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Review Questions
• host and device in GPU programming?

• relationship of kernel and grid?

• grid and block in GPU?

• GPU core?

• CUDA: myKernel<<<blocks, threads, 0, 0>>>(…)?.

• steps of kernel launch?

2

Threads to execute the kernel are organized as a grid.

CUDA or streaming core, the basic unit to execute a thread.

Grid dimensions, i.e., how many blocks to run the kernel grid

User-mode queue, command processor, blocks to SM, warps

host = CPU, device = GPU. Host offloads kernels onto devices.

Grid: all threads to run the kernel; Grid is further divided into blocks.



Concurrency[并发]

• GPU is mainly known for its data-level parallelism[数据级
并行]

− Thousands of cores, with thousands of outstanding threads
− Simultaneously computing the same function on lots of data 

elements
• Still need task-level parallelism[任务级并行]

− GPU is underutilized by a single application process 
− Doing two or more completely different tasks in parallel
− Similar to the task parallelism that is found in multithreaded 

CPU applications
• Techniques

− Multi-process service (MPS)
− Streams
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf


GPU Context[上下文]

• A GPU program starts by creating a context
− Either explicitly using the driver API or implicitly using the 

runtime API, for a specific GPU 

• The context encapsulates all the hardware resources 
necessary for the program to be able to manage memory 
and launch work on that GPU

• Each process has a unique context[唯一]
− Only a single context can be active on a device at a time
− Multiple processes (e.g. MPI) on a single GPU could not operate 

concurrently
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https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf


MPS[多进程服务]

• MPS: multiple-process service, a software layer that sits 
between the driver and your application

− Routes all CUDA calls through a single context
− Multiple processes can execute concurrently

• Allows multiple processes to share a single GPU context, 
to utilize Hyper-Q capabilities

− Hardware feature to construct multiple connections to GPU
− Hyper-Q allows kernels to be processed concurrently on the 

same GPU 
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https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf


Hyper-Q[超队列]

• GPU's with Hyper-Q have a concurrent scheduler to 
schedule work from work queues belonging to a single 
CUDA context
• Work launched to the compute engine from work queues 

belonging to the same CUDA context can execute 
concurrently on the GPU
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Code Example
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Completely synchronous

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Potentially overlapped

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf


Stream[流]

• All work on the GPU is launched either explicitly into a 
CUDA stream, or implicitly using a default stream
• A stream is a software abstraction that represents a 

sequence of commands to be executed in order
− May be a mix of kernels, copies, and other commands

• CUDA streams are aliased onto one or more ‘work 
queues’ on the GPU by the driver

− Work queues are hardware resources that represent an in-order 
sequence of the subset of commands in a stream
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Synchronous/Asynchronous[同步/异步]

• All GPU API calls are either synchronous or asynchronous 
w.r.t the host

− Synchronous: enqueue work and wait for completion
− Asynchronous: enqueue work and return immediately
− a.k.a., blocking vs. non-blocking[阻塞/非阻塞]

• The kernel launch function, hipLaunchKernelGGL, is non-
blocking for the host

− After sending instructions/data, the host continues immediately 
while the device executes the kernel

− If you know the kernel will take some time, this is a good area 
to do some work on the host 
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Potentially
overlap



Synchronous/Asynchronous(cont.)
• However, hipMemcpy is blocking

− The data pointed to in the arguments can be accessed/modified 
after the function returns

• The non-blocking version is hipMemcpyAsync
− hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, 

stream);
− Like hipLaunchKernelGGL, this function takes an argument of 

type hipStream_t
− It is not safe to access/modify the arguments of 

hipMemcpyAsync without some sort of synchronization. 
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Potentially
overlap



Streams[多流]

• A stream is a queue of device work
− Host places work in the queue and continues on immediately
− Device schedules work from streams when resources are free

• Operations are placed within a stream
− e.g. Kernel launches, memory copies

• Default stream
− Unless otherwise specified all calls are placed into a default 

stream (“Stream 0” or “NULL stream”)
p Stream 0 has special sync rules: synchronous with all streams
p Operations in stream 0 cannot overlap other streams
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https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf


Streams (cont.)
• Operations within the same stream are ordered (FIFO) 

and cannot overlap
• Operations in different streams are unordered and can 

overlap
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Synchronization[同步]

• How do we coordinate execution on device streams with 
host execution?

− Need some synchronization points. 

• hipDeviceSynchronize();         /  cudaDeviceSynchronize()
− Heavy-duty sync point 
− Blocks host until all work in all device streams has reported 

complete

• hipStreamSynchronize(stream); / cudaStreamSynchronize
(stream)

− Blocks host until all work in stream has reported complete

• Can a stream synchronize with another stream?
− For that we need ‘Events’ 
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https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf


Events[事件]

• Provide a mechanism to signal when operations have 
occurred in a stream

− Useful for profiling and synchronization
− Events have a boolean state: Occurred (default), Not Occurred

• A hipEvent_t object is created on a device via:
− hipEvent_t event;
− hipEventCreate(&event);

• We queue an event into a stream: 
− hipEventRecord(event, stream);
− The event records what work is currently enqueued in the 

stream
− When the stream’s execution reaches the event, the event is 

considered ‘complete’
• At the end of the app, event objects should be destroyed: 

− hipEventDestroy(event); 
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https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf


Events (cont.)
• hipEventSynchronize(event); 

− Block host until event reports complete
− Only a synchronization point w.r.t. the stream where event was 

enqueued
• hipEventElapsedTime(&time, startEvent, endEvent);

− Returns the time in ms between when two events, startEvent
and endEvent, completed 

− Can be very useful for timing kernels/memcpys
• hipStreamWaitEvent(stream, event);

− Non-blocking for host
− Instructs all future work submitted to stream to wait until event 

reports complete
− Primary way we enforce an ‘ordering’ between tasks in separate 

streams
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Example
• cudaEventRecord(&event, stream)

− Enqueue an event into stream, whose state is set to occurred 
when reaching the front of the stream

• cudaStreamWaitEvent(stream, event)
− The stream cannot proceed until the event occurs
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https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf


Task Graph[任务图]

• CPU launches each kernel to GPU
− When kernel runtime is short, execution time is dominated by 

CPU launch cost

• CUDA graph launch submits all work at once, reducing 
CPU cost

− A sequence of operations, connected by dependencies
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https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf


Example
• Capture CUDA stream work into a graph[基于流构建]
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https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf


Example (cont.)
• Create graphs directly[直接构建]

− Map graph-based workflows directly into CUDA
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GPU Memory Hierarchy[存储层级]
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https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

• CU internal memories: registers, caches, …
• Shared L2, off-chip HBM/GDDR
• RDNA fundamentally reorganizes the architecture

https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf


Memory Hierarchy
• Register: per-thread, deallocate when the thread done
• Cache: instruction, data, RO constant, RO texture
• Global memory: per-GPU, shared across kernels
• Shared memory (SMEM): per-block, deallocate when the 

block done (and re-allocated to other blocks)
• Constant memory (CMEM): part of device memory, use 

dedicated per-SM constant cache; shared across kernels

21

LDS for AMD GPU



V100 Memory Hierarchy[存储层级]

• 80 SMs
− Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
− Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
− Per SM: 64K 32-bit Register File, 128KB SMEM+L1

• 6MB L2 cache, 16GB 900GB/s HBM2
− Shared by all SMs
− For comparison: 20MB RF, 10MB SMEM+L1
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SMEM & CMEM
• SMEM benefits compared to DRAM:

− 20-40x lower latency
− ~15x higher bandwidth
− Access granularity: 4B vs. 32B

• Constant memory (CMEM):
− Total constant data size limited to 64KB
− Throughput: 4B/clock per SM
− Can be used directly in arithmetic insts (saving regs)
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14 TB/s

2.5 TB/s Read, 1.6 TB/s Write

900 GB/s



Resource Limits[资源限制]

• Threads[线程]
− Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)

p Up to 1024 threads/TB
p TBs should be of at least 2 warps

• Registers[寄存器]
− Max: 64K regs/TB, 255 regs/thread

p Per SM: total 64K regs
p If exceeding 255 regs, then spilling happens

• Memory[存储]
− Max 96KB SMEM per SM (default 48KB)

• 100% occupancy[若满载]
− 2048 threads/SM, 64K regs/SM  à 32 regs/thread (128B)
− 2048 threads/SM, 96KB smem/SM à 32B/thread
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Memory Space Specifiers[存储空间指定]
• Variable memory space specifiers denote the memory 

location on the device of a variable
• __device__: declares a variable that resides on the 

device, by default
− Resides in global memory space
− Has the lifetime of the CUDA context in which it is created
− Is accessible from all the threads within the grid and from the 

host through the runtime library
• __constant__: declares a variable that resides in constant 

memory space
− Optionally used together with __device__

• __shared__: declares a variable that resides in shared 
memory space

− Has the lifetime of the block,
− Is only accessible from all the threads within the block
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Memory Space Specifiers (cont.)
• __managed__: declares a variable that can be referenced 

from both device and host code
− optionally used together with __device__
− Has the lifetime of an application

• An automatic variable declared in device code without 
any of the __device__, __shared__ and __constant__ 
specifiers generally resides in a register

− However in some cases the compiler might choose to place it in 
local memory, which can hurt performance
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Variable declaration Memory Scope Lifetime

__device__ int globalVar; global grid application

__shared__ int sharedVar; shared block block

__constant__ int constantVar; constant grid application

int localVar; register thread thread

int localArray[10]; local thread thread



Local Memory[’本地’内存]

• Name refers to memory where registers and other 
thread-data is spilled

− Usually when one runs out of SM resources
− “Local” because each thread has its own private area 

• Use case 1: register spilling[寄存器溢出]
− Fermi hardware limit is 63 registers per thread (255 now)
− Programmer can specify lower registers/thread limits:

p To increase occupancy (number of concurrently running threads) 
p -maxrregcount option to nvcc, __launch_bounds__() qualifier in the 

code 
− LMEM is used if the source code exceeds register limit 

• Use case 2: arrays declared inside kernels, if compiler 
can’t resolve indexing[核函数内数组]

− Registers aren’t indexable, so have to be placed in LMEM 
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https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf


Local Memory (cont.)
• LMEM is not really a memory

− Bytes are actually stored in global memory
− Differences from global memory:

p Addressing is resolved by the compiler
p Stores are cached in L1

• LMEM could hurt performance in two ways:
− Increased memory traffic
− Increased instruction count 

• Spilling/LMEM usage isn’t always bad 
− LMEM bytes can get contained within L1

p Avoids memory traffic increase
− Additional instructions don’t matter much if code is not 

instruction-throughput limited 
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Shared Memory[“共享”存储]

• A per-block, software managed cache or scratchpad
− Programmer can modify variable declarations with __shared__ 

to make this variable resident in shared memory
− Compiler creates a copy of the variable for each block

p Every thread in that block shares the memory, but threads cannot see 
or modify the copy of this variable that is seen within other blocks

p This provides an excellent means by which threads within a block can 
communicate and collaborate on computations

• CUDA L1 cache and SMEM are unified
− cudaDeviceSetCacheConfig(enum cudaFuncCache)

• A mechanism is needed to synchronize between threads
− Thread A writes a value to shared memory and we want thread 

B to do something with this value
− We can’t have thread B start its work until we know the write 

from thread A is complete
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Shared Memory (cont.)
• One can specify synchronization points 

in the kernel by calling __syncthreads()
• __syncthreads() acts as a barrier at 

which all threads in the block must 
wait before any is allowed to proceed

− Guarantees that every thread in the block 
has completed instructions prior to the 
__syncthreads() before the hardware will 
execute the next inst on any thread

− When the first thread executes the first 
instruction after __syncthreads(), every 
other thread in the block has also 
finished executing up to the 
__syncthreads()
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Time 
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