
第10讲：DLP & GPU（4）
张献伟

xianweiz.github.io
DCS3013, 11/7/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review Questions
• host and device in GPU programming?

• relationship of kernel and grid?

• grid and block in GPU?

• GPU core?

• CUDA: myKernel<<<blocks, threads, 0, 0>>>(…)?.

• steps of kernel launch?

2

Threads to execute the kernel are organized as a grid.

CUDA or streaming core, the basic unit to execute a thread.

Grid dimensions, i.e., how many blocks to run the kernel grid

User-mode queue, command processor, blocks to SM, warps

host = CPU, device = GPU. Host offloads kernels onto devices.

Grid: all threads to run the kernel; Grid is further divided into blocks.

Concurrency[并发]

• GPU is mainly known for its data-level parallelism[数据级
并行]

− Thousands of cores, with thousands of outstanding threads
− Simultaneously computing the same function on lots of data

elements
• Still need task-level parallelism[任务级并行]

− GPU is underutilized by a single application process
− Doing two or more completely different tasks in parallel
− Similar to the task parallelism that is found in multithreaded

CPU applications
• Techniques

− Multi-process service (MPS)
− Streams

3
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

GPU Context[上下文]

• A GPU program starts by creating a context
− Either explicitly using the driver API or implicitly using the

runtime API, for a specific GPU

• The context encapsulates all the hardware resources
necessary for the program to be able to manage memory
and launch work on that GPU

• Each process has a unique context[唯一]
− Only a single context can be active on a device at a time
− Multiple processes (e.g. MPI) on a single GPU could not operate

concurrently

4
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

MPS[多进程服务]

• MPS: multiple-process service, a software layer that sits
between the driver and your application

− Routes all CUDA calls through a single context
− Multiple processes can execute concurrently

• Allows multiple processes to share a single GPU context,
to utilize Hyper-Q capabilities

− Hardware feature to construct multiple connections to GPU
− Hyper-Q allows kernels to be processed concurrently on the

same GPU

5
https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

Hyper-Q[超队列]

• GPU's with Hyper-Q have a concurrent scheduler to
schedule work from work queues belonging to a single
CUDA context
• Work launched to the compute engine from work queues

belonging to the same CUDA context can execute
concurrently on the GPU

6

Code Example

7

Completely synchronous

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Potentially overlapped

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Stream[流]

• All work on the GPU is launched either explicitly into a
CUDA stream, or implicitly using a default stream
• A stream is a software abstraction that represents a

sequence of commands to be executed in order
− May be a mix of kernels, copies, and other commands

• CUDA streams are aliased onto one or more ‘work
queues’ on the GPU by the driver

− Work queues are hardware resources that represent an in-order
sequence of the subset of commands in a stream

8

Synchronous/Asynchronous[同步/异步]

• All GPU API calls are either synchronous or asynchronous
w.r.t the host

− Synchronous: enqueue work and wait for completion
− Asynchronous: enqueue work and return immediately
− a.k.a., blocking vs. non-blocking[阻塞/非阻塞]

• The kernel launch function, hipLaunchKernelGGL, is non-
blocking for the host

− After sending instructions/data, the host continues immediately
while the device executes the kernel

− If you know the kernel will take some time, this is a good area
to do some work on the host

9

Potentially
overlap

Synchronous/Asynchronous(cont.)
• However, hipMemcpy is blocking

− The data pointed to in the arguments can be accessed/modified
after the function returns

• The non-blocking version is hipMemcpyAsync
− hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice,

stream);
− Like hipLaunchKernelGGL, this function takes an argument of

type hipStream_t
− It is not safe to access/modify the arguments of

hipMemcpyAsync without some sort of synchronization.

10

Potentially
overlap

Streams[多流]

• A stream is a queue of device work
− Host places work in the queue and continues on immediately
− Device schedules work from streams when resources are free

• Operations are placed within a stream
− e.g. Kernel launches, memory copies

• Default stream
− Unless otherwise specified all calls are placed into a default

stream (“Stream 0” or “NULL stream”)
p Stream 0 has special sync rules: synchronous with all streams
p Operations in stream 0 cannot overlap other streams

11
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

Streams (cont.)
• Operations within the same stream are ordered (FIFO)

and cannot overlap
• Operations in different streams are unordered and can

overlap

12

Synchronization[同步]

• How do we coordinate execution on device streams with
host execution?

− Need some synchronization points.

• hipDeviceSynchronize(); / cudaDeviceSynchronize()
− Heavy-duty sync point
− Blocks host until all work in all device streams has reported

complete

• hipStreamSynchronize(stream); / cudaStreamSynchronize
(stream)

− Blocks host until all work in stream has reported complete

• Can a stream synchronize with another stream?
− For that we need ‘Events’

13
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events[事件]

• Provide a mechanism to signal when operations have
occurred in a stream

− Useful for profiling and synchronization
− Events have a boolean state: Occurred (default), Not Occurred

• A hipEvent_t object is created on a device via:
− hipEvent_t event;
− hipEventCreate(&event);

• We queue an event into a stream:
− hipEventRecord(event, stream);
− The event records what work is currently enqueued in the

stream
− When the stream’s execution reaches the event, the event is

considered ‘complete’
• At the end of the app, event objects should be destroyed:

− hipEventDestroy(event);
14

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events (cont.)
• hipEventSynchronize(event);

− Block host until event reports complete
− Only a synchronization point w.r.t. the stream where event was

enqueued
• hipEventElapsedTime(&time, startEvent, endEvent);

− Returns the time in ms between when two events, startEvent
and endEvent, completed

− Can be very useful for timing kernels/memcpys
• hipStreamWaitEvent(stream, event);

− Non-blocking for host
− Instructs all future work submitted to stream to wait until event

reports complete
− Primary way we enforce an ‘ordering’ between tasks in separate

streams

15
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Example
• cudaEventRecord(&event, stream)

− Enqueue an event into stream, whose state is set to occurred
when reaching the front of the stream

• cudaStreamWaitEvent(stream, event)
− The stream cannot proceed until the event occurs

16
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Task Graph[任务图]

• CPU launches each kernel to GPU
− When kernel runtime is short, execution time is dominated by

CPU launch cost

• CUDA graph launch submits all work at once, reducing
CPU cost

− A sequence of operations, connected by dependencies

17
https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example
• Capture CUDA stream work into a graph[基于流构建]

18
https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example (cont.)
• Create graphs directly[直接构建]

− Map graph-based workflows directly into CUDA

19

GPU Memory Hierarchy[存储层级]

20
https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

• CU internal memories: registers, caches, …
• Shared L2, off-chip HBM/GDDR
• RDNA fundamentally reorganizes the architecture

https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

Memory Hierarchy
• Register: per-thread, deallocate when the thread done
• Cache: instruction, data, RO constant, RO texture
• Global memory: per-GPU, shared across kernels
• Shared memory (SMEM): per-block, deallocate when the

block done (and re-allocated to other blocks)
• Constant memory (CMEM): part of device memory, use

dedicated per-SM constant cache; shared across kernels

21

LDS for AMD GPU

V100 Memory Hierarchy[存储层级]

• 80 SMs
− Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
− Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
− Per SM: 64K 32-bit Register File, 128KB SMEM+L1

• 6MB L2 cache, 16GB 900GB/s HBM2
− Shared by all SMs
− For comparison: 20MB RF, 10MB SMEM+L1

22

SMEM & CMEM
• SMEM benefits compared to DRAM:

− 20-40x lower latency
− ~15x higher bandwidth
− Access granularity: 4B vs. 32B

• Constant memory (CMEM):
− Total constant data size limited to 64KB
− Throughput: 4B/clock per SM
− Can be used directly in arithmetic insts (saving regs)

23

14 TB/s

2.5 TB/s Read, 1.6 TB/s Write

900 GB/s

Resource Limits[资源限制]

• Threads[线程]
− Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)

p Up to 1024 threads/TB
p TBs should be of at least 2 warps

• Registers[寄存器]
− Max: 64K regs/TB, 255 regs/thread

p Per SM: total 64K regs
p If exceeding 255 regs, then spilling happens

• Memory[存储]
− Max 96KB SMEM per SM (default 48KB)

• 100% occupancy[若满载]
− 2048 threads/SM, 64K regs/SM à 32 regs/thread (128B)
− 2048 threads/SM, 96KB smem/SM à 32B/thread

24

Memory Space Specifiers[存储空间指定]
• Variable memory space specifiers denote the memory

location on the device of a variable
• __device__: declares a variable that resides on the

device, by default
− Resides in global memory space
− Has the lifetime of the CUDA context in which it is created
− Is accessible from all the threads within the grid and from the

host through the runtime library
• __constant__: declares a variable that resides in constant

memory space
− Optionally used together with __device__

• __shared__: declares a variable that resides in shared
memory space

− Has the lifetime of the block,
− Is only accessible from all the threads within the block

25
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#variable-memory-space-specifiers

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Memory Space Specifiers (cont.)
• __managed__: declares a variable that can be referenced

from both device and host code
− optionally used together with __device__
− Has the lifetime of an application

• An automatic variable declared in device code without
any of the __device__, __shared__ and __constant__
specifiers generally resides in a register

− However in some cases the compiler might choose to place it in
local memory, which can hurt performance

26

Variable declaration Memory Scope Lifetime

__device__ int globalVar; global grid application

__shared__ int sharedVar; shared block block

__constant__ int constantVar; constant grid application

int localVar; register thread thread

int localArray[10]; local thread thread

Local Memory[’本地’内存]

• Name refers to memory where registers and other
thread-data is spilled

− Usually when one runs out of SM resources
− “Local” because each thread has its own private area

• Use case 1: register spilling[寄存器溢出]
− Fermi hardware limit is 63 registers per thread (255 now)
− Programmer can specify lower registers/thread limits:

p To increase occupancy (number of concurrently running threads)
p -maxrregcount option to nvcc, __launch_bounds__() qualifier in the

code
− LMEM is used if the source code exceeds register limit

• Use case 2: arrays declared inside kernels, if compiler
can’t resolve indexing[核函数内数组]

− Registers aren’t indexable, so have to be placed in LMEM

27
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Local Memory (cont.)
• LMEM is not really a memory

− Bytes are actually stored in global memory
− Differences from global memory:

p Addressing is resolved by the compiler
p Stores are cached in L1

• LMEM could hurt performance in two ways:
− Increased memory traffic
− Increased instruction count

• Spilling/LMEM usage isn’t always bad
− LMEM bytes can get contained within L1

p Avoids memory traffic increase
− Additional instructions don’t matter much if code is not

instruction-throughput limited

28
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Shared Memory[“共享”存储]

• A per-block, software managed cache or scratchpad
− Programmer can modify variable declarations with __shared__

to make this variable resident in shared memory
− Compiler creates a copy of the variable for each block

p Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

p This provides an excellent means by which threads within a block can
communicate and collaborate on computations

• CUDA L1 cache and SMEM are unified
− cudaDeviceSetCacheConfig(enum cudaFuncCache)

• A mechanism is needed to synchronize between threads
− Thread A writes a value to shared memory and we want thread

B to do something with this value
− We can’t have thread B start its work until we know the write

from thread A is complete

29
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)
• One can specify synchronization points

in the kernel by calling __syncthreads()
• __syncthreads() acts as a barrier at

which all threads in the block must
wait before any is allowed to proceed

− Guarantees that every thread in the block
has completed instructions prior to the
__syncthreads() before the hardware will
execute the next inst on any thread

− When the first thread executes the first
instruction after __syncthreads(), every
other thread in the block has also
finished executing up to the
__syncthreads()

30
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Time

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

