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Review Questions

* host and device in GPU programming?
host = CPU, device = GPU. Host offloads kernels onto devices.

* relationship of kernel and grid?
Threads to execute the kernel are organized as a grid.

* grid and block in GPU?
Grid: all threads to run the kernel; Grid is further divided into blocks.

* GPU core?
CUDA or streaming core, the basic unit to execute a thread.

* CUDA: myKernel<<<blocks, threads, 0, 0>>>(...)?.

Grid dimensions, i.e., how many blocks to run the kernel grid
e steps of kernel launch?

User-mode queue, command processor, blocks to SM, warps
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Concurrency[3f k]

. %PU is mainly known for its data-level parallelism[%#& 2%
F17]
— Thousands of cores, with thousands of outstanding threads

- Simultaneously computing the same function on lots of data
elements

e Still need task-level parallelism[4{F4% %% 3471
— GPU is underutilized by a single application process
— Doing two or more completely different tasks in parallel

- Similar to the task parallelism that is found in multithreaded
CPU applications i

* Techniques

— Multi-process service (MPS) 5
— Streams il 7
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GPU Context| EFx]

* A GPU program starts by creating a context
— Either explicitly using the driver APl or implicitly using the
runtime API, for a specific GPU

* The context encapsulates all the hardware resources
necessary for the program to be able to manage memory
and launch work on that GPU

e Each process has a unique context[M—]
— Only a single context can be active on a device at a time

— Multiple processes (e.g. MPI) on a single GPU could not operate
concurrently

\ ’yﬂ
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M PS[£ 372 ARk 55

* MPS: multiple-process service, a software layer that sits
between the driver and your application
— Routes all CUDA calls through a single context
- Multiple processes can execute concurrently

* Allows multiple processes to share a single GPU context,
to utilize Hyper-Q capabilities
- Hardware feature to construct multiple connections to GPU
- Hyper-Q allows kernels to be processed concurrently on the
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CPU Processes
GPU Execution

CPU Processes \
GPU Execution ‘ ’ ‘ ‘ ‘ ‘
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Hyper-Q[i&#ERA %)

* GPU's with Hyper-Q have a concurrent scheduler to
schedule work from work queues belonging to a single
CUDA context

* Work launched to the compute engine from work queues
belonging to the same CUDA context can execute
concurrently on the GPU

NVIDIA HYPER-Q

FERMI KEPLER
1 MPI" TASK AT A TIME 32 SIMULTANEOUS MP1 TASKS
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Code Example

cudaMalloc ( &dev1, size ) ;
double* host1 = (double*) malloc ( &host1, size ) ;

cudaMemcpy ( dev1, host1, size, H2D

Completely synchronous

cudaMemcpy ( host4, dev4, size, D2H)

cudaMalloc ( &dev1, size ) ;
( &host1, size ) ;

cudaMemcpy ( dev1, host1, size, H2D,

kernel2 <<< grid, block, O,

kernel3 <<< grid, block, 0, ek Potentially overlapped
cudaMemcpy ( host4, dev4, size, D2H, :

some_CPU_method ();

\ ’yﬂ
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Stream il

* All work on the GPU is launched either explicitly into a
CUDA stream, or implicitly using a default stream

* A stream is a software abstraction that represents a
sequence of commands to be executed in order
- May be a mix of kernels, copies, and other commands

e CUDA streams are aliased onto one or more ‘work
queues’ on the GPU by the driver

- Work queues are hardware resources that represent an in-order
sequence of the subset of commands in a stream

A--B--C
Stream 1
AN-B-C

Stream 2

) ER — . X--Y--Z

MPS Client/
Process 2 Stream 1

X-Yy-7 P> x:_Y:_zy

Stream 2 Multiple Hardware Work Queues/Channel ‘ ri LZ
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Synchronous/Asynchronous|@: /5 4]

* All GPU API calls are either synchronous or asynchronous
w.r.t the host
- Synchronous: enqueue work and wait for completion
— Asynchronous: enqueue work and return immediately
- a.k.a., blocking vs. non-blocking|[BH & /- BH 2]

* The kernel launch function, , IS non-
blocking for the host

— After sending instructions/data, the host continues immediately
while the device executes the kernel

- If you know the kernel will take some time, this is a good area
to do some work on the host

cudaMemcpy ( dev1, host1, size, H2D ) ;
Potentially kernel2 <<< grid, block >>> ( ..., dev2, ... );

overlap kernel3 <<< grid, block >>> ( ..., dev3, ... );

cudaMemcpy ( host4, dev4, size, D2H ) ;
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Synchronous/Asynchronous(cont.)

* However, is blocking

— The data pointed to in the arguments can be accessed/modified
after the function returns

* The non-blocking version is

— Like , this function takes an argument of
type hipStream _t
— It is not safe to access/modify the arguments of
without some sort of synchronization.

cudaMemcpy ( dev1, host1, size, H2D, );

. kernel2 <<< grid, block, 0, 2> (0 dev2 .. ) ;
Potentially | I N ) >>> (..., dev3, ... ):
overlap cudaMemcpy ( host4, dev4, size, D2H, )

some_CPU_method ();
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Streams[£ i)

* A stream is a queue of device work
— Host places work in the queue and continues on immediately
— Device schedules work from streams when resources are free

* Operations are placed within a stream
- e.g. Kernel launches, memory copies

e Default stream
- Unless otherwise specified all calls are placed into a default
stream (“Stream 0” or “NULL stream”)

o Stream O has special sync rules: synchronous with all streams
o Operations in stream 0 cannot overlap other streams

hipLaunchKernelGGL (myKernell, dim3(1), dim3(256), 0,| 0, |256, d _al);
hipLaunchKernelGGL (myKernel2, dim3(1), dim3(256), 0,| 0, |256, d_a2);
hipLaunchKernelGGL (myKernel3, dim3(1), dim3(256), 9,] 9, |256, d_a3);
hipLaunchKernelGGL (myKernel4, dim3(1), dim3(256), 9,| 9, |256, d_a4);

NULL Stream myKernell = myKernel2 myKernel3  myKernel4

<>y 1 'rﬂ
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Streams (cont.)

* Operations within the same stream are ordered (FIFO)
and cannot overlap

* Operations in different streams are unordered and can
overlap

NULL Stream myKernell = myKernel2 myKernel3  myKernel4

hipLaunchKernelGGL (myKernell, dim3(1), dim3(256), 0, streaml,|256, d_al);
hipLaunchKernelGGL (myKernel2, dim3(1), dim3(256), 0,] stream2,| 256, d_a2);
hipLaunchKernelGGL (myKernel3, dim3(1), dim3(256), ©,| stream3,| 256, d_a3);
hipLaunchKernelGGL (myKerneld4, dim3(1), dim3(256), 0,] stream4,| 256, d_a4);
NULL Stream
Stream1 myKernell
Stream?2 myKernel2
Stream3 myKernel3
Stream4 myKernel4
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Synchronization[[F

e How do we coordinate execution on device streams with
host execution?

- Need some synchronization points.
;o
- Heavy-duty sync point

- Blocks host until all work in all device streams has reported
complete

;/

— Blocks host until all work in stream has reported complete

* Can a stream synchronize with another stream?
— For that we need ‘Events’

13 x ’rﬂq
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Events[E44]

* Provide a mechanism to signal when operations have
occurred in a stream
— Useful for profiling and synchronization
— Events have a boolean state: Occurred (default), Not Occurred

* A object is created on a device via:

* We queue an event into a stream:
— The event records what work is currently enqueued in the
stream

— When the stream’s execution reaches the event, the event is
considered ‘complete’

* At the end of the app, event objects should be destroyed:

] )
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Events (cont.)

’
— Block host until event reports complete

— Only a synchronization point w.r.t. the stream where event was
enqueued

’
— Returns the time in ms between when two events, startEvent
and endEvent, completed
— Can be very useful for timing kernels/memcpys
’
- Non-blocking for host

— Instructs all future work submitted to stream to wait until event
reports complete

- Primary way we enforce an ‘ordering’ between tasks in separate
streams

15 k’rﬂq
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Example

- Enqueue an event into stream, whose state is set to occurred
when reaching the front of the stream

— The stream cannot proceed until the event occurs

cudaEvent_t event;
cudaEventCreate (&event); /] create event

cudaMemcpyAsync ( d_in, in, size, H2D, stream1 ); // 1) H2D copy of new input
cudaEventRecord (event, stream1); // record event

cudaMemcpyAsync ( out, d_out, size, D2H, stream?2 ); // 2) D2H copy of previous result

cudaStreamWaitEvent ( stream2, event ); /] wait for event in stream1
kernel <<<, , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2

asynchronousCPUmethod ( ... ) // Async GPU method

\ ‘pm :
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf 24! z
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Task Graph[{£4 K&

 CPU launches each kernel to GPU
— When kernel runtime is short, execution time is dominated by
CPU launch cost

* CUDA graph launch submits all work at once, reducing
CPU cost

— A sequence of operations, connected by dependencies

Launch A || Launch B || Launch C || Launch D || Launch E CPU
Time
Launch
Latencyl A > B > C > D > E GPU
Time
—>
. 1 time
o aETrrea
| Gramn ~ ~ 7 Launch Graph : time saved
> A B C D E

17 ﬁﬂq
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Example

 Capture CUDA stream work into a graph[3& T4

Ll
(P
[ =)

// Start by initiating stream capture

cudaStreamBeginCapture(&streaml);

// Build stream work as usual
A<<< ..., streaml >>>();
cudaEventRecord(el, streaml);
B<<< ..., streaml >>>();
cudaStreamWaitEvent(stream2, el);
C<k< ..., stream2 >>>();

cudakEventRecord(e2, stream2);

cudaStreamWaitEvent(streaml, e2);

D<<< ..., streaml >>>(); stream1 stream? graph

// Now convert the stream to a graph

cudaStreamEndCapture(streaml, &graph);

D tuxe 18 IR
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Example (cont.)

* Create graphs directly[ B #2442

T

- Map graph-based workflows directly into CUDA

o —

Graph from
framework

F b K %

SUN YAT-SEN UNIVERSITY

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);
cudaGraphAddNode(graph, kernel b, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel c, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel c },

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);
// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

19
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GPU Memory Hierarchy[f£#E %)

* CU internal memories: registers, caches, ...

 Shared L2, off-chip HBM/GDDR
* RDNA fundamentally reorganizes the architecture
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Memory Hierarchy

* Register: per-thread, deallocate when the thread done
e Cache: instruction, data, RO constant, RO texture
* Global memory: per-GPU, shared across kernels

* Shared memory (SMEM): per-block, deallocate when the
block done (and re-allocated to other blocks)

e Constant memory (CMEM): part of device memory, use
dedicated per-SM constant cache; shared across kernels

SM-0 SM-1 SM-N lfr--—"~"~~~- T~~~ -~ T - T Private to Every SM_

I Registers | | Registers | Registers I

fes ]| |Ge ] ) e
Ly

| L2 |
i

Global Memory (DRAM) |

N il B | et i Sba e Ve P M ot Ve bl (e e B e s b



V100 Memory Hierarchy[f#fi 2 %)

* 80 SMs

— Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
— Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
— Per SM: 64K 32-bit Register File, 128KB SMEM+L1

* 6MB L2 cache, 16GB 900GB/s HBM2

—Shared by all SMs

— For comparison: 20MB RF, 10MB SMEM+L1

SM-0

SM-1

| Registers |

Register:

S

SM-N

Y

| Registers

(o) ]
3

Leo ][ swen ] L]
3

{

SMEM l

Y
L2

!

Global Memory (DRAM)

22
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SMEM & CMEM

* SMEM benefits compared to DRAM:
- 20-40x lower latency
- ~15x higher bandwidth
— Access granularity: 4B vs. 32B
e Constant memory (CMEM):
— Total constant data size limited to 64KB
— Throughput: 4B/clock per SM

— Can be used directly in arithmetic insts (saving regs)

SM-0 SM-1 SM-N

| Registers | | Registers | ce e | Registers I
{ { ) i ) {
| L1\ SMEM | L1 H SMEM I | L1\ SMEM 14 TB/S

| L2 : 2.5 TB/s Read, 1.6 TB/s Write

! ‘
Global Memory (DRAM) I 900 G B/S sy i'ﬂ z




Resource Limits[# 5 R i)

* Threads[Z:FE]
- Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)
o Up to 1024 threads/TB

o TBs should be of at least 2 warps rid
( Registe rS[—%_‘:ﬁ%%] | ¢Shared memzry | | ¢Shared mem%ry ‘
— Max: 64K regs/TB, 255 regs/thread ST BT ke i
(m} Per SM total 64K regs |Registers| IRegisters| IRegistersl IRegi sssss |
o If exceeding 255 regs, then spilling happens : ) — *
¢ Memory[ﬁ/fi%] Constant memory

- Max 96KB SMEM per SM (default 48KB)

* 100% occupancy[£i##X]
— 2048 threads/SM, 64K regs/SM —> 32 regs/thread (128B)
— 2048 threads/SM, 96KB smem/SM - 32B/thread

@) tuxe 24 I




Memory Space Specitiers[##i% = a4 &)

* Variable memory space specifiers denote the memory
location on the device of a variable

e device_:declares a variable that resides on the
device, by default
— Resides in global memory space
— Has the lifetime of the CUDA context in which it is created

— Is accessible from all the threads within the grid and from the
host through the runtime library

e constant__: declares a variable that resides in constant
memory space

— Optionally used together with __device

e shared_:declares a variable that resides in shared
memory space
— Has the lifetime of the block,

*— Is only accessible from all the threads within the block
(@) T ux 2
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Memory Space Specifiers (cont.)

* managed__:declares a variable that can be referenced
from both device and host code
— optionally used together with __ device
— Has the lifetime of an application

* An automatic variable declared in device code without
any of the device , shared and constant
specifiers generally resides in a register

- However in some cases the compiler might choose to place it in
local memory, which can hurt performance

__device__int globalVar; global grid application
__shared__ int sharedVar; shared block  block
__constant___ int constantVar; constant grid application
int localVar; register thread thread

’F“‘ int localArray[10]; local thread thread ;‘.;}E%




Local Memory['AHh’ i} 77]

* Name refers to memory where registers and other
thread-data is spilled
— Usually when one runs out of SM resources
— “Local” because each thread has its own private area

* Use case 1: register spilling[ & 77 2% 15 H]
- Fermi hardware limit is 63 registers per thread (255 now)

— Programmer can specify lower registers/thread limits:
o To increase occupancy (hnumber of concurrently running threads)

o -maxrregcount option to nvcc, _ launch_bounds__ () qualifier in the
code

- LMEM is used if the source code exceeds register limit

e Use case 2: arrays declared inside kernels, if compiler
can’t resolve indexing[#% e& %t N %4

— Registers aren’t indexable, so have to be placed in LMEM

| .[!
https://developer.download.nvidia.com/CUDA/training/register spilling.pdf 2 1
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Local Memory (cont.)

* LMEM is not really a memory
— Bytes are actually stored in global memory

— Differences from global memory:
o Addressing is resolved by the compiler
o Stores are cached in L1

* LMEM could hurt performance in two ways:

— Increased memory traffic
— Increased instruction count

* Spilling/LMEM usage isn’t always bad
- LMEM bytes can get contained within L1
o Avoids memory traffic increase

— Additional instructions don’t matter much if code is not
instruction-throughput limited

28
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Shared Memory[“3: =" 1745

* A per-block, software managed cache or scratchpad

— Programmer can modify variable declarations with __shared
to make this variable resident in shared memory

— Compiler creates a copy of the variable for each block

o Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

o This provides an excellent means by which threads within a block can
communicate and collaborate on computations

e CUDA L1 cache and SMEM are unified

* A mechanism is needed to synchronize between threads

— Thread A writes a value to shared memory and we want thread
B to do something with this value

— We can’t have thread B start its work until we know the write
from thread A is complete

http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf sy :E 1



http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)

* One can specify synchronization points
in the kernel by calling _ syncthreads()

7 &
K]
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 syncthreads() acts as a barrier at
which all threads in the block must
wait before any is allowed to proceed

— Guarantees that every thread in the block
has completed instructions prior to the

Active

!

Waiting‘t

Barrier

--"«q..'.-------------
-."4'...-.

__syncthreads() before the hardware will
execute the next inst on any thread

TETTTTT) | S EETRRTIITT

- When the first thread executes the first
instruction after __syncthreads(), every  Time
other thread in the block has also
finished executing up to the
__syncthreads()

30
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