

Computer Architecture

第10讲: DLP & GPU (4)

张献伟

xianweiz.github.io

DCS3013, 11/7/2022

Review Questions

- host and device in GPU programming?
 host = CPU, device = GPU. Host offloads kernels onto devices.
- relationship of kernel and grid? Threads to execute the kernel are organized as a grid.
- grid and block in GPU?

Grid: all threads to run the kernel; Grid is further divided into blocks.

• GPU core?

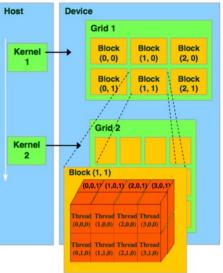
CUDA or streaming core, the basic unit to execute a thread.

- CUDA: myKernel<<<blocks, threads, 0, 0>>>(...)?.
 Grid dimensions, i.e., how many blocks to run the kernel grid
- steps of kernel launch?

User-mode queue, command processor, blocks to SM, warps

Concurrency[并发]

- GPU is mainly known for its data-level parallelism[数据级 并行]
 - Thousands of cores, with thousands of outstanding threads
 - Simultaneously computing the same function on lots of data elements
- Still need task-level parallelism[任务级并行]
 - GPU is underutilized by a single application process
 - Doing two or more completely different tasks in parallel
 - Similar to the task parallelism that is found in multithreaded CPU applications
- Techniques
 - Multi-process service (MPS)
 - Streams

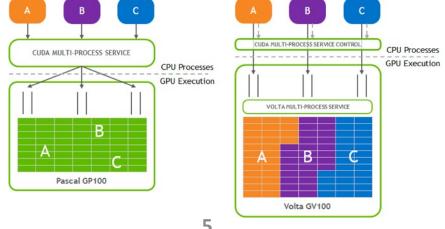


GPU Context[上下文]

- A GPU program starts by creating a context
 - Either explicitly using the driver API or implicitly using the runtime API, for a specific GPU
- The context encapsulates all the hardware resources necessary for the program to be able to manage memory and launch work on that GPU
- Each process has a unique context[唯一]
 - Only a single context can be active on a device at a time
 - Multiple processes (e.g. MPI) on a single GPU could not operate concurrently

MPS[多进程服务]

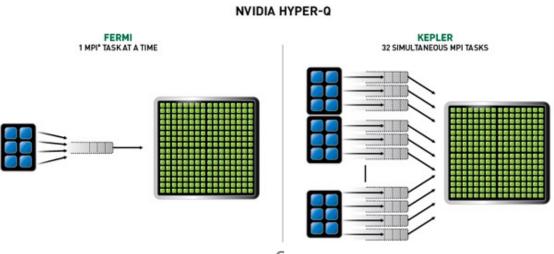
- **MPS**: multiple-process service, a software layer that sits between the driver and your application
 - Routes all CUDA calls through a single context
 - Multiple processes can execute concurrently
- Allows multiple processes to share a single GPU context, to utilize Hyper-Q capabilities
 - Hardware feature to construct multiple connections to GPU
 - Hyper-Q allows kernels to be processed concurrently on the same GPU
 B
 C



5 https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

Hyper-Q[超队列]

- GPU's with Hyper-Q have a concurrent scheduler to schedule work from work queues belonging to a single CUDA context
- Work launched to the compute engine from work queues belonging to the same CUDA context can execute concurrently on the GPU

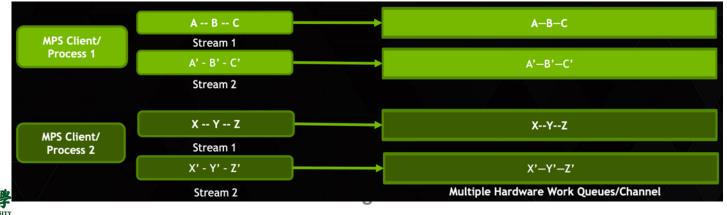


Code Example

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

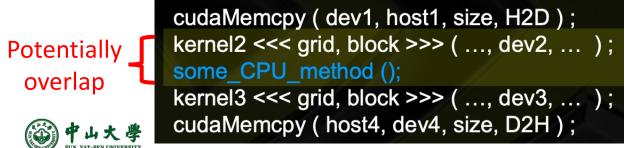
Stream[流]

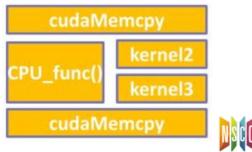
- All work on the GPU is launched either explicitly into a CUDA **stream**, or implicitly using a default stream
- A **stream** is a software abstraction that represents a sequence of commands to be executed in order
 - May be a mix of kernels, copies, and other commands
- CUDA streams are aliased onto one or more 'work queues' on the GPU by the driver
 - Work queues are hardware resources that represent an in-order sequence of the subset of commands in a stream



Synchronous/Asynchronous[同步/异步]

- All GPU API calls are either **synchronous** or **asynchronous** w.r.t the host
 - Synchronous: enqueue work and wait for completion
 - Asynchronous: enqueue work and return immediately
 - a.k.a., blocking vs. non-blocking[阻塞/非阻塞]
- The kernel launch function, *hipLaunchKernelGGL*, is nonblocking for the host
 - After sending instructions/data, the host continues immediately while the device executes the kernel
 - If you know the kernel will take some time, this is a good area to do some work on the host





Synchronous/Asynchronous(cont.)

- However, *hipMemcpy* is **blocking**
 - The data pointed to in the arguments can be accessed/modified after the function returns
- The non-blocking version is *hipMemcpyAsync*
 - hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);
 - Like *hipLaunchKernelGGL*, this function takes an argument of type hipStream_t
 - It is not safe to access/modify the arguments of *hipMemcpyAsync* without some sort of synchronization.

Streams[多流]

- A stream is a queue of device work
 - Host places work in the queue and continues on immediately
 - Device schedules work from streams when resources are free
- Operations are placed within a stream
 - e.g. Kernel launches, memory copies

myKernel1

Default stream

NULL Stream

 Unless otherwise specified all calls are placed into a default stream ("Stream 0" or "NULL stream")

Stream 0 has special sync rules: synchronous with all streams

Operations in stream 0 cannot overlap other streams

myKernel2 myKernel3

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, 0, 256, d_a1); hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, 0, 256, d_a2); hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, 0, 256, d_a3); hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, 0, 256, d_a4);

「山大 学 un xar-sex university on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.j

myKernel4

Streams (cont.)

- Operations within the same stream are ordered (FIFO) and cannot overlap
- Operations in different streams are unordered and can overlap

NULL Str	eam	myKern	el1	myKernel2	myKernel	3 my	Kern	el4			
hipLaunchK hipLaunchK hipLaunchK hipLaunchK	ernelGGL	(myKern	el1,	dim3(1),	, dim3(2	256),	0,	strea	am1,	256,	d_a1);
hipLaunchK	ernelGGL	(myKern	el2,	dim3(1),	, dim3(2	256),	0,	strea	am2,	256,	d_a2);
hipLaunchK	ernelGGL	(myKern	el3,	dim3(1),	, dim3(2	256),	0,	strea	am3,	256,	d_a3);
hipLaunchK	ernelGGL	(myKern	el4,	dim3(1),	, dim3(2	256),	0,	strea	, am4	256,	d_a4);
NULL Stream										•	
Stream1	my	/Kernel1									
Stream2	my	/Kernel2									
Stream3	my	/Kernel3									
Stream4	my	/Kernel4									

Synchronization[同步]

- How do we coordinate execution on device streams with host execution?
 - Need some synchronization points.
- hipDeviceSynchronize();
 / cudaDeviceSynchronize()
 - Heavy-duty sync point
 - Blocks host until all work in all device streams has reported complete
- hipStreamSynchronize(stream); / cudaStreamSynchronize (stream)
 - Blocks host until **all work** in **stream** has reported complete
- Can a stream synchronize with another stream?
 - For that we need 'Events'

Events[事件]

- Provide a mechanism to signal when operations have occurred in a stream
 - Useful for profiling and synchronization
 - Events have a boolean state: Occurred (default), Not Occurred
- A *hipEvent_t* object is created on a device via:
 - hipEvent_t event;
 - hipEventCreate(&event);

– hipEventDestroy(event):

- We queue an event into a stream:
 - hipEventRecord(event, stream);
 - The event records what work is currently enqueued in the stream
 - When the stream's execution reaches the event, the event is considered 'complete'
- At the end of the app, event objects should be destroyed:

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events (cont.)

- hipEventSynchronize(event);
 - Block host until event reports complete
 - Only a synchronization point w.r.t. the stream where event was enqueued
- hipEventElapsedTime(&time, startEvent, endEvent);
 - Returns the time in *ms* between when two events, *startEvent* and *endEvent*, completed
 - Can be very useful for timing kernels/memcpys
- hipStreamWaitEvent(stream, event);
 - Non-blocking for host
 - Instructs all future work submitted to stream to wait until event reports complete
 - Primary way we enforce an 'ordering' between tasks in separate streams

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Example

cudaEventRecord(&event, stream)

- Enqueue an event into stream, whose state is set to occurred when reaching the front of the stream
- cudaStreamWaitEvent(stream, event)
 - The stream cannot proceed until the event occurs

cudaEvent_t event; cudaEventCreate (&event);

cudaMemcpyAsync (d_in, in, size, H2D, stream1); cudaEventRecord (event, stream1);

cudaMemcpyAsync (out, d_out, size, D2H, stream2);

cudaStreamWaitEvent (stream2, event);
kernel <<< , , , stream2 >>> (d_in, d_out);

```
asynchronousCPUmethod ( ... )
```

// create event

// 1) H2D copy of new input
// record event

// 2) D2H copy of previous result

// wait for event in stream1
// 3) must wait for 1 and 2

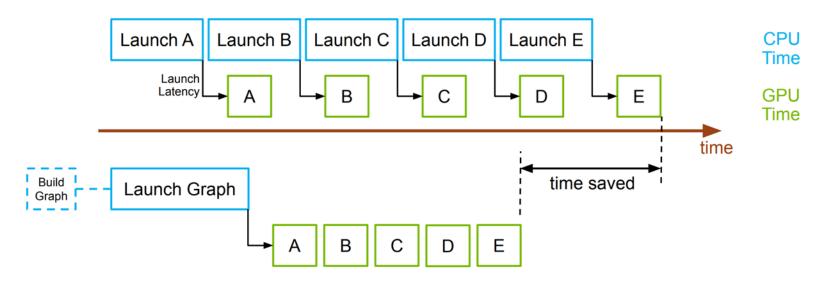
```
// Async GPU method
```


{

16 <u>https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf</u>

Task Graph[任务图]

- CPU launches each kernel to GPU
 - When kernel runtime is short, execution time is dominated by CPU launch cost
- CUDA graph launch submits all work at once, reducing CPU cost
 - A sequence of operations, connected by dependencies



17 <u>https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf</u>

Example

• Capture CUDA stream work into a graph[基于流构建]

// Start by initiating stream capture
cudaStreamBeginCapture(&stream1);

```
// Build stream work as usual
A<<< ..., stream1 >>>();
cudaEventRecord(e1, stream1);
B<<< ..., stream1 >>>();
cudaStreamWaitEvent(stream2, e1);
C<<< ..., stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(stream1, e2);
D<<< ..., stream1 >>>();
```

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

18 https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example (cont.)

- Create graphs directly[直接构建]
 - Map graph-based workflows directly into CUDA


```
cudaGraphAddNode(graph, kernel_a, {}, ...);
cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);
```

// Instantiate graph and apply optimizations
cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times
for(int i=0; i<100; i++)
 cudaGraphLaunch(instance, stream);</pre>

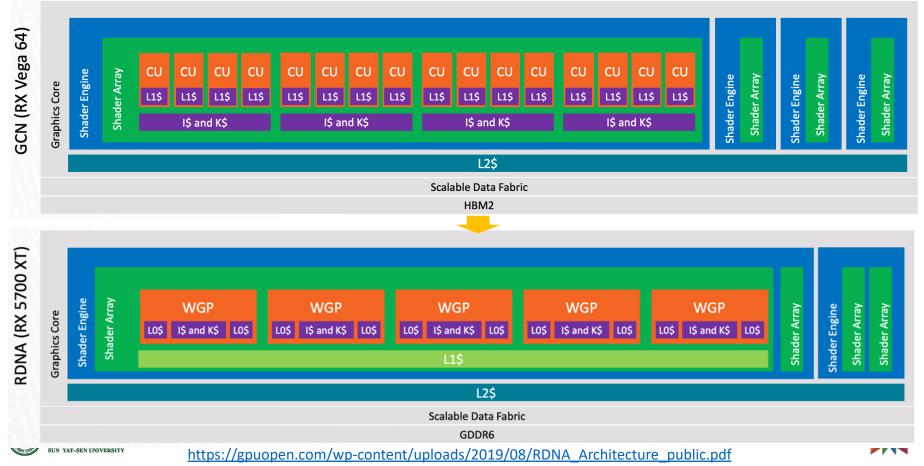
D

Graph from

framework

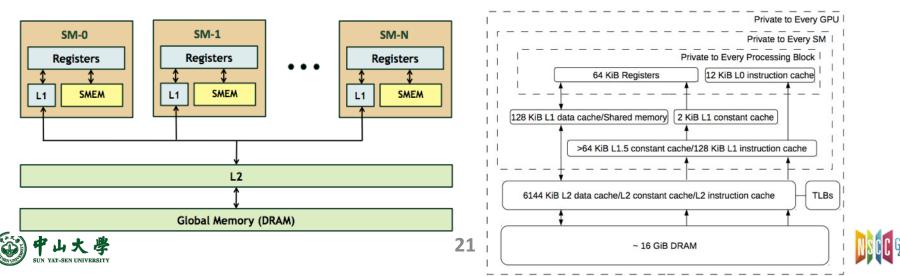
GPU Memory Hierarchy[存储层级]

- CU internal memories: registers, caches, ...
- Shared L2, off-chip HBM/GDDR
- RDNA fundamentally reorganizes the architecture



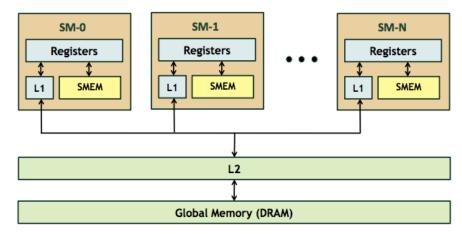
Memory Hierarchy

- **Register**: per-thread, deallocate when the thread done
- Cache: instruction, data, RO constant, RO texture
- Global memory: per-GPU, shared across kernels
- Shared memory (SMEM): per-block, deallocate when the block done (and re-allocated to other blocks) LDS for AMD GPU
- **Constant memory (CMEM)**: part of device memory, use dedicated per-SM constant cache; shared across kernels



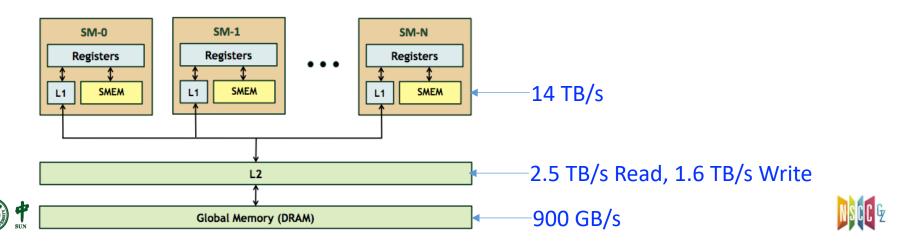
V100 Memory Hierarchy[存储层级]

- 80 SMs
 - Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
 - Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
 - Per SM: 64K 32-bit Register File, 128KB SMEM+L1
- 6MB L2 cache, 16GB 900GB/s HBM2
 - Shared by all SMs
 - For comparison: 20MB RF, 10MB SMEM+L1



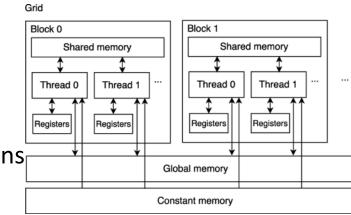
SMEM & CMEM

- SMEM benefits compared to DRAM:
 - 20-40x lower latency
 - ~15x higher bandwidth
 - Access granularity: 4B vs. 32B
- Constant memory (CMEM):
 - Total constant data size limited to 64KB
 - Throughput: 4B/clock per SM
 - Can be used directly in arithmetic insts (saving regs)



Resource Limits[资源限制]

- Threads[线程]
 - Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)
 - Up to 1024 threads/TB
 - TBs should be of at least 2 warps
- Registers[寄存器]
 - Max: 64K regs/TB, 255 regs/thread
 - Per SM: total 64K regs
 - If exceeding 255 regs, then spilling happens
- Memory[存储]
 - Max 96KB SMEM per SM (default 48KB)
- 100% occupancy[若满载]
 - 2048 threads/SM, 64K regs/SM \rightarrow 32 regs/thread (128B)
 - 2048 threads/SM, 96KB smem/SM \rightarrow 32B/thread



Memory Space Specifiers[存储空间指定]

- Variable memory space specifiers denote the memory location on the device of a variable
- <u>device</u>: declares a variable that resides on the device, by default
 - Resides in global memory space
 - Has the lifetime of the CUDA context in which it is created
 - Is accessible from all the threads within the grid and from the host through the runtime library
- <u>constant</u>: declares a variable that resides in constant memory space
 - Optionally used together with <u>device</u>
- <u>shared</u>: declares a variable that resides in shared memory space
 - Has the lifetime of the block,
 - Is only accessible from all the threads within the block

Memory Space Specifiers (cont.)

- <u>managed</u>: declares a variable that can be referenced from both device and host code
 - optionally used together with ___device___
 - Has the lifetime of an application
- An automatic variable declared in device code without any of the __device__, __shared__ and __constant__ specifiers generally resides in a register
 - However in some cases the compiler might choose to place it in local memory, which can hurt performance

Variable declaration	Memory	Scope	Lifetime	
device int globalVar;	global	grid	application	
shared int sharedVar;	shared	block	block	
<pre>constant int constantVar;</pre>	constant	grid	application	
int localVar;	register	thread	thread	
int localArray[10];	local	thread	thread	

Local Memory['本地'内存]

- Name refers to memory where registers and other thread-data is spilled
 - Usually when one runs out of SM resources
 - "Local" because each thread has its own private area
- Use case 1: register spilling[寄存器溢出]
 - Fermi hardware limit is 63 registers per thread (255 now)
 - Programmer can specify lower registers/thread limits:
 - To increase occupancy (number of concurrently running threads)
 - -maxrregcount option to nvcc, __launch_bounds__() qualifier in the code
 - LMEM is used if the source code exceeds register limit
- Use **case 2**: arrays declared inside kernels, if compiler can't resolve indexing[核函数内数组]
 - Registers aren't indexable, so have to be placed in LMEM

Local Memory (cont.)

- LMEM is not really a memory
 - Bytes are actually stored in global memory
 - Differences from global memory:
 - Addressing is resolved by the compiler
 - Stores are cached in L1
- LMEM could hurt performance in two ways:
 - Increased memory traffic
 - Increased instruction count
- Spilling/LMEM usage isn't always bad
 - LMEM bytes can get contained within L1
 - Avoids memory traffic increase
 - Additional instructions don't matter much if code is not instruction-throughput limited

Shared Memory["共享"存储]

- A per-block, software managed cache or scratchpad
 - Programmer can modify variable declarations with __shared__ to make this variable resident in shared memory
 - Compiler creates a copy of the variable for each block
 - Every thread in that block shares the memory, but threads cannot see or modify the copy of this variable that is seen within other blocks
 - This provides an excellent means by which threads within a block can communicate and collaborate on computations
- CUDA L1 cache and SMEM are unified
 - cudaDeviceSetCacheConfig(enum cudaFuncCache)
- A mechanism is needed to synchronize between threads
 - Thread A writes a value to shared memory and we want thread
 B to do something with this value
 - We can't have thread B start its work until we know the write from thread A is complete

Shared Memory (cont.)

- One can specify synchronization points in the kernel by calling <u>____syncthreads()</u>
- __syncthreads() acts as a barrier at which all threads in the block must wait before any is allowed to proceed
 - Guarantees that every thread in the block has completed instructions prior to the _____syncthreads() before the hardware will execute the next inst on any thread
 - When the first thread executes the first instruction after __syncthreads(), every other thread in the block has also finished executing up to the __syncthreads()

