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Review Questions
• stream in GPU?

• MPS?

• cudaMemcpy() is blocking or not?

• how to synchronize among streams?

• shared memory in GPU?

• when to use local memory?
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multi-process service to run multi processes on GPU

use events: eventRecord(), eventWait()

software-controlled L1 cache in SM, fast data share within block

register spilling, arrays inside kernels

software abstraction of queue, path to transmit tasks from CPU

Blocking: CPU waits for completion. vs. cudaMemcpyAsync() 



Shared Memory[“共享”存储]

• A per-block, software managed cache or scratchpad
− Programmer can modify variable declarations with __shared__ 

to make this variable resident in shared memory
− Compiler creates a copy of the variable for each block

p Every thread in that block shares the memory, but threads cannot see 
or modify the copy of this variable that is seen within other blocks

p This provides an excellent means by which threads within a block can 
communicate and collaborate on computations

• CUDA L1 cache and SMEM are unified
− cudaDeviceSetCacheConfig(enum cudaFuncCache)

• A mechanism is needed to synchronize between threads
− Thread A writes a value to shared memory and we want thread 

B to do something with this value
− We can’t have thread B start its work until we know the write 

from thread A is complete
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf


Shared Memory (cont.)
• One can specify synchronization points 

in the kernel by calling __syncthreads()
• __syncthreads() acts as a barrier at 

which all threads in the block must 
wait before any is allowed to proceed

− Guarantees that every thread in the block 
has completed instructions prior to the 
__syncthreads() before the hardware will 
execute the next inst on any thread

− When the first thread executes the first 
instruction after __syncthreads(), every 
other thread in the block has also 
finished executing up to the 
__syncthreads()
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Time 

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf


Example
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Address Coalescing[地址合并]

• Threads in a block are computed a warp at a time (32 
threads)
• Global data is read or written in as few transactions as 

possible by combining memory access requests into a 
single transaction

− This is referred to the device coalescing mem stores and reads

• Every successive 128 bytes can be accessed by a warp (or 
32 single precision words)
• Not in successive 128 bytes; more data to read
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Unified Memory[统一内存]

• Classical model[经典模型]
− Allocate memory on host
− Allocate memory on device
− Copy data from host to device
− Operate on the GPU data
− Copy data back to host

• Unified memory model[统一模型]
− Allocate memory
− Operate on data on GPU

• Unified Memory is a single memory 
address space accessible from any 
processor in a system

− cudaMalloc() à cudaMallocManaged()
− on-demand page migration
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https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Example
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Divergence[分支]

• Within a block of threads, the threads are executes in 
groups of 32 called a warp

− All threads in a warp do the same thing at the same time

• What happens if different threads in a warp need to do 
different things?

− A logical predicate and two predicated instructions à serialized

• Branch divergence is a major cause for performance degr
adation in GPGPUs
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p = (threadIdx.x < 16);
if (p) … A …
if (!p) … B …



Divergence (cont.)
• Pre-Volta GPUs use a single PC shared amongst all 32 

threads of a warp, combined with an active mask that 
specifies which threads of the warp are active at any 
given time

− Leaves threads that are not executing a branch inactive 

• Since Volta, each thread features its own PC, which allows 
threads of the same warp to execute different branches 
of a divergent section simultaneously 
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Two-phase Execution[两段式]

• Compilation workflow
− Source code à virtual 

instruction (PTX or HSAIL)
− Virtual inst à real inst (SASS 

or GCN)

• .cu: CUDA source file, 
containing host code and 
device functions
• .ptx: PTX intermediate 

assembly file
• .cubin: CUDA device code 

binary file (CUBIN) for a 
single GPU architecture
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main() {
…
for(i=0;i<N;++i) {
}
…

}

IL 
(HSAIL, 

PTX)
ISACompiler Finalizer



Multi-chip Module
• Aggregating multiple GPU modules within a single 

package, as opposed to a single monolithic die.
• AMD: Chiplet GPUs

− MI200: 220 compute units, 14K streaming cores
− MI100: 120 compute units, 7680 streaming cores

• Nvidia: Multi-Chip-Module (MCM) GPUs
− Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
− A100: 128 SMs, 8192 CUDA cores
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High-speed Links[高速连接]

• GPUs are of high compute capability, being bottlenecked 
on data movement
• High-speed interconnect to achieve significantly higher 

data movement
− Nvidia: NVLink
− AMD: Infinity Fabric
− Intel: Compute eXpress Link (CXL)
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Memory Access[存储访问]
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Program counter

Fetch

Decode

Execute

Memory

Writeback

Next instruction

Memory

• Programmer’s view: read/write (i.e., load/store)
− Instruction[指令]
− Data[数据]



Memory[存储]

• Ideal memory[理想情况]
− Zero access time (latency)[零时延]
− Infinite capacity[无限容量]
− Zero cost[零成本]
− Infinite bandwidth (to support parallel accesses)[无限带宽]

• Problem: the requirements are conflicting[问题：需求互斥]
− Bigger is slower[大容量à长时延]

p Longer time to determine the location
− Faster is more expensive[快访问à高成本]

p More advanced technology
− Higher bandwidth is more expensive[高带宽à高成本]

p More access ports, higher frequency, …
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Memory in Modern System
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Memory Hierarchy[存储层级]
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• Goal: provide a memory system with a cost per bit that is 
almost as low as the cheapest level of memory and a 
speed almost as fast as the fastest level



Memory Hierarchy (cont.)
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Memory Wall[存储墙]

• On modern machines, most programs that access a lot of 
data are memory bound

− Latency of DRAM access is roughly 100-1000 cycles
− Involves both the limited capacity and the bandwidth of 

memory transfer
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Deeper Hierarchy[更深层级]

• 1980: no cache in micro-processor
• 1989: Intel 486 processor with 8KB on-chip L1 cache
• 1995: Intel Pentium Proc with 256KB on-chip L2 cache
• 2003: Intel Itanium 2 with 6MB on-chip L3 cache
• 2010: 3-level cache on chip, 4th-level cache off chip
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Memory Locality[局部性]

• A “typical” program has a lot of locality in memory 
references

− Typical programs are composed of “loops”

• Temporal[时间]: a program tends to reference the same 
memory location many times and all within a small 
window of time
• Spatial[空间]: a program tends to reference a cluster of 

memory locations at a time
− Most notable examples:

p Instruction memory references (sequential execution)
p Array/data structure references (array traversal)
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Caching: Exploit Locality[利用局部性]

• Temporal[时间]: recently accessed data will be again 
accessed in the near future 

− Idea: store recently accessed data in automatically managed 
fast memory (called cache)

− Anticipation: the data will be accessed again soon 

• Spatial[空间]: nearby data in memory will be accessed in 
the near future (e.g., sequential instruction access, array 
traversal)

− Idea: store addresses adjacent to the recently accessed one in 
automatically managed fast memory

p logically divide memory into equal size blocks
p Fetch to cache the accessed block in its entirety

− Anticipation: nearby data will be accessed soon
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Management[管理]

• Q1: Where can a block be placed in the upper level? 
− (Block placement) 

• Q2: How is a block found if it is in the upper level? 
− (Block identification) 

• Q3: Which block should be replaced on a miss? 
− (Block replacement) 

• Q4: What happens on a write? 
− (Write strategy) 
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Management Policies[策略]

• Manual[手动]: programmer manages data movement 
across levels
• -- too painful for programmers on substantial programs

− “core” vs “drum” memory in the 50’s
− still done in some embedded processors (on-chip scratch pad 

SRAM in lieu of a cache)

• Automatic[自动]: hardware manages data movement 
across levels, transparently to the programmer
• ++ programmer’s life is easier

− the average programmer doesn’t need to know about it
p You don’t need to know how big the cache is and how it works to write 

a “correct” program! (What if you want a “fast” program?) 
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Cache Basics[缓存基础]

• Block (line): unit of storage in the cache[缓存单位]
− Memory is logically divided into cache blocks that map to 

locations in the cache
• When data referenced[使用]

− HIT: if in cache, use cached data instead of accessing memory
− MISS: if not in cache, bring block into cache

p Maybe have to kick something else out to do it

• Some important cache design decisions
− Placement[放置]: where and how to place/find a block in cache?
− Replacement[替换]: what data to remove to make room in 

cache?
− Granularity of management[粒度]: large, small, uniform blocks?
− Write policy[写策略]: what do we do about writes?
− Instructions/data[指令/数据]: do we treat them separately?
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Cache Basics (cont.)
• Memory is logically divided into fixed-size blocks
• Each block maps to a location in the cache, determined 

by the index bits in the address
− Used to index into the tag and data stores

• Cache access steps
− 1) index into the tag and data stores with index bits in address 
− 2) check valid bit in tag store
− 3) compare tag bits in address with the stored tag in tag store

• If a block is in the cache (cache hit), the stored tag should 
be valid and match the tag of the block
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Cache Basics (cont.)
• Assume byte-addressable memory

− Capacity: 256 bytes à 8-bit address
− Block: 8 bytes           à 3-bit offset
− #blocks: 32 (256/8)

• Assume cache
− Capacity: 64 bytes  à 3-bit index

p Holding 8 blocks (64/8)

• What is a tag store?
− Tag
− Metadata

p Valid bit
p Replacement policy bits
p Dirty bit
p ECC
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Tag Index Offset

TagV

=?

Data

MUX

HIT/MISS DATA

MUX: multiplexer (数据选择器)



Direct Mapped[直接映射]

• For each item (block) of data in memory, there is exactly 
one location in the cache where it might be
• Two blocks in memory that map to the same index in the 

cache cannot be present in the cache at the same time
− Addresses A/B have the same index bits but different tag bits
− A, B, A, B, A, B, A, B, … à all misses
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