(@) T v K & tsaEs (Ha4FRE)
N YAT-SEN UNIVERSITY SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle

7 1°F R B

= N

B3 LS
INGE

xianweiz.github.

M (3)

10

DCS290, 3/7/2024

Dhig

https://xianweiz.github.io/

Review Questions

* Q1: RE of binary numbers that are multipliers of 27
(0]1)*0
* Q2: meaning of (a|b)*bb(a|b)*?
Strings of a’s and b’s with consecutive b’s
e Q3: usage of RE and FA in lexical analysis?
RE: specify the token class; FA: implement the token recognizer
* Q4: general workflow from RE to implementation?
RE - NFA - DFA - Table
* Q5:the graph describes NFA or DFA? Why?

NFA. A: e-transition, B: 1-transition 0 1 2

More on Table

* Implementation is efficient[F#& & —F = =2]
— Table can be automatically generated

- Need finite memory O(S x)
o Size of transition table

- Need finite time O(input length)
o Number of state transitions

* Pros and cons of table[ZFA& SZHLFIIL %]

- Pro: can easily find the transitions on a given state and input

— Con: takes a lot of space, when the input alphabet is large, yet
most states do not have any moves on most of the input
symbols

& 2 ‘ [

RE = NFA

* NFA can have e-moves

— Edges labelled with €
- Move from state A to state B without reading any input

* M-Y-T algorithm (Thompson's construction) to convert
any RE to an NFA that defines the same language[1F %1

Rz AE NS EEIN
- Input: RE r over alphabety
— Output: NFA accepting L(r) ' L N
McNaughton-Yamada-Thompson | Regular Expression Lo @Tab;:;dﬂ‘ﬂa::pl'

e e o m mm mm m o mm mm m mm e e e e e e e e mm Em o e e = = =

4 i

Thompson

Kenneth Lane Thompson (born February 4, 1943) is an American pioneer of
Ken Thompson computer science & Computer Chess Development. Thompson worked at Bell
' Labs for most of his career where he designed and implemented the original
Unix operating system. He also invented the B programming language, the
direct predecessor to the C programming language, and was one of the
creators and early developers of the Plan 9 operating system. Since 2006,
Thompson has worked at Google, where he co-developed the Go programming
language.

Other notable contributions included his work on regular expressions and early
computer text editors QED and ed, the definition of the UTF-8 encoding, and his
work on computer chess that included the creation of endgame tablebases and
the chess machine Belle. He won the Turing Award in 1983 with his long-term

colleague Dennis Ritchie.

In the 1960s, Thompson also began work on regular expressions. Thompson had developed the CTSS
version of the editor QED, which included regular expressions for searching text. QED and Thompson's
later editor ed (the standard text editor on Unix) contributed greatly to the eventual popularity of regular
expressions, and regular expressions became pervasive in Unix text processing programs. Almost all
programs that work with regular expressions today use some variant of Thompson's notation. He also
invented Thompson's construction algorithm used for converting regular expressions into nondeterministic
finite automata in order to make expression matching faster.!'2!

tux % : Dige

RE = NFA (cont.)

* Step 1: processing atomic REs @ 2
— £ expression[=] —

o iis a new state, the start state of NFA
o fis another new state, the accepting state of NFA

2o Sy

- Single character RE a[®#. 7 4]

AD)——®

Dhge

RE = NFA (cont.)

* Step 2: processing compound REsS[ZH 5]
-R=R; | R,

N; :NFA for R,
N, : NFA for R;

Pt
the new and
unique final state

initial state final state
N N &
o e Jor Nyand N,
- R=R,R,
merge : final state of N,
and initial state of N, ‘
initial state (O NI @ N2 O) final state
for 4'\'1 N for J'VZ

“) 7 It rﬂ
N/ s;t Y::}S'ENﬁEﬁ v': LZ

RE = NFA (cont.)

* Step 2: processing compound REs
-R=R;*

initial state
for N, final state

for .'Vl

N;:NFA for R

& A2 \‘ It I
@) tux s 8 Dade

Example

e Convert “(a|b)*abb” to NFA

a

a (m a|b)==> e @
b

b (in a|b)=—> o @

é’&’) 9 1» rﬂ
(@) T X% 3L

Example (cont.)

e Convert “(a|b)*abb” to NFA

abb ====>(several steps are omitted)

10 Dhig

Example (cont.)

e Convert “(a|b)*abb” to NFA

(a b)‘abb ——— A

11 Dhig

The Conversion Flow[## i #5)

e OQutline: RE > NFA > DFA - Table-drive Implementation
- (3) Converting DFAs to table-driven implementations
- (U Converting REs to NFAs
- (2) Converting NFAs to DFAs

Lexical Specification

I
|
I
I
|
|

¥

Regular Express.'ion

O E— EE EE B B S e S S S B S B B B B B B B B B G S S B B B B B e e o

e O O O B B S B B B B B S S B e S e e S e S e e e Ea B e Eae B Eae Eee B ey

| Table-driven Impl.

automatic

12

_— e e o - = = P

of automata

NFA > DFA: Same[Zh]

* NFA and DFA are equivalent

start final state
state
start b b final state

state el
-
start 9 "‘i__b,
a
a a

To show this, we must prove every DFA can be converted into an
NFA which accepts the same language, and vice-versa

13 Dhig

NFA = DFA: Theory[kH>5 4]

e Question:is L(NFA) € L(DFA)?

— Otherwise, conversion would be futile

 Theorem: L(NFA) = L(DFA)
— Both recognize regular languages L(RE)
— Will show L(NFA) € L(DFA) by construction (NFA - DFA)

— Since L(DFA) € L(NFA), L(NFA) = L(DFA)
_Any DFA can be easily changed into NFA (e.g., add € moves)
* Resulting DFA consumes more memory than NFA

— Potentially larger transition table as shown later

* But DFAs are faster to execute
— For DFAs, number of transitions == length of input
— For NFAs, number of potential transitions can be larger

* NFA - DFA conversion is done because the speed of DFA far
outweighs its extra memory consumption

1 i

NFA = DFA: Idea

e Algorithm to convert[¥;#t 5 7%]
— Input: an NFA N
— Output: a DFA D accepting the same language as N

* Subset construction[1 £ 14 £]

— Each state of the constructed DFA corresponds to a set of NFA
states[—>DFAIRZ N N 2 I NFATRES]
o Hence, the name ‘subset construction’
— After reading input g,a....a,, the DFA is in that state which
corresponds to the set of states that the NFA can reach, from its
start state, following paths labeled a,a....a,

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

NFA = DFA: Steps

 The initial state of the DFA is the set of all states the NFA
can be in without reading any input[#J4& IR

* For any state {q;, q;, ..., i} of the DFA and any input g,
the next state of the DFA is the set of all states of the NFA
that can result as next states if the NFA is in any of the
states g;, q;, ..., g, When it reads a[F R3]

— This includes states that can be reached by reading a followed
by any number of e-transitions

— Use this rule to keep adding new states and transitions until it is
no longer possible to do so

* The accepting states of the DFA are those states that
contain an accepting state of the NFA[#ZCIRE]

@)tk s bl

wsonmsi s/ /web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

NFA = DFA: Algorithm

Initially, €-closure(s,) is the only state in Dstates and it 1s unmarked
while there is an unmarked state 7 in Dstates do
mark T

for each input symbol ¢ € X do
U := e-closure(move(T,a))
if U is not in Dstates then

add U as an unmarked state to Dsrates

end if
Dtran|T,a] .= U

end do

end do

* Operations on NFA states:

— e-closure(s): set of NFA states reachable from NFA state s on ¢-
transitions alone

— e-closure(T): set of NFA states reachable from some NFA state s in set
T on e-transitions alone; = U, t€-closure(s)

— move(T, a): set of NFA states to which there is a transition on input
symbol a from some statesin T

@) 17 S
@ turs Ak

NFA = DFA: Example

e Start by constructing e-closure of the start state[#] 45 IR 2]

— g-closure(A) = A T:A a:0/1
* Keep getting e-closure(move(T, a?)[/ﬁié.%#ﬁ%?]
e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

Dhge

NFA = DFA: Example (cont.)

* Mark the final states of the DFA[Z& IEIR]

- The accepting states of D are all those sets of N’s states that
incIu1de at least one accepting state of N

state |

* |s the DFA minimal?
— As few states as possible

R
() F o % 2 19
%@j

Ty S SUN YAT-SEN UNIVERSITY

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

Dhge

NFA = DFA: Minimization{&/Mk]

* Any DFA can be converted to its minimum-state
equivalent DFA

— Discover sets of equivalent states[f#/EZ5: 4/ EH 2 IRE]
— Represent each such set with just one state

e Two states are equivalent if and only if:
- VYa € X, transitions on a lead to equivalent states

— a-transitions to distinct sets = states must be in distinct sets
1 Initial: {A}, {BC, AC}

Initial sets:
For {BC, AC} {non-accepting states}, {accepting states}

- BCon ‘0" 2> AC, ACon ‘0’ 2 AC
- BCon ‘1’ 2> BC, ACon ‘1’ = BC
— No way to distinguish BC from AC on any string

starting with ‘0" or ‘1’
‘ Final: {A}, {BCAC}
0 20

\ ’pELZ
https://people.cs.umass.edu/~moss/610-slides/06.pdf Py

https://people.cs.umass.edu/~moss/610-slides/06.pdf

NFA = DFA: Minimization (cont.)

e States BC and AC do not need differentiation

— Should be merged into one

Minimized

BC AC BC

AC AC BC

5 ’E I r

Minimization Algorithm

* The algorithm

— Partitioning the states of a DFA into groups of states that cannot
be distinguished (i.e., equivalent)

— Each groups of states is then merged into a single state of the

min-state DFA P<-{F} {S-F}
while (P is still changing)
* Fora DFA (§,S,n,F &8) T<-{}
. .. for each states € P
— The initial partition P,, has two sets o e 2 & 5
and {S - F} partition s by @ into s; & s,
. . cee I'<-TUs Us,
- Splitting a set (i.e., partitioning a set T2 Pthen
by input symbol a) P<-T

o Assume g, and g, € S, and §(q,, a) = qx and 6(qp, @) = qy,

o If g, and gy, are not in the same set, then s must be split (i.e., a splits s)
o One state in the final DFA cannot have two transitions on a

\ ’pEuL
https://people.cs.umass.edu/~moss/610-slides/06.pdf Py

https://people.cs.umass.edu/~moss/610-slides/06.pdf

Example

¢ PO: 51 - {S, A, B}; 52 = {C) D) El F}

* For s, further splits into {S}, {A}, {B}
-a:S->A€s;,,A-->CE€Es,, B-->A €s;, = adistincts s, =>{S, B}, {A}
-b:S-->B€s;,,A-->B€s;, B-->D €s, = bdistincts s; => {S}, {B}, {A}

* Fors,, all states are equivalent
-a:.C-->C€s, D-->F€s,, E-->F€s,,F-->CEs, = adoesn’t
-b:C-->E€s, D-->D€s, E-->DEs,,F-->E€s,= bdoesn’t

DE

CF

CFDE

E

CF

DE

cont.)

Example

NFA = DFA: More Example

e Start state of the equivalent DFA
— e-closure(A)={A, B,C, E, H} = A’
e e-closure(move(A’, a)) = e-closure({D, J}) ={B, C, D, E, H, G, J} =
BI
* e-closure(move(A’, b)) = e-closure({F}) ={B, C,E, F, G, H} =C

25 Dhge

NFA = DFA: More Example (cont.)

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

* |s the DFA minimal?
- States A’ and F should be merged

* Should we merge states A’ and
FM?
- NO. A" and FM are in different sets

from the very beginning (FM is
accepting, A’ is not).

D

NFA = DFA: More Example (cont.)

PO: s, ={A, DJ, FK, F}, s, = {FM}

For s,, further splits into {A’, DJ, F}, {FK}
- a: A-->DJ€E€s,, DJ-->DJ €sy, FK-->DJ €s,, F-->DJ € s; = a doesn’t distinct

- b:A-->F€s,;, DJ-->FK€E€s,, FK-->FM € s,, F --> F € s;— b distincts s; =>
Sl]_:{A,; DJ, F}, Slz={FK}

For s, further splits into {A’, DJ, F}, {FK}
- a: A’-->DJ €544, DJ-->DJ € 543, F-->DJ € s;; = a doesn’t distinct

- b: A-->F € 5,4, D) -->FK € 545, F --> DJ € s;; = b distincts s;; => s;,,={A’, F},
S112={DJ}

For s,,1, impossible to further split
Final states: S;;; ={A’, F}, S;1, = {DJ}, S;, = {FK}, S, = {FM}

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

u‘.i’ﬂ“ﬁ

NFA = DFA: More Example (cont.)

* Original DFA: before merging A" and F

Dhge

NFA = DFA: Space Complexity[4s a5 44]

* NFA may be in many states at any time

* How many different possible states in DFA?

— If there are N states in NFA, the DFA must be in some subset of
those N states

- How many non-empty subsets are there?
-2N-1

* The resulting DFA has O(2N) space complexity, where N is
number of original states in NFA

— For real languages, the NFA and DFA have about same number
of states

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

