
第16讲：TLP（2）
张献伟

xianweiz.github.io
DCS3013, 11/28/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Quiz Questions

• Q1: a cache: capacity is 16KB, 4-way associative, block is 
32B. Split the 32b address into tag, index, offset.

• Q2: for the above 16KB cache. How can you improve its 
performance? List 2 techniques.

• Q3: DRAM interface is 64b, chip is 4b wide and 4Gb, 
what’s the rank capacity?

• Q4: why HBM is of much higher bw than DDR/GDDR?

• Q5: list 3 advantages of NVM, compared to DRAM.
2

Higher associativity; critical word first; way prediction; victim …

#sets = 16KB/32B/4 = 128, [31-12][11-5][4-0]

(64b/4b) * 4Gb = 64Gb = 8GB

Much wider interface (stacking/closer to processor).

Non-volatile, higher capacity, lower cost, …

For remote attendees, plz email to zhangxw79@mail.sysu.edu.cn (ddl: 14:40).

mailto:zhangxw79@mail.sysu.edu.cn


Shared Memory[共享内存]

• The term “shared memory” associated with both SMP 
and DSM refers to the fact that the address space is 
shared

− Communication among threads occurs through the shared 
address space

− Thus, a memory reference can be made by any processor to any 
memory location

3



Cache Coherence[缓存一致性]

• Processors may see different values of the same data
− The view of memory held by two different processors is through 

their individual caches, which, without any additional 
precautions, could end up seeing two different values

• Cache coherence problem[缓存一致性问题]
− Conflicts between global state (main memory) and local state 

(private cache)
− At time 4, what if processor B reads X?

4

A
Cache

B
Cache

WT



A memory system is coherent, if
• A read by processor P to location X that follows a write by 

P to X, with no writes of X by another processor occurring 
between the write and the read by P, always return the 
value written by P

− Preserves program order①

5

X
Write 

Read



A memory system is coherent, if
• A read by processor P to location X that follows a write by 

P to X, with no writes of X by another processor occurring 
between the write and the read by P, always return the 
value written by P

− Preserves program order①

• A read by a processor to location X that follows a write by 
another processor to X returns the written value if the 
read and write are sufficiently separated in time and no 
other writes to X occur between the two accesses

− Defines the notion of what it means to have a coherent view of 
memory②

5

X
Write 

Read
X

Write 

Read



A memory system is coherent, if
• A read by processor P to location X that follows a write by 

P to X, with no writes of X by another processor occurring 
between the write and the read by P, always return the 
value written by P

− Preserves program order①

• A read by a processor to location X that follows a write by 
another processor to X returns the written value if the 
read and write are sufficiently separated in time and no 
other writes to X occur between the two accesses

− Defines the notion of what it means to have a coherent view of 
memory②

• Writes to the same location are serialized; that is, two 
writes to the same location by any two processors are 
seen in the same order by all processors

− Write serialization③
5

X
Write 

Read
X

Write 

Read

X
Write 

Write



Consistency also Matters[内存一致性]

• The three properties ①②③ are sufficient to ensure 
coherence
• However, when a written value will be seen is also 

important
− A write of X on one processor precedes a read of X on another 

processor by a very small time, it may be impossible to ensure 
that the read returns the value of the data written, since the 
written data may not even have left the processor at that point

• Memory consistency: when a written value must been 
seen by a reader

6

A and B are initially both 0

What this program can output?
o 01: (1)(2)(3)(4) or (3)(4)(1)(2)
o 11: (1)(3)(2)(4) or (1)(3)(4)(2)
o 00? 

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

X
Write 

Read

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Consistency also Matters[内存一致性]

• The three properties ①②③ are sufficient to ensure 
coherence
• However, when a written value will be seen is also 

important
− A write of X on one processor precedes a read of X on another 

processor by a very small time, it may be impossible to ensure 
that the read returns the value of the data written, since the 
written data may not even have left the processor at that point

• Memory consistency: when a written value must been 
seen by a reader

6

A and B are initially both 0

What this program can output?
o 01: (1)(2)(3)(4) or (3)(4)(1)(2)
o 11: (1)(3)(2)(4) or (1)(3)(4)(2)
o 00? 

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

X
Write 

Read

A=0: (4)->(1)
B=0: (2)->(3)

(4)->(1)->(2)->(3) è (4)
SC

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Coherence vs. Consistency[对比]

• Coherence[缓存一致性]
− Defines what values can be returned by a read
− All reads by any processor must return the most recently 

written value
− Writes to the same location by any two processors are seen in 

the same order by all processors

• Consistency[内存一致性]
− Determines when a written value will be returned by a read
− Consistency insures that writes to different locations will be 

seen in an order that makes sense, given the source code
− If a processor writes location A followed by location B, any 

processor that sees the new value of B must also see the new 
value of A

7



Enforcing Coherence[保证一致性]

• Coherent caches provide
− Migration: movement of data[搬运]

p A data item can be moved to a local cache and used there in a 
transparent fashion

− Replication: multiple copies of data[备份]
p Make a copy of the data item in the local cache, so that shared data can 

be simultaneously read

• Whose responsibility? Software?
− Can programmer ensure coherence if caches invisible to sw?
− What if the ISA provided a cache flush instruction?

p FLUSH-LOCAL A: flushes/invalidates the cache block containing address 
A from a processor’s local cache

p FLUSH-GLOBAL A: flushes/invalidates the cache block containing 
address A from all other processors’ caches

p FLUSH-CACHE X: flushes/invalidates all blocks in cache X

8



Enforcing Coherence (cont.)
• Software solutions are of high overheads

− And, programming burden

• Multiprocessors adopt a hardware solution to maintain 
coherent caches[硬件方案]

− Supporting the migration and replication is critical to 
performance in accessing shared data

• For the example,
− Invalidate all other copies of X when A writes to it

9

A
Cache

B
Cache

WT



Enforcing Coherence (cont.)
• Software solutions are of high overheads

− And, programming burden

• Multiprocessors adopt a hardware solution to maintain 
coherent caches[硬件方案]

− Supporting the migration and replication is critical to 
performance in accessing shared data

• For the example,
− Invalidate all other copies of X when A writes to it

9

A
Cache

B
Cache

WT

✗



Enforcing Coherence (cont.)
• Software solutions are of high overheads

− And, programming burden

• Multiprocessors adopt a hardware solution to maintain 
coherent caches[硬件方案]

− Supporting the migration and replication is critical to 
performance in accessing shared data

• For the example,
− Invalidate all other copies of X when A writes to it

9

A
Cache

B
Cache

WT

✗
How do you know which copies to invalidate?



Coherence Protocols[缓存一致性协议]

• Cache coherence protocols: the rules to maintain 
coherence for multiple processors

− Key is to track the state of any sharing of a data block

• Two classes of protocols
− Snooping[窥探]

p Each core tracks sharing status of each block
− Directory based[基于目录]

p Sharing status of each block kept in one location

10



Snooping Coherence Protocols[窥探]

• Write invalidation protocol[写无效]
− Ensure that a processor has exclusive access to a data item 

before it writes that item
− Exclusive access ensures that no other readable or writable 

copies of an item exist when the write occurs
p All other cached copies of the item are invalidated (👉 that’s the name)

• Write update/broadcast protocol[写更新]
− Update all the cached copies of data item when that item is 

written
− Must broadcast all writes to shared cache lines, and thus 

consumes considerably more bandwidth

• Write invalidation protocol is by far the most common
− We’ll focus on it

11



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

12



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

12

Neither cache initially holds X and the value of X in memory is 0



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

12

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

12

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

12

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache

Processor A writes X, invalidating the copy on B



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

12

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache

Processor A writes X, invalidating the copy on B

Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory


