
Compilation Principle
编译原理

第3讲：词法分析(3)
张献伟

xianweiz.github.io
DCS290, 3/7/2024

https://xianweiz.github.io/

Review Questions
• Q1: RE of binary numbers that are multipliers of 2?

• Q2: meaning of (a|b)*bb(a|b)*?

• Q3: usage of RE and FA in lexical analysis?

• Q4: general workflow from RE to implementation?

• Q5:the graph describes NFA or DFA? Why?

2

RE: specify the token class; FA: implement the token recognizer

RE à NFA à DFA à Table

0 1 2

ε 1A B C

NFA. A: ε-transition, B: 1-transition

(0|1)*0

Strings of a’s and b’s with consecutive b’s

More on Table
• Implementation is efficient[表格是一种高效实现]

− Table can be automatically generated
− Need finite memory O(S x ∑)

p Size of transition table

− Need finite time O(input length)
p Number of state transitions

• Pros and cons of table[表格实现的优劣]
− Pro: can easily find the transitions on a given state and input
− Con: takes a lot of space, when the input alphabet is large, yet

most states do not have any moves on most of the input
symbols

3

RE à NFA
• NFA can have ε-moves

− Edges labelled with ε
− Move from state A to state B without reading any input

• M-Y-T algorithm (Thompson's construction) to convert
any RE to an NFA that defines the same language[正则表达
式转换到自动机]

− Input: RE r over alphabet ∑
− Output: NFA accepting L(r)

4

Regular Expression

NFA

DFA Table-driven Impl.
of automata

manual

③
① ②

McNaughton-Yamada-Thompson

Thompson

5

RE à NFA (cont.)
• Step 1: processing atomic REs

− ε expression[空]
p i is a new state, the start state of NFA
p f is another new state, the accepting state of NFA

− Single character RE a[单字符]

6

RE à NFA (cont.)
• Step 2: processing compound REs[组合]

− R = R1 | R2

− R = R1R2

7

RE à NFA (cont.)
• Step 2: processing compound REs

− R = R1*

8

Example
• Convert “(a|b)*abb” to NFA

9

Example (cont.)
• Convert “(a|b)*abb” to NFA

10

Example (cont.)
• Convert “(a|b)*abb” to NFA

11

The Conversion Flow[转换流程]

12

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic

③
① ②

• Outline: RE à NFA à DFA à Table-drive Implementation
−③ Converting DFAs to table-driven implementations
−① Converting REs to NFAs
−② Converting NFAs to DFAs

NFA à DFA: Same[等价]

• NFA and DFA are equivalent

13

To show this, we must prove every DFA can be converted into an
NFA which accepts the same language, and vice-versa

NFA à DFA: Theory[相关理论]

• Question: is L(NFA) ⊆ L(DFA)?
− Otherwise, conversion would be futile

• Theorem: L(NFA) ≡ L(DFA)
− Both recognize regular languages L(RE)
− Will show L(NFA) ⊆ L(DFA) by construction (NFA à DFA)
− Since L(DFA) ⊆ L(NFA), L(NFA) ≡ L(DFA)

• Resulting DFA consumes more memory than NFA
− Potentially larger transition table as shown later

• But DFAs are faster to execute
− For DFAs, number of transitions == length of input
− For NFAs, number of potential transitions can be larger

• NFA à DFA conversion is done because the speed of DFA far
outweighs its extra memory consumption

14

Any DFA can be easily changed into NFA (e.g., add ε moves)

NFA à DFA: Idea
• Algorithm to convert[转换算法]

− Input: an NFA N
− Output: a DFA D accepting the same language as N

• Subset construction[子集构建]
− Each state of the constructed DFA corresponds to a set of NFA

states[一个DFA状态对应多个NFA状态]
p Hence, the name ‘subset construction’

− After reading input a1a2…an, the DFA is in that state which
corresponds to the set of states that the NFA can reach, from its
start state, following paths labeled a1a2…an

15

NFA à DFA: Steps
• The initial state of the DFA is the set of all states the NFA

can be in without reading any input[初始状态]

• For any state {qi , qj , … , qk} of the DFA and any input a,
the next state of the DFA is the set of all states of the NFA
that can result as next states if the NFA is in any of the
states qi , qj , … , qk when it reads a[下一状态]

− This includes states that can be reached by reading a followed
by any number of ε-transitions

− Use this rule to keep adding new states and transitions until it is
no longer possible to do so

• The accepting states of the DFA are those states that
contain an accepting state of the NFA[接收状态]

16
https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

https://web.cse.msstate.edu/~hansen/classes/3813spring05/slides/04SubsetConstruction.pdf

NFA à DFA: Algorithm

• Operations on NFA states:
− ε-closure(s): set of NFA states reachable from NFA state s on ε-

transitions alone
− ε-closure(T): set of NFA states reachable from some NFA state s in set

T on ε-transitions alone; = ∪s in Tε-closure(s)
− move(T, a): set of NFA states to which there is a transition on input

symbol a from some state s in T
17

NFA à DFA: Example
• Start by constructing ε-closure of the start state[初始状态]

− ε-closure(A) = A

• Keep getting ε-closure(move(T, a))[更多状态]

• Stop, when there are no more new states

18

0 1

A

alphabet

state

A BC

BC AC BC
AC AC BC

T: A, a: 0/1

NFA à DFA: Example (cont.)
• Mark the final states of the DFA[终止状态]

− The accepting states of D are all those sets of N’s states that
include at least one accepting state of N

19

0 1

A

alphabet

state

A BC

BC AC BC
AC AC BC• Is the DFA minimal?

− As few states as possible

NFA à DFA: Minimization[最小化]

• Any DFA can be converted to its minimum-state
equivalent DFA

− Discover sets of equivalent states[存在等价/重复状态]
− Represent each such set with just one state

• Two states are equivalent if and only if:
− ∀𝛼 ∈ Σ, transitions on 𝛼 lead to equivalent states
− 𝛼-transitions to distinct sets ⇒ states must be in distinct sets

20

Initial: {A}, {BC, AC}
For {BC, AC}

− BC on ‘0’ à AC, AC on ‘0’ à AC
− BC on ‘1’ à BC, AC on ‘1’ à BC
− No way to distinguish BC from AC on any string

starting with ‘0’ or ‘1’

Final: {A}, {BCAC}

Initial sets:
{non-accepting states}, {accepting states}

https://people.cs.umass.edu/~moss/610-slides/06.pdf

https://people.cs.umass.edu/~moss/610-slides/06.pdf

NFA à DFA: Minimization (cont.)
• States BC and AC do not need differentiation

− Should be merged into one

21

Minimized

Minimization Algorithm
• The algorithm

− Partitioning the states of a DFA into groups of states that cannot
be distinguished (i.e., equivalent)

− Each groups of states is then merged into a single state of the
min-state DFA

22

（∑, S, n, F, 𝛿）• For a DFA
− The initial partition P0, has two sets {F}

and {S - F}
− Splitting a set (i.e., partitioning a set s

by input symbol 𝛼)

P <- {F}, {S - F}
while (P is still changing)
 T <- { }
 for each state s ∈ P
 for each 𝛼 ∈ Σ
 partition s by 𝛼 into s1 & s2
 T <- T ∪ s1 ∪ s2
 if T ≠ P then
 P <- T

https://people.cs.umass.edu/~moss/610-slides/06.pdf

p Assume 𝑞! and 𝑞" ∈ s, and 𝛿 𝑞!, 𝛼 = 𝑞# and 𝛿 𝑞", 𝛼 = 𝑞$
p If 𝑞# and 𝑞$ are not in the same set, then s must be split (i.e., 𝛼 splits s)
p One state in the final DFA cannot have two transitions on 𝛼

https://people.cs.umass.edu/~moss/610-slides/06.pdf

Example

23

a

S

A

B

C

D

E

F

a
a

a

a

a
b

b a

b
b

b

b

b

• P0: s1 = {S, A, B}, s2 = {C, D, E, F}

• For s1, further splits into {S}, {A}, {B}
− a: S --> A ∈ s1, A --> C ∈ s2, B --> A ∈ s1 ⟹ a distincts s1 => {S, B}, {A}
− b: S --> B ∈ s1, A --> B ∈ s1, B --> D ∈ s2 ⟹ b distincts s1 => {S}, {B}, {A}

• For s2, all states are equivalent
− a: C --> C ∈ s2, D --> F ∈ s2, E --> F ∈ s2 , F --> C ∈ s2 ⟹ a doesn’t
− b: C --> E ∈ s2, D --> D ∈ s2, E --> D ∈ s2 , F --> E ∈ s2 ⟹ b doesn’t

Example (cont.)

24

a b
S A B
A C B
B A D
C C E
D F D
E F D
F C E

a

S

A

B

C

D

E

F

a
a

a

a

a
b

b a

b
b

b

b

b

a b
S A B
A C B
B A D
CF C E
DE F D

a b
S A B
A C B
B A D

CFDE CF DE

NFA à DFA: More Example

• Start state of the equivalent DFA
− ε-closure(A) = {A, B, C, E, H} = A’

• ε-closure(move(A’, a)) = ε-closure({D, J}) = {B, C, D, E, H, G, J} =
B’

• ε-closure(move(A’, b)) = ε-closure({F}) = {B, C, E , F, G, H} = C’

• … …
25

NFA à DFA: More Example (cont.)

26

a b
A’ DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

• Is the DFA minimal?
- States A’ and F should be merged

• Should we merge states A’ and
FM?

- NO. A’ and FM are in different sets
from the very beginning (FM is
accepting, A’ is not).

A’

NFA à DFA: More Example (cont.)

27

• P0: s1 = {A’, DJ, FK, F}, s2 = {FM}
• For s1, further splits into {A’, DJ, F}, {FK}

− a: A’--> DJ ∈ s1, DJ --> DJ ∈ s1, FK --> DJ ∈ s1, F --> DJ ∈ s1 ⟹ a doesn’t distinct
− b: A’ --> F ∈ s1, DJ --> FK ∈ s1, FK --> FM ∈ s2, F --> F ∈ s1⟹ b distincts s1 =>

s11={A’, DJ, F}, s12={FK}

• For s11, further splits into {A’, DJ, F}, {FK}
− a: A’--> DJ ∈ s11, DJ --> DJ ∈ s11, F --> DJ ∈ s11 ⟹ a doesn’t distinct
− b: A’--> F ∈ s11, DJ --> FK ∈ s12, F --> DJ ∈ s11 ⟹ b distincts s11 => s111={A’, F},

s112={DJ}

• For s111, impossible to further split
• Final states: S111 = {A’, F}, S112 = {DJ}, S12 = {FK}, S2 = {FM}

ba
FDJA’
FKDJDJ
FDJF
FMDJFK
FDJFM

A’

NFA à DFA: More Example (cont.)

28

• Original DFA: before merging A’ and F

• Minimized DFA: Do you see the original RE (a|b)*abb

A’

A’F

NFA à DFA: Space Complexity[空间复杂度]

• NFA may be in many states at any time

• How many different possible states in DFA?
− If there are N states in NFA, the DFA must be in some subset of

those N states
− How many non-empty subsets are there?

• The resulting DFA has space complexity, where N is
number of original states in NFA

− For real languages, the NFA and DFA have about same number
of states

29

- 2N-1

O(2N)

