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Review Questions
• DRAM page?

• open-page policy?

• DDR-1000MHz, 64b interface, what’s the bandwidth?

• sort DDR/HBM/GDDR in bandwidth ascending order?

• DRAM scaling issues?

• NVM vs. DRAM?
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After accessing a row, leave it open (no need to reopen for a hit)

DDR -> GDDR -> HBM (or, HBM -> DDR -> GDDR)

Refresh, longer sensing, reliability, power, …

A DRAM row; a row of sense amplifiers; larger than OS page

1G x 2 x 64b/8 = 8 GB/s

Larger capacity, slower access, lower cost, less power, …



To Further Optimize Cache[优化缓存]

• Average memory access time (AMAT) = ( hit-ratio * hit-
latency ) + ( miss-ratio * miss-latency ) 

• Basic requirements
− Hit latency
− Miss ratio
− Miss penalty

• Two more requirements
− Cache bandwidth
− Power consumption
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Advanced Cache Optimizations[优化]

• Reducing the hit time[缩短命中时延]
− Small and simple first-level caches
− Way prediction

• Increasing cache bandwidth[提高缓存带宽]
− Pipelined caches
− Multibanked caches
− Non-blocking caches

• Reducing miss penalty[降低不命中开销]
− Critical word first
− Merging write buffers

• Reducing miss rate[降低不命中率]
− Compiler optimizations
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#1: Small & Simple 1st-level Cache[小]

• To reduce hit time and power
• The L1 cache size has recently increased either slightly or 

not at all
− Limited size: pressure of both a fast clock cycle and power 

limitations encourages small sizes
− Lower level of associativity: reduce both hit time and power
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#2: Way Prediction[预测]

• To reduce hit time
− Add extra bits in the cache to predict the way of the next cache 

access
p Block predictor bits

− Multiplexor is set early to select the desired block
p And in that clock cycle, only a single tag comparison is performed in 

parallel with reading the cache data
− A miss results in checking the other blocks for matches in the 

next clock cycle
• Miss-prediction gives longer hit time

− Prediction accuracy
p > 90% for two-way
p > 80% for four-way
p I-cache has better accuracy than D-cache

− First used on MIPS R10000 in mid-90s,                                        
now used on ARM Cortex-A8
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#3: Pipelined[流水线]

• To increase bandwidth
− Primarily target at L1, where access bandwidth constrains 

instruction throughput
− Multibanks are also used in L2/L3, but mainly for power

• Pipelining L1
− Stages

p address calculation
p disambiguation (decoder)
p cache access (parallel tag and data)
p result drive (aligner)

− Allows a higher clock cycle, at the cost of increased latency
− Examples

p Pentium: 1 cycle, Pentium Pro – III:  2, Pentium 4 – Core i7:  4 cycles

7



#3: Multibanked[多单元]

• Organize cache as independent banks to support 
simultaneous access

− ARM Cortex-A8 supports 1-4 banks for L2
− Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address
− Banking works best when the accesses naturally spread across 

banks

• Multiple banks also are a way to reduce power 
consumption in both caches and DRAM
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#4: Nonblocking Caches[非阻塞]

• To increase cache bandwidth
• Allow hits before previous misses complete

− “Hit under miss”
− “Hit under multiple miss”

• Nontrivial to implement the nonblocking
− Arbitrating contention between hits and misses; tracking 

outstanding misses
− Miss Status Handling Registers (MSHRs)
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Blocking

Hit under miss



#5: Critical Word First & Early Restart
• To reduce miss penalty
• Processor normally needs just one word of the block at a 

time
− Don’t wait for the full block to be loaded before sending the 

requested word and restarting the processor
• Critical word first[关键字优先]

− Request missed word from memory first
− Send it to the processor as soon as it arrives

• Early restart[提早重启]
− Request words in normal order
− Send missed work to the processor as soon as it arrives

• Effectiveness depends on block size and likelihood of 
another access to the portion of the block that has not 
yet been fetched
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#6: Merging Write Buffers[写缓冲合并]

• To reduce miss penalty
• When storing to a block that is already pending in the 

write buffer, update write buffer
• Advantages

− Multiword writes are usually faster than writes one word a time
− Reduces stalls due to full write buffer

• Do not apply to I/O addresses[I/O设备]
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No write buffering

Write buffering



#7: Compiler Optimizations[编译]

• To reduce miss rate, without any hardware changes
• Loop interchange

− Swap nested loops to access memory in sequential order
− Improving spatial locality

p Maximizes use of data in a cache block before they are discarded
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/* Before */
for ( j = 0; j < 100; j = j + 1 )

for ( i = 0; i < 5000; i = i + 1 )
x[i][j] = 2 * x[i][j];

/* After */
for ( i = 0; j < 5000; i = i + 1 )

for ( j = 0; j < 100; j = j + 1 )
x[i][j] = 2 * x[i][j];



#7: Compiler Optimizations (cont’d)
• Blocking to reduce cache misses

− Instead of accessing entire rows or columns, subdivide matrices 
into blocks

− Exploits a combination of spatial and temporal locality, and can 
even help register allocation 
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#8: Hardware Prefetching[硬件预取]

• To reduce miss penalty or miss rate
• Prefetch items before the processor requests them

− Instruction: fetches two blocks on miss, the requested and the 
next consecutive

− Data: prefetch predicted blocks
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#8: Hardware Prefetching (cont’d)
• What to prefetch? (prefetch useful data)

− Next sequential
− Stride
− General pattern

• Where to place?
− Directly into caches
− External buffers

• When to prefetch?
− Prefetched data should be timely provided

• Prefetching relies on extra memory bandwidth
− Should not interfere much with demand accesses
− Otherwise it hurts performance
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#9: Compiler-controlled Prefetching
• To reduce miss penalty or miss rate
• Compiler inserts prefetch instructions to request data 

before the processor needs it
• Two flavors

− Register prefetch: loads the value into a register
− Cache prefetch: loads data into the cache

• Typically nonfaulting prefetches
− Simply turns into no-ops if they would normally result in an 

exception

• Compilers must take care to gain performance
− Issuing prefetch instructions incurs an instruction overhead
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#10: Use HBM[高带宽内存]

• Use HBM to build massive L4 caches, size of 128MB - 1GB
• Tags of HBM cache

− 64B block: 1GB L4 requires 94MB of tags
p Issue: cannot place in on-chip caches

− 4KB block: 1GB L4 requires <1MB tag
p Issues: inefficient use of huge blocks, and high transfer overhead

• One approach (L-H, MICRO’2011):
− Each SDRAM row is a block index
− Each row contains set of tags and 29 data segments
− 29-set associative
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2KB row buffer = 32 cache lines
Data lines (29-ways)Tags

Miss
Map



Summary
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Flynn’s Taxonomy[分类]

• SISD: single instruction, single data
− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high 

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW
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MIMD[多指令多数据]

• Machines using MIMD have a number of processors that 
function asynchronously and independently
• Each processor fetches its own instructions and operates 

on its own data
• At any time, different processors may be executing 

different instructions on different pieces of data
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Multiprocessor[多处理器]

• Multi-processor
− Multiple CPUs tightly coupled to cooperate on a problem
− Each CPU may be a multicore design

• Multicore processor
− Multiprocessor where the CPU cores co-exist on a single 

processor chip (i.e., single CPU w/ multi cores)
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Why Multiprocessor?[使用的几个原因]

• Not that long ago, multiprocessors were expensive, exotic 
machines
• Reason #1: running out of ILP that we can exploit[ILP有限]

− Can’t get much better performance out of a single core that’s 
running a single program at a time

• Reason #2: power/thermal constraints[能耗/散热限制]
− Even if we wanted to just build fancier single cores at higher 

clock speeds, we’d run into power and thermal obstacles

• Reason #3: Moore’s Law[摩尔定律]
− Lots of transistors à what else are we going to do with them?
− Historically: use transistors to make more complicated cores 

with bigger and bigger caches
− But we just saw that this strategy has run into problems
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How to Keep Multiprocessor Busy?
• Single core processors exploit ILP

− Multiprocessors exploit TLP: thread-level parallelism

• What’s a thread?
− A program can have one or more threads of control
− Each thread has its own PC and own arch registers
− All threads in a given program share resources (e.g., memory)

• OK, so where do we find more than one thread?
− Option #1: Multi-programmed workloads

p Run multiple single-threaded programs at same time
− Option #2: Explicitly multithreaded programs

p Create a single program that has multiple threads that
work together to solve a problem
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A Fundamental Turn Toward Concurrency in Software
Your free lunch will soon be over. What can you do about it?
https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf


Thread-Level Parallelism[线程级并行]

• Thread-Level parallelism[并行]
− Have multiple program counters
− Uses MIMD model
− Targeted for tightly-coupled shared-memory multiprocessors

• Why TLP?[原因]
− Hard to further increase core performance (e.g., clock speed)
− Hard to find and exploit more ILP

• Implementation[实现]
− Multiprocessor[多处理器]

p Multicore processor[多核处理器]
p Multi-processor[多个处理器]

− Multithreaded processor[多线程处理器]
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Multithreading[多线程]

• Basic idea: processor resources are expensive and should 
not be left idle 
• On uniprocessor, multithreading occurs by time-division 

multiplexing[时分复用]
− Processor switches between different threads 
− Context switching happens frequently enough user perceives 

threads as running at the same time 

• Multithreaded processor: single CPU core that can 
execute multiple threads simultaneously

− Switching
− Simultaneous multithreading (SMT) à “hyperthreading” (Intel)
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Classifying Multiprocessors[分类]

• Interconnection network[互联网络]
− Bus
− Network

• Memory topology[内存]
− UMA
− NUMA

• Programming model[编程模型]
− Shared memory[共享内存]: every processor can name every 

address location
− Message passing[消息传递]: each processor can name only it’s 

local memory. Communication is through explicit messages
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https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf
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SMP[对称型]

• Symmetric (shared-memory) multiprocessors (SMPs)
− A.k.a., centralized shared-memory multiprocessors
− A.k.a., uniform memory access (UMA) multiprocessors
− Small number of cores (typically <= 8)
− Share a single centralized memory that all processors have 

equal access to, hence “symmetric”
p Uniform access latency
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DSM[分布式共享内存]

• Distributed shared memory (DSM)
− Memory distributed among processors
− Non-uniform memory access/latency (NUMA)

p The access time depends on the location of a data word in memory
− Processors connected via direct (switched) and non-direct 

(multi-hop) interconnection networks
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Shared Memory[共享内存]

• The term “shared memory” associated with both SMP 
and DSM refers to the fact that the address space is 
shared

− Communication among threads occurs through the shared 
address space

− Thus, a memory reference can be made by any processor to any 
memory location
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There Exist Caches
• Recall memory hierarchy, with cache being provided to 

shorten access latency
− Each core of multiprocessors has a cache (or multiple caches)

• Caching complicates the data sharing
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Data Caching[数据缓存]

• Private data: used by a single processor
• Shared data: used by multiple processors

− Essentially providing communication among the 
processors through reads and writes of the 
shared data

• Caching private data
− Migrated to cache, reducing access time
− No other processor uses the data (identical to 

uniprocessor)
• Caching shared data

− Replicated in multiple caches
p Reduced access latency, reduced contention

− Introduces a new problem: cache coherence
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Cache Coherence[缓存一致性]

• Processors may see different values of the same data
− The view of memory held by two different processors is through 

their individual caches, which, without any additional 
precautions, could end up seeing two different values

• Cache coherence problem[缓存一致性问题]
− Conflicts between global state (main memory) and local state 

(private cache)
− At time 4, what if processor B reads X?
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