[NN

%111F:. DLP & GPU (5)
i NGE

xianweiz.github.io
DCS3013, 11/9/2022

Dhge

https://xianweiz.github.io/

Review Questions

e stream in GPU?
software abstraction of queue, path to transmit tasks from CPU

* MPS?
multi-process service to run multi processes on GPU

e cudaMemcpy() is blocking or not?
Blocking: CPU waits for completion. vs. cudaMemcpyAsync()

* how to synchronize among streams?
use events: eventRecord(), eventWait()

e shared memory in GPU?

software-controlled L1 cache in SM, fast data share within block
* when to use local memory?

register spilling, arrays inside kernels

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Shared Memory[“JL =" 17fi#)

* A per-block, software managed cache or scratchpad

— Programmer can modify variable declarations with __shared
to make this variable resident in shared memory

— Compiler creates a copy of the variable for each block

o Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

o This provides an excellent means by which threads within a block can
communicate and collaborate on computations

e CUDA L1 cache and SMEM are unified

* A mechanism is needed to synchronize between threads

— Thread A writes a value to shared memory and we want thread
B to do something with this value

— We can’t have thread B start its work until we know the write
from thread A is complete

3 E
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf HH_ 7

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)

* One can specify synchronization points
in the kernel by calling _ syncthreads()

 syncthreads() acts as a barrier at
which all threads in the block must
wait before any is allowed to proceed

— Guarantees that every thread in the block

has completed instructions prior to the
__syncthreads() before the hardware will
execute the next inst on any thread

— When the first thread executes the first
instruction after __syncthreads(), every
other thread in the block has also
finished executing up to the
__syncthreads()

Active

!

Waitingl

Time

4
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf

__||,.._I,_____,,_,,__

--||4|...-.

R

ME“Z

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Example

__global__ void reverse(double *d_a) {
__shared__ double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;
s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.
//something is missing here..
__syncthreads();

d a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

hipLaunchKernelGGL(reverse, dim3(1), dim3(256), @, ©, d_a); //Launch kernel

5 i
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD GPU HIP training 20190906.pdf P (‘Z

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Address Coalescing & 4]

* Threads in a block are computed a warp at a time (32
threads)

 Global data is read or written in as few transactions as

possible by combining memory access requests into a
single transaction

— This is referred to the device coalescing mem stores and reads

* Every successive 128 bytes can be accessed by a warp (or
32 single precision words)

* Not in successive 128 bytes; more data to read

128 256 257
Address _ 128 256 Address ___

ThreadID o 31 ThreadID o 31
g sov var-seN NIvERSITY https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf Pr I

https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

Unified Memory[%— W 7#]

* Classical model[£& LA 7]

— Allocate memory on host

— Allocate memory on device

— Copy data from host to device
— Operate on the GPU data

— Copy data back to host

* Unified memory model[4t— 4]
— Allocate memory
— Operate on data on GPU

* Unified Memory is a single memory
address space accessible from any
processor in a system

— cudaMalloc() =2 cudaMallocManaged()
— on-demand page migration
7

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Traditional Developer View

Developer View With
Unified Memory

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Example

int N = 1<<20;
float *x, *y;

// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N#*sizeof(float));
cudaMallocManaged(&y, N#*sizeof(float));

// initialize x and y arrays on the host
for (int i = 0; i < N; i++) {

x[1i] = 1.0f;

y[i] = 2.0f;

// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;

add<<<numBlocks, blockSize>>>(N, x, y);

Divergence[4r]

* Within a block of threads, the threads are executes in
groups of 32 called a warp

— All threads in a warp do the same thing at the same time

* What happens if different threads in a warp need to do
different things?

— A logical predicate and two predicated instructions = serialized

* Branch divergence is a major cause for performance degr
adation in GPGPUs

if (threadIdx.x < 16)

{ . p = (threadldx.x < 16);
yoo T if (p) ... A ...

else if ('p) ... B ...

End of branch

Divergence (cont.)

* Pre-Volta GPUs use a single PC shared amongst all 32
threads of a warp, combined with an active mask that
specifies which threads of the warp are active at any
given time

— Leaves threads that are not executing a branch inactive

* Since Volta, each thread features its own PC, which allows
threads of the same warp to execute different branches
of a divergent section simultaneously

Pre-Volta

canier o [N NN AN AN NNRRNEARRRRRRRNNNEY

and Stack (S)
32 thread warp

Convergence

B 0 05500505555505300535055595550

32 thread warp with independent scheduling I EE(Z
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf 4

https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

Two-phase Execution[p]

* Compilation workflow

— Source code =2 virtual
instruction (PTX or HSAIL)

— Virtual inst = real inst (SASS
or GCN)

* .cu: CUDA source file,
containing host code and
device functions

* .ptx: PTX intermediate
assembly file

* .cubin: CUDA device code
binary file (CUBIN) for a
single GPU architecture

11

real sm architecture

virtual compute architecture

X.cu (device code)

|

Stage 1
' (PTX Generation) :

J SR

(Cubin Generation)

X.cubin

(Stage 2]

Execute

Multi-chip Module

* Aggregating multiple GPU modules within a single
package, as opposed to a single monolithic die.

* AMD: Chiplet GPUs

- MI200: 220 compute units, 14K streaming cores
- MI1100: 120 compute units, 7680 streaming cores

* Nvidia: Multi-Chip-Module (MCM) GPUs
- Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
— A100: 128 SMs, 8192 CUDA cores

[| SYSH/O

e
GPU GPU

Stacked Stacked MOdule MOdule

L : L J DRAM Monol"thic DRAM U“At;i Stacked
1 ¢ 2 MCM

’ | | GPU

Stacked

ORAM

e, " e
Package Module Module

“‘ : k)
@ tuxt bl

High-speed Links[m#i%E]

* GPUs are of high compute capability, being bottlenecked
on data movement

* High-speed interconnect to achieve significantly higher
data movement
— Nvidia: NVLink
— AMD: Infinity Fabric
- Intel: Compute eXpress Link (CXL)

CPU-GPU Systems Connected NVLink Enables Fast Unified Memory Access
via PCl-e between CPU & GPU Memories

(P *
(&) F X % 13
(5 |
(&)
v U SUN YAT-SEN UNIVERSITY

[NN

111t Memory (1)
SIS INGE

xianweiz.github.io
DCS3013, 11/9/2022

Dhge

https://xianweiz.github.io/

Memory Access[##fit i 1]

* Programmer’s view: read/write (i.e., load/store)
— Instruction[#§ 4]

— Data[#i#a]

Program counter

Next instruction
Fetch |e—
!

Decode
!

Execute

Memory

y >
Memory [€—

!
Writeback

@ turs 15 INE

Memory 7]

e |deal memory[HAE 5]
— Zero access time (latency)[ZF] 4E]
— Infinite capacity[LR F&E]
— Zero cost[ZE A
— Infinite bandwidth (to support parallel accesses)[TchR 7 %]

* Problem: the requirements are conflicting[7] &t: 753K 5 /%]
— Bigger is slower[K& &> K ZE] . » .
o Longer time to determine the location - %3 -
— Faster is more expensive[RiJ7 7] = & il As] Y @ \Q/k
o More advanced technology
- Higher bandwidth is more expensive[i % = = lAR]
o More access ports, higher frequency, ...

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

Memory in Modern System

ww

Py ﬂ’ = U -R 1‘1) I P 3
3] >
] -

sw:#u U

ONTRO T ue
(@ . -
)
=i CORE:2 OR

Qmm 17 Dige

Memory Hierarchy[# %24

* Goal: provide a memory system with a cost per bit that is
almost as low as the cheapest level of memory and a
speed almost as fast as the fastest level

Smallest Size- Fastext- Costliest

Cache (SRAM)

Primary Memory (DRAM)

Secondary Memory

Largest Size- Slowest- Cheapest

18 Dhig

emory Hierarchy (cont.

Flash
Memory memory
reference Cache Cache reference reforance
reference reference
Size: 1000 bytes 64 KB 256 KB 1-2GB 4-64GB
Speed: 300 ps ins 5-10ns 50-100ns 25-50us
(A) Memory hierarchy for a personal mobile device
L1 L2 L3
Cc Cc C § Memory
CPU a a a bus
Memory Storage
h h h
8 g 2 Flash
Register Level 1 Level 2 Level 3 Memory mf,,m’
reference Cache Cache Cache reference
reference reference reference
Laptop Size: 1000 bytes 64 KB 256 KB 4-8MB 4-16GB 256 GB-1TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS
Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2TB
Speed: 300ps ins 3-10ns 10-20ns 50-100 ns 50-100 uS
(B) Memory hierarchy for a laptop or a desktop
L2 L3 :
C Cc | Memory Disk storage
a a bus /O bus
E 3 Memory
h h
e e Flash storage
Register Level 1 Level 2 Level 3 Memory :
reference Cache Cache Cache reference Disk Flash
reference reference reference memory memory
S 4000 b 64 KB 256 KB 16-64 MB 32-256 GB s -
ze: ytes .
Speed: 200ps ins 3-10ns 10-20ns 50-100 ns b L
(C) Memory hierarchy for server

@tuxe 19 Dhige

SUN YAT-SEN UNIVERSITY

Memory Wall[1z 5]

* On modern machines, most programs that access a lot of

data are memory bound
— Latency of DRAM access is roughly 100-1000 cycles
- Involves both the limited capacity and the bandwidth of
memory transfer

Processor-DRAM Memory Gap

pProc 1.20/yr.

100,000
“Moore’s Law” ,ﬂ*
$0.000 B et e saeh LsCiaredarit it Rot et ORI R S AT i /
g 1,000
3 DRAM
éz’ 100 ecscccssnssassnssscsssisnitasusssssssssssnsssvansassnsssonionsalils.ccssscsscsocibes Pfocessof_Memofy._ sudaasnnee 7°°"yr‘
Performance Gap: (2X/10 yrs)
e
10 bttt o e I e o N o i g s R I N et SAP Ermiperk SRS GANEERS /
>
3 _’_&—‘_
o - L o om
1 .s‘-ﬁ— *? _*H_.—Y_H s = .
1980 198 1990 1995 2000 2005 2010
Yae
20 Gﬂ
ML g

Deeper Hierarchy[5i& 242

* 1980: no cache in micro-processor
* 1989: Inte
* 1995: Inte
* 2003: Inte

486 processor with 8KB on-chip L1 cache
Pentium Proc with 256KB on-chip L2 cache
ltanium 2 with 6MB on-chip L3 cache

* 2010: 3-level cache on chip, 4th-level cache off chip

LO:
Regs CPU registers hold words retrieved
Smaller, L1 h from the L1 cache.
faster, L1: cache
and (SRAM) L1 cache holds cache lines retrieved
i from the L2 cache.
(wsm:r) L2: L2 cache
er e .
periye (SRAM) ,
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage |5. Local secondary storage
devices (local disks)
Local disks hold files
A retrieved from disks
oooooo te servers.
L6: Remote secondary storage
/ (e.g., Web servers) ’_
A - \ W
8ryant and Q’Hallaren, Computer Systems: A Programmer’s Perspective, Third Edition \ '

Memory Locality[&t

* A “typical” program has a lot of locality in memory
references

— Typical programs are composed of “loops”

* Temporal[if[d]]: a program tends to reference the same
memory location many times and all within a small
window of time

 Spatial[=¥[d]]: a program tends to reference a cluster of
memory locations at a time

- Most notable examples:

o Instruction memory references (sequential execution)
o Array/data structure references (array traversal)

“‘ : k)
@ tuxt bl

Caching: Exploit Locality[#] i & &Bi:]

* Temporal[if[d]]: recently accessed data will be again
accessed in the near future

- |ldea: store recently accessed data in automatically managed
fast memory (called cache)

— Anticipation: the data will be accessed again soon

 Spatial[=¥[f]]: nearby data in memory will be accessed in
the near future (e.g., sequential instruction access, array
traversal)

— |dea: store addresses adjacent to the recently accessed one in
automatically managed fast memory
o logically divide memory into equal size blocks
o Fetch to cache the accessed block in its entirety

— Anticipation: nearby data will be accessed soon

“‘ \‘ k)
@ tuxt INCE

Management[&]

* Q1: Where can a block be placed in the upper level?
- (Block placement)

* Q2: How is a block found if it is in the upper level?
— (Block identification)

* Q3: Which block should be replaced on a miss?

- (Block replacement)

* Q4: What happens on a write?
- (Write Strategy) Smallest Size- Fastext- Costliest

Cache (SRAM)

/Primary Memory (DRAM\
/ Secondary Memory \

‘\"“‘ SUN YAT-SEN&E]:S?% Speed H' i LZ

Largest Size- Slowest- Cheapest

Management Policies[5kng]

* Manual[F3/]]: programmer manages data movement
across levels

e —- too painful for programmers on substantial programs
— “core” vs “drum” memory in the 50’s
- still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)
e Automatic[H 3l]: hardware manages data movement
across levels, transparently to the programmer

* ++ programmer’s life is easier

- the average programmer doesn’t need to know about it

o You don’t need to know how big the cache is and how it works to write
a “correct” program! (What if you want a “fast” program?)

“‘ : k)
@ tuxt bl

Cache Basics[& 47 £t

* Block (line): unit of storage in the cache[ZE 17 #.4v]

- Memory is logically divided into cache blocks that map to
locations in the cache

* When data referenced[ff /]

— HIT: if in cache, use cached data instead of accessing memory

- MISS: if not in cache, bring block into cache
o Maybe have to kick something else out to do it

* Some important cache design decisions
— Placement[jit &]: where and how to place/find a block in cache?

- Replacement[#& #t]: what data to remove to make room in
cache?

— Granularity of management[tiJZ]: large, small, uniform blocks?
— Write policy[5 % 1]: what do we do about writes?
— Instructions/data[$5 4 /%#5]: do we treat them separately?

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Cache Basics (cont.)

* Memory is logically divided into fixed-size blocks

* Each block maps to a location in the cache, determined
by the index bits in the address

- Used to index into the tag and data stores 129 index byte in block
2b | 3 bits| 3 bits

8-bit address
* Cache access steps

- 1) index into the tag and data stores with index bits in address
- 2) check valid bit in tag store
- 3) compare tag bits in address with the stored tag in tag store

* If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

u‘.lﬂ“ﬁ

Cache Basics (cont.)

* Assume byte-addressable memory tag index byte in block
— Capacity: 256 bytes = 8-bit address 2b | 3 bits| 3 bits
— Block: 8 bytes - 3-bit offset
— #blocks: 32 (256/8) Tag Index | Offset

 Assume cache
— Capacity: 64 bytes —> 3-bit index
o Holding 8 blocks (64/8)

 What is a tag store?

- Tag
— Metadata V| Tag Data
o Valid bit Nt
o Replacement policy bits - \MIU_X/'_
o Dirty bit }
S HIT/MISS DATA

@ turs 28 INE

Direct Mapped | #:mt44]

* For each item (block) of data in memory, there is exactly
one location in the cache where it might be

* Two blocks in memory that map to the same index in the
cache cannot be present in the cache at the same time
— Addresses A/B have the same index bits but different tag bits
- A, B,A B, A, B, A, B, .. > all misses

tag index offset

2b | 3 bits| 3 bits Tag store Data store
Address
\V tag
N~V
=" \ MUX /40ffset
;
Hit?

Data MGLX

