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Review Questions

* DRAM page?
A DRAM row; a row of sense amplifiers; larger than OS page
e open-page policy?
After accessing a row, leave it open (no need to reopen for a hit)

e DDR-1000MHz, 64b interface, what’s the bandwidth?
1G x 2 x64b/8 = 8 GB/s

* sort DDR/HBM/GDDR in bandwidth ascending order?
DDR -> GDDR -> HBM (or, HBM -> DDR -> GDDR)

* DRAM scaling issues?
Refresh, longer sensing, reliability, power, ...

* NVM vs. DRAM?

Larger capacity, slower access, lower cost, less power, ...
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To Further Optimize Cache[fitk 2277

e Average memory access time (AMAT) = ( hit-ratio * hit-
latency ) + ( miss-ratio * miss-latency )

* Basic requirements

3 TO L1 I-Cache
— Hit latency S [
— Miss ratio % (TOx L1 I-Cache
— Miss penalty S M. "
ain
Memory

TO L1 I-Cache
T1¥ %L1 D-Cache

 Two more requirements

— Cache bandwidth
- Power consumption

Core 2
I

T« L1 I-Cache
T1¥ 311 D-Cache

Core 3
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Advanced Cache Optimizations[fik]

* Reducing the hit time[%g & iy = B 4iE]
- Small and simple first-level caches
- Way prediction

* Increasing cache bandwidth[#& & 2% 17 T
- Pipelined caches
— Multibanked caches
- Non-blocking caches

« Reducing miss penalty[ &A% As iy 5 F45]
— Critical word first
- Merging write buffers

* Reducing miss rate[FFIEAT ]

— Compiler optimizations




1: Small & Simple 15-level Cache[/}

me in microseconds
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* To reduce hit time and power

* The L1 cache size has recently increased either slightly or
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2: Way Prediction[#iill)

* To reduce hit time
— Add extra bits in the cache to predict the way of the next cache
access
o Block predictor bits
- Multiplexor is set early to select the desired block

o And in that clock cycle, only a single tag comparison is performed in
parallel with reading the cache data

— A miss results in checking the other blocks for matches in the
next clock cycle

Y Miss_prediction gives |Onger hit time .......... e B T T R SR

— Prediction accuracy
o > 90% for two-way
o > 80% for four-way
o |-cache has better accuracy than D-cache

— First used on MIPS R10000 in mid-90s,
now used on ARM Cortex-A8




3: Pipelined[iik £k

 To increase bandwidth

— Primarily target at L1, where access bandwidth constrains
instruction throughput

— Multibanks are also used in L2/L3, but mainly for power

* Pipelining L1
— Stages
o address calculation
o disambiguation (decoder)

o cache access (parallel tag and data)
o result drive (aligner)

— Allows a higher clock cycle, at the cost of increased latency

- Examples
o Pentium: 1 cycle, Pentium Pro —lll: 2, Pentium 4 —Core i7: 4 cycles
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3: Multibanked[z #.g]

* Organize cache as independent banks to support
simultaneous access
— ARM Cortex-A8 supports 1-4 banks for L2
— Intel i7 supports 4 banks for L1 and 8 banks for L2

* Interleave banks according to block address
— Banking works best when the accesses naturally spread across
banks

* Multiple banks also are a way to reduce power
consumption in both caches and DRAM

Block
address

Bank 0

Block
address
1

S
9

13

Bank 1

Block
address
2

6
10
14

Bank 2

Block

address

3
-
11
15
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4: Nonblocking Caches[dErH %]

Cache Miss

* To increase cache bandwidth

* Allow hits before previous misses complete o

. . ache Miss Hj all on use
— “Hit under miss” W

— “Hit under multiple miss” el

Hit under miss

* Nontrivial to implement the nonblocking

— Arbitrating contention between hits and misses; tracking
outstanding misses

- Miss Status Handling Registers (MSHRs)
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5: Critical Word First & Early Restart

* To reduce miss penalty

* Processor normally needs just one word of the block at a
time
— Don’t wait for the full block to be loaded before sending the
requested word and restarting the processor

e Critical word first[o<E 24 5]
— Request missed word from memory first
- Send it to the processor as soon as it arrives

e Early restart[#& 7 5 j3]
- Request words in normal order
- Send missed work to the processor as soon as it arrives

* Effectiveness depends on block size and likelihood of
another access to the portion of the block that has not
yet been fetched
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6: Merging Write Butfers|5 2 & ]

* To reduce miss penalty

* When storing to a block that is already pending in the
write buffer, update write buffer

* Advantages

— Multiword writes are usually faster than writes one word a time
— Reduces stalls due to full write buffer

* Do not apply to I/O addresses[l/O¥ %]

Write address V Vv v

100 Mem([100]

No write buffering

1

108 1 | Mem([108]
116 1
1

o o o o <

0 0
0 0
Mem([116] | 0 0
0 0

124

Mem[124]

Write address

100 Mem([100]

Mem([108]

Mem([116] Mem([124]

Write buffering
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/: Compiler Optimizations[4 ]

* To reduce miss rate, without any hardware changes

* Loop interchange
— Swap nested loops to access memory in sequential order
- Improving spatial locality
o Maximizes use of data in a cache block before they are discarded

/* Before */
for(j=0;j<100;j=j+1)
for(i=0;i<5000;i=i+1)
x[i][j] = 2 * x[i][j];

/* After */
for(i=0;j<5000;i=i+1)
for(j=0;j<100;j=j+1)
x[i](j] = 2 * x[i][j];
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7: Compiler Optimizations (cont’d)

* Blocking to reduce cache misses

- Instead of accessing entire rows or columns, subdivide matrices
into blocks

— Exploits a combination of spatial and temporal locality, and can
even help register allocation
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8: Hardware Prefetching g4 155

* To reduce miss penalty or miss rate

* Prefetch items before the processor requests them

— Instruction: fetches two blocks on miss, the requested and the
next consecutive

— Data: prefetch predicted blocks
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8: Hardware Prefetching (cont’d)

* What to prefetch? (prefetch useful data)
- Next sequential

- Stride Caf“" CPU
— General pattern A+l
? A+2 § ”{ LlDCachc] ( L1 ICache J
* Where to place: A+3 €
A+4 °
— Directly into caches i
— External buffers ey

* When to prefetch?
— Prefetched data should be timely provided

* Prefetching relies on extra memory bandwidth
— Should not interfere much with demand accesses
— Otherwise it hurts performance

<5 s-7 1ol
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9: Compiler-controlled Prefetching

* To reduce miss penalty or miss rate

 Compiler inserts prefetch instructions to request data
before the processor needs it

 Two flavors

— Register prefetch: loads the value into a register
— Cache prefetch: loads data into the cache

* Typically nonfaulting prefetches

— Simply turns into no-ops if they would normally result in an
exception

* Compilers must take care to gain performance
- Issuing prefetch instructions incurs an instruction overhead
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10: Use HBM &t 55 N AF]

 Use HBM to build massive L4 caches, size of 128MB - 1GB

* TagS Of HBM CaChe %nlyx%CPUwithHigh

Bandwidth Memory
M

— 64B block: 1GB L4 requires 94MB of tags

o Issue: cannot place in on-chip caches

— 4KB block: 1GB L4 requires <1MB tag

o Issues: inefficient use of huge blocks, and high transfer overhead

* One approach (L-H, MICRO’2011):
— Each SDRAM row is a block index
— Each row contains set of tags and 29 data segments

— 29-set associative
DRAM ARRAY

2KB row buffer = 32 cache lines

Data lines (29-ways)

O [— I y
) 1.5 ROW BUFFER Map Py




Summary

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches  + + 1 Used in Pentium 4

Pipelined & banked - + 1 Widely used

caches

Nonblocking caches + Widely used

Critical word first and 2 Widely used

carly restart

Merging write buffer 1 Widely used with wnte
through

Compiler techniques to - 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + - 2 instr., Most provide prefetch

of mstructions and data 3 data mstructions; modem high-
end processors also
automatically prefetch in
hardware

Compiler-controlled + 3 Needs nonblocking cache:

prefetching possible instruction
overhead; in many CPUs

HBM as additional +/- + + 3 Depends on new packaging

level of cache

(P
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Flynn’'s Taxonomy[424]

~

 SISD: single instruction, single data
- A serial (non-parallel) computer

* SIMD: single instruction, multiple data

— Best suited for specialized problems characterized by a high
degree of regularity, such as graphics/image processing

* MISD: multiple instruction, single data

- Few (if any) actual examples of this class have ever existed

* MIMD: multiple instruction, multiple data

- Examples: supercomputers, multi-core PCs, VLIW
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MIMD 2 454 2 #di)

* Machines using MIMD have a number of processors that
function asynchronously and independently

* Each processor fetches its own instructions and operates
on its own data

* At any time, different processors may be executing
different instructions on different pieces of data

Memory Controller

E

4 Intel Xeon CPUs 4 FT Matrix-2000 2 Compute Nodes

Shared L3 Cache -

. 21 K
https://www.slideshare.net/abshinde/multiprocessor-74969041 W



https://www.slideshare.net/abshinde/multiprocessor-74969041

Multiprocessor(£ 4t # 28]

* Multi-processor
— Multiple CPUs tightly coupled to cooperate on a problem
— Each CPU may be a multicore design

* Multicore processor

— Multiprocessor where the CPU cores co-exist on a single
processor chip (i.e., single CPU w/ multi cores)

Processor 0 Processor | Processor 0
Core 0 Core | Core 0 Core | Core 0 Core 1
CPU fcvu CPU I cPU ) po—r
[ L1 cache Jfi[ L1 cache |f || L1 Cache J|fl L1 Cache | [ Cache ]||[ L1 Cache |
L2 Cache L2 Cache L2 Cache
s
System Memory t System Memory
—I System Bus } > »

Multi-Processor System with Cores that share Multi-Core Processor with Shared .2
L2 Cache Cache




Why Multiprocessor? & f i J LA E A

* Not that long ago, multiprocessors were expensive, exotic
machines

e Reason #1: running out of ILP that we can exploit[ILPH ]

— Can’t get much better performance out of a single core that’s
running a single program at a time

« Reason #2: power/thermal constraints[AE L/ PR 1]
- Even if we wanted to just build fancier single cores at higher
clock speeds, we’d run into power and thermal obstacles
* Reason #3: Moore’s Law[EE /R E ]
— Lots of transistors = what else are we going to do with them?

— Historically: use transistors to make more complicated cores
with bigger and bigger caches

— But we just saw that this strategy has run into problems

»‘vi’@“ﬁ
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http://people.ee.duke.edu/~sorin/ece152/lectures/multicore-1.pdf

How to Keep Multiprocessor Busy?

* Single core processors exploit ILP
— Multiprocessors exploit TLP: thread-level parallelism

e What’s a thread?

— A program can have one or more threads of control
— Each thread has its own PC and own arch registers
— All threads in a given program share resources (e.g., memory)

* OK, so where do we find more than one thread?

— Option #1: Multi-programmed workloads cppcon | 2017
o Run multiple single-threaded programs at same time
— Option #2: Explicitly multithreaded programs
o Create a single program that has multiple threads that
work together to solve a problem
A Fundamental Turn Toward Concurrency in Software

—. Your free lunch will soon be over. What can you do about it?
(&) https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter 2005.pdf

HERB SUTTER



https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

Thread-Level Parallelism & #2425 34T

* Thread-Level parallelism[347]

- Have multiple program counters
- Uses MIMD model

— Targeted for tightly-coupled shared-memory multiprocessors
e Why TLP?[JR [H]

- Hard to further increase core performance (e.g., clock speed)
- Hard to find and exploit more ILP

* Implementation[3Z#]
— Multiprocessor[Z 47 3]
o Multicore processor[Z #Z AL 28]
o Multi-processor[Z£ /M AL H 23]
— Multithreaded processor|[ £ 272 4b i 28]
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Multithreading[£ 4]

* Basic idea: processor resources are expensive and should
not be left idle

* On uniprocessor, multithreading occurs by time-division
multiplexing[i} 73 8 ]
— Processor switches between different threads

— Context switching happens frequently enough user perceives
threads as running at the same time

* Multithreaded processor: single CPU core that can
execute multiple threads simultaneously

- Switching
— Simultaneous multithreading (SMT) = “hyperthreading” (Intel)

\ ’yﬂ
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https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture18.pdf

Classitying Multiprocessors|4r2]
* Interconnection networ<[EH9§|7?%l
_Bus e | [ | [ e — N Ia
— Network i 1 I : \ /
Cache Cache Cache Cpu [~ 1M
* Memory topology[N1F] Lo P L W
- NUMA Hemew " cpu /L/\ M

* Programming model[Z&#

e A ]

— Shared memory[ZL =N 17]: every processor can name every

address location

— Message passing[iH 5 f£i#]: each processor can name only it’s
local memory. Communication is through explicit messages

27

https://cseweb.ucsd.edu/classes/wil3/csel141-b/slides/10-Multithreading.pdf

u‘.i’ﬁ“ﬁ


https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

SM P [FF #5784

e Symmetric (shared-memory) multiprocessors (SMPs)
- A.k.a., centralized shared-memory multiprocessors
- A.k.a., uniform memory access (UMA) multiprocessors
- Small number of cores (typically <= 8)

— Share a single centralized memory that all processors have
equal access to, hence “symmetric”
o Uniform access Iatency

Proces l Poce sor § | Processor l P sssssss
On. e
more e

morel Is
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DSM 73 A 3L = A 7]

* Distributed shared memory (DSM)
- Memory distributed among processors

— Non-uniform memory access/latency (NUMA)
o The access time depends on the location of a data word in memory

— Processors connected via direct (switched) and non-direct
(multi-hop) interconnection networks

,"{ulticore Iv{ultloore ((ult]oore I~§ulboore
\ MP \ MP \ MP \ MP

e T e T e T e T (s

Interconnection network
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Shared Memory[3:= R 7]

* The term “shared memory” associated with both SMP
and DSM refers to the fact that the address space is
shared

— Communication among threads occurs through the shared
address space

— Thus, a memory reference can be made by any processor to any
memory location

: Processor |' Processor : Processor | Processor ,’@Iticore (gulhoore lv(ultloore ;(ulhoore
) l \ MP \ MP MP MP

a \ p p
e o | o ][5 SN e y D | i R |
ne or ne or ne or ne or L | \
more levels more levels more levels more levels anr::;e

of cache of cache of cache of cache ke p

e I = I

Interconnection network




There Exist Caches

* Recall memory hierarchy, with cache being provided to
shorten access latency

— Each core of multiprocessors has a cache (or multiple caches)

* Caching complicates the data sharing

Smallest Size- Fastext- Costliest

1 ¢ i:
el
[ |2gm| Cache (SRAM)
3 ] > 2
i [ = il Primary Memory (DRAM)
P
S
L - v Secondary Memory
- ; ,
Size Speed

Largest Size- Slowest- Cheapest
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Data Caching[#k 22 17)

* Private data: used by a single processor

* Shared data: used by multiple processors
— Essentially providing communication among the

processors through reads and writes of the
shared data .

Corel Core 2 Core 3

I L1 I L1 I ‘ L1 l l L1 ’
o il i il
* Caching private data L;J :
- Migrated to cache, reducing access time ;

- No other processor uses the data (identical to =
uniprocessor) *
. Main Memory (DRAM)
* Caching shared data

— Replicated in multiple caches
o Reduced access latency, reduced contention

- Introduces a new problem: cache coherence

@) tuxs 32 i




Cache Coherence[ZEf7—z )

* Processors may see different values of the same data

— The view of memory held by two different processors is through
their individual caches, which, without any additional
precautions, could end up seeing two different values

 Cache coherence problem[ZE47— 2 v i)

— Conflicts between global state (main memory) and local state
(private cache)

— At time 4, what if processor B reads X?

Cache contents for Cache contents for Memory contents for
A Time Event processor A processor B location X
C

ache| - '

| Processor A reads X | 1

2 Processor B reads X 1 | |

Processor A stores 0 | 0
0 into X
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