
第15讲：Memory（5）
张献伟

xianweiz.github.io
DCS3013, 11/23/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review Questions
• DRAM page?

• open-page policy?

• DDR-1000MHz, 64b interface, what’s the bandwidth?

• sort DDR/HBM/GDDR in bandwidth ascending order?

• DRAM scaling issues?

• NVM vs. DRAM?

2

After accessing a row, leave it open (no need to reopen for a hit)

DDR -> GDDR -> HBM (or, HBM -> DDR -> GDDR)

Refresh, longer sensing, reliability, power, …

A DRAM row; a row of sense amplifiers; larger than OS page

1G x 2 x 64b/8 = 8 GB/s

Larger capacity, slower access, lower cost, less power, …

To Further Optimize Cache[优化缓存]

• Average memory access time (AMAT) = (hit-ratio * hit-
latency) + (miss-ratio * miss-latency)

• Basic requirements
− Hit latency
− Miss ratio
− Miss penalty

• Two more requirements
− Cache bandwidth
− Power consumption

3

Advanced Cache Optimizations[优化]

• Reducing the hit time[缩短命中时延]
− Small and simple first-level caches
− Way prediction

• Increasing cache bandwidth[提高缓存带宽]
− Pipelined caches
− Multibanked caches
− Non-blocking caches

• Reducing miss penalty[降低不命中开销]
− Critical word first
− Merging write buffers

• Reducing miss rate[降低不命中率]
− Compiler optimizations

4

#1: Small & Simple 1st-level Cache[小]

• To reduce hit time and power
• The L1 cache size has recently increased either slightly or

not at all
− Limited size: pressure of both a fast clock cycle and power

limitations encourages small sizes
− Lower level of associativity: reduce both hit time and power

5

#2: Way Prediction[预测]

• To reduce hit time
− Add extra bits in the cache to predict the way of the next cache

access
p Block predictor bits

− Multiplexor is set early to select the desired block
p And in that clock cycle, only a single tag comparison is performed in

parallel with reading the cache data
− A miss results in checking the other blocks for matches in the

next clock cycle
• Miss-prediction gives longer hit time

− Prediction accuracy
p > 90% for two-way
p > 80% for four-way
p I-cache has better accuracy than D-cache

− First used on MIPS R10000 in mid-90s,
now used on ARM Cortex-A8

6

#3: Pipelined[流水线]

• To increase bandwidth
− Primarily target at L1, where access bandwidth constrains

instruction throughput
− Multibanks are also used in L2/L3, but mainly for power

• Pipelining L1
− Stages

p address calculation
p disambiguation (decoder)
p cache access (parallel tag and data)
p result drive (aligner)

− Allows a higher clock cycle, at the cost of increased latency
− Examples

p Pentium: 1 cycle, Pentium Pro – III: 2, Pentium 4 – Core i7: 4 cycles

7

#3: Multibanked[多单元]

• Organize cache as independent banks to support
simultaneous access

− ARM Cortex-A8 supports 1-4 banks for L2
− Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address
− Banking works best when the accesses naturally spread across

banks

• Multiple banks also are a way to reduce power
consumption in both caches and DRAM

8

#4: Nonblocking Caches[非阻塞]

• To increase cache bandwidth
• Allow hits before previous misses complete

− “Hit under miss”
− “Hit under multiple miss”

• Nontrivial to implement the nonblocking
− Arbitrating contention between hits and misses; tracking

outstanding misses
− Miss Status Handling Registers (MSHRs)

9

Blocking

Hit under miss

#5: Critical Word First & Early Restart
• To reduce miss penalty
• Processor normally needs just one word of the block at a

time
− Don’t wait for the full block to be loaded before sending the

requested word and restarting the processor
• Critical word first[关键字优先]

− Request missed word from memory first
− Send it to the processor as soon as it arrives

• Early restart[提早重启]
− Request words in normal order
− Send missed work to the processor as soon as it arrives

• Effectiveness depends on block size and likelihood of
another access to the portion of the block that has not
yet been fetched

10

#6: Merging Write Buffers[写缓冲合并]

• To reduce miss penalty
• When storing to a block that is already pending in the

write buffer, update write buffer
• Advantages

− Multiword writes are usually faster than writes one word a time
− Reduces stalls due to full write buffer

• Do not apply to I/O addresses[I/O设备]

11

No write buffering

Write buffering

#7: Compiler Optimizations[编译]

• To reduce miss rate, without any hardware changes
• Loop interchange

− Swap nested loops to access memory in sequential order
− Improving spatial locality

p Maximizes use of data in a cache block before they are discarded

12

/* Before */
for (j = 0; j < 100; j = j + 1)

for (i = 0; i < 5000; i = i + 1)
x[i][j] = 2 * x[i][j];

/* After */
for (i = 0; j < 5000; i = i + 1)

for (j = 0; j < 100; j = j + 1)
x[i][j] = 2 * x[i][j];

#7: Compiler Optimizations (cont’d)
• Blocking to reduce cache misses

− Instead of accessing entire rows or columns, subdivide matrices
into blocks

− Exploits a combination of spatial and temporal locality, and can
even help register allocation

13

#8: Hardware Prefetching[硬件预取]

• To reduce miss penalty or miss rate
• Prefetch items before the processor requests them

− Instruction: fetches two blocks on miss, the requested and the
next consecutive

− Data: prefetch predicted blocks

14

#8: Hardware Prefetching (cont’d)
• What to prefetch? (prefetch useful data)

− Next sequential
− Stride
− General pattern

• Where to place?
− Directly into caches
− External buffers

• When to prefetch?
− Prefetched data should be timely provided

• Prefetching relies on extra memory bandwidth
− Should not interfere much with demand accesses
− Otherwise it hurts performance

15

#9: Compiler-controlled Prefetching
• To reduce miss penalty or miss rate
• Compiler inserts prefetch instructions to request data

before the processor needs it
• Two flavors

− Register prefetch: loads the value into a register
− Cache prefetch: loads data into the cache

• Typically nonfaulting prefetches
− Simply turns into no-ops if they would normally result in an

exception

• Compilers must take care to gain performance
− Issuing prefetch instructions incurs an instruction overhead

16

#10: Use HBM[高带宽内存]

• Use HBM to build massive L4 caches, size of 128MB - 1GB
• Tags of HBM cache

− 64B block: 1GB L4 requires 94MB of tags
p Issue: cannot place in on-chip caches

− 4KB block: 1GB L4 requires <1MB tag
p Issues: inefficient use of huge blocks, and high transfer overhead

• One approach (L-H, MICRO’2011):
− Each SDRAM row is a block index
− Each row contains set of tags and 29 data segments
− 29-set associative

17

2KB row buffer = 32 cache lines
Data lines (29-ways)Tags

Miss
Map

Summary

18

第15讲：TLP（1）
张献伟

xianweiz.github.io
DCS3013, 11/23/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Flynn’s Taxonomy[分类]

• SISD: single instruction, single data
− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW

20

MIMD[多指令多数据]

• Machines using MIMD have a number of processors that
function asynchronously and independently
• Each processor fetches its own instructions and operates

on its own data
• At any time, different processors may be executing

different instructions on different pieces of data

21
https://www.slideshare.net/abshinde/multiprocessor-74969041

https://www.slideshare.net/abshinde/multiprocessor-74969041

Multiprocessor[多处理器]

• Multi-processor
− Multiple CPUs tightly coupled to cooperate on a problem
− Each CPU may be a multicore design

• Multicore processor
− Multiprocessor where the CPU cores co-exist on a single

processor chip (i.e., single CPU w/ multi cores)

22

Why Multiprocessor?[使用的几个原因]

• Not that long ago, multiprocessors were expensive, exotic
machines
• Reason #1: running out of ILP that we can exploit[ILP有限]

− Can’t get much better performance out of a single core that’s
running a single program at a time

• Reason #2: power/thermal constraints[能耗/散热限制]
− Even if we wanted to just build fancier single cores at higher

clock speeds, we’d run into power and thermal obstacles

• Reason #3: Moore’s Law[摩尔定律]
− Lots of transistors à what else are we going to do with them?
− Historically: use transistors to make more complicated cores

with bigger and bigger caches
− But we just saw that this strategy has run into problems

23
http://people.ee.duke.edu/~sorin/ece152/lectures/multicore-1.pdf

http://people.ee.duke.edu/~sorin/ece152/lectures/multicore-1.pdf

How to Keep Multiprocessor Busy?
• Single core processors exploit ILP

− Multiprocessors exploit TLP: thread-level parallelism

• What’s a thread?
− A program can have one or more threads of control
− Each thread has its own PC and own arch registers
− All threads in a given program share resources (e.g., memory)

• OK, so where do we find more than one thread?
− Option #1: Multi-programmed workloads

p Run multiple single-threaded programs at same time
− Option #2: Explicitly multithreaded programs

p Create a single program that has multiple threads that
work together to solve a problem

24

A Fundamental Turn Toward Concurrency in Software
Your free lunch will soon be over. What can you do about it?
https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

Thread-Level Parallelism[线程级并行]

• Thread-Level parallelism[并行]
− Have multiple program counters
− Uses MIMD model
− Targeted for tightly-coupled shared-memory multiprocessors

• Why TLP?[原因]
− Hard to further increase core performance (e.g., clock speed)
− Hard to find and exploit more ILP

• Implementation[实现]
− Multiprocessor[多处理器]

p Multicore processor[多核处理器]
p Multi-processor[多个处理器]

− Multithreaded processor[多线程处理器]

25

Multithreading[多线程]

• Basic idea: processor resources are expensive and should
not be left idle
• On uniprocessor, multithreading occurs by time-division

multiplexing[时分复用]
− Processor switches between different threads
− Context switching happens frequently enough user perceives

threads as running at the same time

• Multithreaded processor: single CPU core that can
execute multiple threads simultaneously

− Switching
− Simultaneous multithreading (SMT) à “hyperthreading” (Intel)

26
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture18.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture18.pdf

Classifying Multiprocessors[分类]

• Interconnection network[互联网络]
− Bus
− Network

• Memory topology[内存]
− UMA
− NUMA

• Programming model[编程模型]
− Shared memory[共享内存]: every processor can name every

address location
− Message passing[消息传递]: each processor can name only it’s

local memory. Communication is through explicit messages

27
https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

SMP[对称型]

• Symmetric (shared-memory) multiprocessors (SMPs)
− A.k.a., centralized shared-memory multiprocessors
− A.k.a., uniform memory access (UMA) multiprocessors
− Small number of cores (typically <= 8)
− Share a single centralized memory that all processors have

equal access to, hence “symmetric”
p Uniform access latency

28

DSM[分布式共享内存]

• Distributed shared memory (DSM)
− Memory distributed among processors
− Non-uniform memory access/latency (NUMA)

p The access time depends on the location of a data word in memory
− Processors connected via direct (switched) and non-direct

(multi-hop) interconnection networks

29

Shared Memory[共享内存]

• The term “shared memory” associated with both SMP
and DSM refers to the fact that the address space is
shared

− Communication among threads occurs through the shared
address space

− Thus, a memory reference can be made by any processor to any
memory location

30

There Exist Caches
• Recall memory hierarchy, with cache being provided to

shorten access latency
− Each core of multiprocessors has a cache (or multiple caches)

• Caching complicates the data sharing

31

Data Caching[数据缓存]

• Private data: used by a single processor
• Shared data: used by multiple processors

− Essentially providing communication among the
processors through reads and writes of the
shared data

• Caching private data
− Migrated to cache, reducing access time
− No other processor uses the data (identical to

uniprocessor)
• Caching shared data

− Replicated in multiple caches
p Reduced access latency, reduced contention

− Introduces a new problem: cache coherence

32

Cache Coherence[缓存一致性]

• Processors may see different values of the same data
− The view of memory held by two different processors is through

their individual caches, which, without any additional
precautions, could end up seeing two different values

• Cache coherence problem[缓存一致性问题]
− Conflicts between global state (main memory) and local state

(private cache)
− At time 4, what if processor B reads X?

33

A
Cache

B
Cache

WT

