
第11讲：DLP & GPU（5）
张献伟

xianweiz.github.io
DCS3013, 11/9/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review Questions
• stream in GPU?

• MPS?

• cudaMemcpy() is blocking or not?

• how to synchronize among streams?

• shared memory in GPU?

• when to use local memory?

2

multi-process service to run multi processes on GPU

use events: eventRecord(), eventWait()

software-controlled L1 cache in SM, fast data share within block

register spilling, arrays inside kernels

software abstraction of queue, path to transmit tasks from CPU

Blocking: CPU waits for completion. vs. cudaMemcpyAsync()

Shared Memory[“共享”存储]

• A per-block, software managed cache or scratchpad
− Programmer can modify variable declarations with __shared__

to make this variable resident in shared memory
− Compiler creates a copy of the variable for each block

p Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

p This provides an excellent means by which threads within a block can
communicate and collaborate on computations

• CUDA L1 cache and SMEM are unified
− cudaDeviceSetCacheConfig(enum cudaFuncCache)

• A mechanism is needed to synchronize between threads
− Thread A writes a value to shared memory and we want thread

B to do something with this value
− We can’t have thread B start its work until we know the write

from thread A is complete

3
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)
• One can specify synchronization points

in the kernel by calling __syncthreads()
• __syncthreads() acts as a barrier at

which all threads in the block must
wait before any is allowed to proceed

− Guarantees that every thread in the block
has completed instructions prior to the
__syncthreads() before the hardware will
execute the next inst on any thread

− When the first thread executes the first
instruction after __syncthreads(), every
other thread in the block has also
finished executing up to the
__syncthreads()

4
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Time

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Example

5
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Address Coalescing[地址合并]

• Threads in a block are computed a warp at a time (32
threads)
• Global data is read or written in as few transactions as

possible by combining memory access requests into a
single transaction

− This is referred to the device coalescing mem stores and reads

• Every successive 128 bytes can be accessed by a warp (or
32 single precision words)
• Not in successive 128 bytes; more data to read

6
https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

Unified Memory[统一内存]

• Classical model[经典模型]
− Allocate memory on host
− Allocate memory on device
− Copy data from host to device
− Operate on the GPU data
− Copy data back to host

• Unified memory model[统一模型]
− Allocate memory
− Operate on data on GPU

• Unified Memory is a single memory
address space accessible from any
processor in a system

− cudaMalloc() à cudaMallocManaged()
− on-demand page migration

7
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Example

8

Divergence[分支]

• Within a block of threads, the threads are executes in
groups of 32 called a warp

− All threads in a warp do the same thing at the same time

• What happens if different threads in a warp need to do
different things?

− A logical predicate and two predicated instructions à serialized

• Branch divergence is a major cause for performance degr
adation in GPGPUs

9

p = (threadIdx.x < 16);
if (p) … A …
if (!p) … B …

Divergence (cont.)
• Pre-Volta GPUs use a single PC shared amongst all 32

threads of a warp, combined with an active mask that
specifies which threads of the warp are active at any
given time

− Leaves threads that are not executing a branch inactive

• Since Volta, each thread features its own PC, which allows
threads of the same warp to execute different branches
of a divergent section simultaneously

10
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

Two-phase Execution[两段式]

• Compilation workflow
− Source code à virtual

instruction (PTX or HSAIL)
− Virtual inst à real inst (SASS

or GCN)

• .cu: CUDA source file,
containing host code and
device functions
• .ptx: PTX intermediate

assembly file
• .cubin: CUDA device code

binary file (CUBIN) for a
single GPU architecture

11

main() {
…
for(i=0;i<N;++i) {
}
…

}

IL
(HSAIL,

PTX)
ISACompiler Finalizer

Multi-chip Module
• Aggregating multiple GPU modules within a single

package, as opposed to a single monolithic die.
• AMD: Chiplet GPUs

− MI200: 220 compute units, 14K streaming cores
− MI100: 120 compute units, 7680 streaming cores

• Nvidia: Multi-Chip-Module (MCM) GPUs
− Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
− A100: 128 SMs, 8192 CUDA cores

12

High-speed Links[高速连接]

• GPUs are of high compute capability, being bottlenecked
on data movement
• High-speed interconnect to achieve significantly higher

data movement
− Nvidia: NVLink
− AMD: Infinity Fabric
− Intel: Compute eXpress Link (CXL)

13

第11讲：Memory（1）
张献伟

xianweiz.github.io
DCS3013, 11/9/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Memory Access[存储访问]

15

Program counter

Fetch

Decode

Execute

Memory

Writeback

Next instruction

Memory

• Programmer’s view: read/write (i.e., load/store)
− Instruction[指令]
− Data[数据]

Memory[存储]

• Ideal memory[理想情况]
− Zero access time (latency)[零时延]
− Infinite capacity[无限容量]
− Zero cost[零成本]
− Infinite bandwidth (to support parallel accesses)[无限带宽]

• Problem: the requirements are conflicting[问题：需求互斥]
− Bigger is slower[大容量à长时延]

p Longer time to determine the location
− Faster is more expensive[快访问à高成本]

p More advanced technology
− Higher bandwidth is more expensive[高带宽à高成本]

p More access ports, higher frequency, …

16

Memory in Modern System

17

Memory Hierarchy[存储层级]

18

• Goal: provide a memory system with a cost per bit that is
almost as low as the cheapest level of memory and a
speed almost as fast as the fastest level

Memory Hierarchy (cont.)

19

Memory Wall[存储墙]

• On modern machines, most programs that access a lot of
data are memory bound

− Latency of DRAM access is roughly 100-1000 cycles
− Involves both the limited capacity and the bandwidth of

memory transfer

20

Deeper Hierarchy[更深层级]

• 1980: no cache in micro-processor
• 1989: Intel 486 processor with 8KB on-chip L1 cache
• 1995: Intel Pentium Proc with 256KB on-chip L2 cache
• 2003: Intel Itanium 2 with 6MB on-chip L3 cache
• 2010: 3-level cache on chip, 4th-level cache off chip

21

Memory Locality[局部性]

• A “typical” program has a lot of locality in memory
references

− Typical programs are composed of “loops”

• Temporal[时间]: a program tends to reference the same
memory location many times and all within a small
window of time
• Spatial[空间]: a program tends to reference a cluster of

memory locations at a time
− Most notable examples:

p Instruction memory references (sequential execution)
p Array/data structure references (array traversal)

22

Caching: Exploit Locality[利用局部性]

• Temporal[时间]: recently accessed data will be again
accessed in the near future

− Idea: store recently accessed data in automatically managed
fast memory (called cache)

− Anticipation: the data will be accessed again soon

• Spatial[空间]: nearby data in memory will be accessed in
the near future (e.g., sequential instruction access, array
traversal)

− Idea: store addresses adjacent to the recently accessed one in
automatically managed fast memory

p logically divide memory into equal size blocks
p Fetch to cache the accessed block in its entirety

− Anticipation: nearby data will be accessed soon

23

Management[管理]

• Q1: Where can a block be placed in the upper level?
− (Block placement)

• Q2: How is a block found if it is in the upper level?
− (Block identification)

• Q3: Which block should be replaced on a miss?
− (Block replacement)

• Q4: What happens on a write?
− (Write strategy)

24

Management Policies[策略]

• Manual[手动]: programmer manages data movement
across levels
• -- too painful for programmers on substantial programs

− “core” vs “drum” memory in the 50’s
− still done in some embedded processors (on-chip scratch pad

SRAM in lieu of a cache)

• Automatic[自动]: hardware manages data movement
across levels, transparently to the programmer
• ++ programmer’s life is easier

− the average programmer doesn’t need to know about it
p You don’t need to know how big the cache is and how it works to write

a “correct” program! (What if you want a “fast” program?)

25

Cache Basics[缓存基础]

• Block (line): unit of storage in the cache[缓存单位]
− Memory is logically divided into cache blocks that map to

locations in the cache
• When data referenced[使用]

− HIT: if in cache, use cached data instead of accessing memory
− MISS: if not in cache, bring block into cache

p Maybe have to kick something else out to do it

• Some important cache design decisions
− Placement[放置]: where and how to place/find a block in cache?
− Replacement[替换]: what data to remove to make room in

cache?
− Granularity of management[粒度]: large, small, uniform blocks?
− Write policy[写策略]: what do we do about writes?
− Instructions/data[指令/数据]: do we treat them separately?

26

Cache Basics (cont.)
• Memory is logically divided into fixed-size blocks
• Each block maps to a location in the cache, determined

by the index bits in the address
− Used to index into the tag and data stores

• Cache access steps
− 1) index into the tag and data stores with index bits in address
− 2) check valid bit in tag store
− 3) compare tag bits in address with the stored tag in tag store

• If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

27

Cache Basics (cont.)
• Assume byte-addressable memory

− Capacity: 256 bytes à 8-bit address
− Block: 8 bytes à 3-bit offset
− #blocks: 32 (256/8)

• Assume cache
− Capacity: 64 bytes à 3-bit index

p Holding 8 blocks (64/8)

• What is a tag store?
− Tag
− Metadata

p Valid bit
p Replacement policy bits
p Dirty bit
p ECC

28

Tag Index Offset

TagV

=?

Data

MUX

HIT/MISS DATA

MUX: multiplexer (数据选择器)

Direct Mapped[直接映射]

• For each item (block) of data in memory, there is exactly
one location in the cache where it might be
• Two blocks in memory that map to the same index in the

cache cannot be present in the cache at the same time
− Addresses A/B have the same index bits but different tag bits
− A, B, A, B, A, B, A, B, … à all misses

29

=?

Tag store

V tag

Address

tag index offset
3 bits3 bits2b Data store

MUX offset

Hit? Data

