points to next instruction to be executed.

ADRP: Address of 4KB page at a PC-relative offset.

Assembly vs. Assembler

8

• Assembly language: a programming language that is
close to machine language but not the same

− Symbolic representation of a computer’s binary machine lang

• Assembler: a program (a mini-compiler) that translates
assembly language into real machine code (long
sequences of 0s and 1s)

− Translate commands in assembly language like addi t3 t6 t8 into
machine code

− Convert symbolic addresses such as main or loop into machine
addresses like 100011010011010011010011010101001

p This task is sometimes deferred to the linker

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf
text binary

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

Assembler & Linker

9

• Assembler translates source files to object files, which are
machine code, but contains ‘holes’ (basically references
to external code)

− Because of holes, object files (a.k.a., relocatable object file)
cannot be executed directly

− The holes arise because the assembler translates each file
separately

• The linker gets all object files and libraries and puts the
right addresses into holes, yielding an executable

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

https://users.sussex.ac.uk/~mfb21/compilers/slides/11-handout.pdf

Translating IR to Machine Code[翻译]

• Machine code generation is machine ISA dependent*
− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions

10
* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

ISA

https://zhuanlan.zhihu.com/p/363765166

Instruction Selection[指令选取]

• Code generation is to map the IR program into a code
sequence that can be executed by the target machine[选
择适当的目标机器指令来实现IR]

− ISA of the target machine
p If there is ‘INC’, then for a = a + 1, ‘INC a’ is better than ‘LD a; ADD a, 1’

− Desired quality of the generated code
p Many different generations, naïve translation is usually correct but very

inefficient

11

TAC code:

a = b + c
d = a + e

Target code:

LD R0, b // R0 = b
ADD R0, R0, c // R0 = R0 + c
ST a, R0 // a = R0
LD R0, a // R0 = a
ADD R0, R0, e // R0 = R0 + e
ST d, R0 // d = R0

Register Allocation & Evaluation Order
• Register allocation: a key problem in code generation is

deciding what values to hold in what registers[寄存器分配]
− Registers are the fastest storage unit but are of limited numbers

p Values not held in registers need to reside in memory
p Insts involving register operands are much shorter and faster

− Finding an optimal assignment of registers to variables is NP-
hard

• Evaluation order: the order in which computations are
performed can affect the efficiency of the target code[执
行顺序]

− Some computation orders require fewer registers to hold
intermediate results than others

− However, picking a best order in the general case is NP-hard
12

x86 à ARM à RISC-V[进行中的变革]

• The war started in mid 1980’s
− CISC won the high-end commercial war (1990s to today)
− RISC won the embedded computing war

• But now, things are changing …
− Fugaku ARM supercomputer, Apple M1 chip, Nvidia Superchip

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement

13

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and
early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed
with a similar philosophy which has become known as RISC

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

Stack Machine[栈式计算机]

• A simple evaluation model[一个简单模型]
− No variables or registers
− A stack of values for intermediate results

• Each instruction[指令任务]
− Takes its operands from the top of the stack[栈顶取操作数]

− Removes those operands from the stack[从栈中移除操作数]

− Computes the required operation on them[计算]

− Pushes the result on the stack[将计算结果入栈]

14

Example
• Consider two instructions

− push i - place the integer i on top of the stack
− add - pop two elements, add them and put the result back on

the stack

• A program to compute 7 + 5
− push 7
− push 5
− add

15

Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called
accumulator)[使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation

16

push 7
push 5
add

