
第17讲：TLP（3）
张献伟

xianweiz.github.io
DCS3013, 11/30/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Review Questions
• data coherence issue?

• coherence vs consistency?

• why let hardware enforce coherence?

• two classes of protocols?

• snooping coherence protocol?

• write invalidation?

2

Cache vs memory, what vs when, same vs different locations

Snooping, directory.

Each core tracks sharing status of each block.

Processors may see different values of the same data.

More efficient; lower programming burden

Invalidate all other copies before writing.



Snooping Coherence Protocols[窥探]

• Write invalidation protocol[写无效]
− Ensure that a processor has exclusive access to a data item 

before it writes that item
− Exclusive access ensures that no other readable or writable 

copies of an item exist when the write occurs
p All other cached copies of the item are invalidated (👉 that’s the name)

• Write update/broadcast protocol[写更新]
− Update all the cached copies of data item when that item is 

written
− Must broadcast all writes to shared cache lines, and thus 

consumes considerably more bandwidth

• Write invalidation protocol is by far the most common
− We’ll focus on it

3



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

4

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache

Processor A writes X, invalidating the copy on B

Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory



Snoopy Implementation[窥探实现]

• Key is to use bus, or another broadcast medium, to 
perform invalidates
• To perform an invalidate

− The processor simply acquires bus access and broadcasts the 
address to be invalidated on the bus[获得总线，广播地址]

− All processors continuously snoop on the bus, watching the 
addresses[窥探总线，收听地址]

− The processors check whether the address on the bus is in their 
cache. If so, the corresponding data in the cache is invalidated[
核对地址，作废数据]

5



Snoopy Implementation (cont.)
• When a write to a block that is shared occurs,[要写共享块]

− The writing processor must acquire bus access to broadcast its 
invalidation

• If two processors attempt to write shared blocks at the 
same time,[两个处理器想同时写到共享块]

− Their attempts to broadcast an invalidate operation will be 
serialized when they arbitrate for the bus[串行‘无效’操作]

− The first processor to obtain bus access will cause any other 
copies of the block it is writing to be invalidated[作废数据]

− If the processors were attempting to write the same block, the 
serialization enforced by the bus also serializes their writes[串行
写操作]

6



Snoopy Implementation (cont.)
• Locate a data item when a cache miss occurs,[找到数据]

− For write-through cache, easy to find the recent value[写通]
p All written data are always sent to the memory

− For write-back cache, harder to find the most recent value[写回]
p The newest value can be in a private cache rather than in the shared 

cache or memory

• Happily, write-back caches can use the same snooping 
scheme both for cache misses and for writes[同样窥探]

− Each processor snoops every address placed on the shared bus[
每个处理器窥探每个地址]

− If a processor finds that it has a dirty copy of the requested 
cache block, it provides that block in response to the read 
request and causes the memory (or lower-level cache) access to 
be aborted[某个处理器拥有脏数据à响应]

7



Snoopy Implementation (cont.)
• Normal cache tags can be used to implement snooping, 

and the valid bit for each block makes invalidation easy to 
implement

− Read misses, whether generated by an invalidation or by other 
events, are simply relying on the snooping capability

− For writes, we’d like to know whether any other copies of the 
block are cached, because[是否独一份？]

p If no other copies, then the write need not be placed on the bus

• Add an extra bit to track whether a block is shared
− The bit is used to decide whether a write must generate an 

invalidate
p Write to shared: invalidate, then mark block as “exclusive”
p Sole copy of a cache block is normally called “owner”

8



MSI Protocol
• Invalidation protocol for write-back caches
• Each data block can be[数据块状态]

− Uncached: not in any cache
− Clean in one or more caches and up-to-date in memory, or
− Dirty in exactly one cache

• Correspondingly, we record the coherence state of each 
block in a cache as[一致性状态]

− Invalid: block contains no valid data
− Shared: a clean block (can be shared by other caches), or
− Modified/Exclusive: a dirty block (cannot be in any other cache)

9

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any 
other cache and that a read request gets the most updated data

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Dirty in more caches???

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


MSI Protocol (cont.)
• A read miss to a block in a cache, C1, generates a bus 

transaction[读不命中]
− If another cache, C2, has the block “modified”, it has to write back the 

block before memory supplies it[其他cache有新数据]
p C1 gets data from the bus and the block becomes “shared” in both caches

• A write hit to a shared block in C1 forces an “Invalidate”[写命中-’
共享’]

− Other caches that have the block should invalidate it – the block then 
becomes “modified” in C1[其他cache作废数据]

• A write hit to a modified block does not generate “Invalidate” 
or change of state[写命中-’修改’]
• A write miss (to an invalid block) in C1 generates a bus 

transaction[写不命中]
− If a cache, C2, has the block as “shared”, it invalidates it
− If a cache, C2, has the block in “modified”, it writes back the block and 

changes it state in C2 to “invalid”
− If no cache supplies the block, the memory will supply it
− When C1 gets the block, it sets its state to “modified” 

10
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


Example
• Assume that

− Blocks B1 and B2 map to the same cache location L
− Initially neither B1 or B2 is cached
− Block size = one word

11

L = invalid L = invalid

P1 writes 10 to B1

P1 reads B1

P2 reads B1

P2 writes 20 to B1

P2 writes 40 to B2

P1 reads B1

Event In P1’s cache In P2’s cache

(write miss)

(read hit)

(read miss) B1 is written back

(write hit)
Put invalidate B1 on bus

(write miss)
B1 is written back

(read miss)

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (shared) L <- B1 = 10 (shared)

L = invalid

L = invalid
L <- B1 = 20 (modified)
L <- B2 = 40 (modified)
L <- B2 = 40 (modified)L <- B1 = 20 (shared)

P1
Cache

P2
Cache

B1 B2

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


Example (cont.)

12

P1 writes 30 to B1

P2 writes 50 to B1

P1 reads B1

P2 reads B2

P1 writes 60 to B2

Event In P1’s cache In P2’s cache

(write hit)

(write miss)

(read miss)

(read miss)
(write miss)

L <- B1 = 30 (modified)

L <- B1 = 50 (shared) L <- B1 = 50 (shared)
L <- B2 = 40 (shared)

L <- B2 = 60 (modified)

L <- B2 = 40 (modified)L <- B1 = 20 (shared)
Put invalidate B1 on bus L <- B2 = 40 (modified)

L = invalid
B1 is written back B2 is written back

L <- B1 = 50 (modified)
B1 is written back

L <- B1 = 50 (shared)
L = invalid

• When an invalidate or a write miss is placed on the bus, any cores 
whose private caches have copies of the block invalidate it
• For a write miss, if the block is exclusive in just one private cache, 

that cache also writes back the block
− Otherwise, the data can be read from the shared cache or memory

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


The Protocol

13



Formal Specification[形式化定义]

• Finite state transition diagram for a single private cache 
block[状态转换图]

− Transitions based on processor and bus requests, respectively

14

Invalid/Exclusive à Shared: a read happens
Invalid/Shared à Exclusive: a write happens
Shared/Exclusive à Invalid: write-invalidation



MSI Issues & Extensions[扩展]

• Complications for the basic MSI protocol
− Operations are not atomic[非原子操作]

p E.g. detect miss, acquire bus, receive a response
p Creates possibility of deadlock and races

− One solution: processor that sends invalidate can hold bus until 
other processors receive the invalidate

• MSI: always invalidate before writing
• Extensions

− Adding additional states and transitions, which optimize certain 
behaviors, possibly resulting in improved performance

− Two common extensions
p MESI: new ‘Exclusive’
p MOESI: new ‘Exclusive’ and ‘Owner’

15

M S I

M E IS

M E IO S



MESI and MOESI
• MESI adds state Exclusive

− Shared: Exclusive (only one cache) + Shared (2 or more caches)
− Indicate when a cache block is resident only in a single cache

but is clean[其他cache都没有]
− A subsequent write to a block in E state by the same core need 

not acquire bus access or generate an invalidate

• MOESI further adds state Owner
− Shared: Shared Modified (O) + Shared Clean (S)
− Indicate that the associated block is owned by that cache and 

out-of-date in memory[独有，且比内存新]
− In MSI/MESI, when sharing a block in M state, the state is 

changed to S, and the block must be written back to memory
− In MOESI, the block can be changed from M to O without 

writing it to memory
16

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

M E IS

M E IO S

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf


Performance of SMPs: Misses
• In a multicore using a snooping coherence protocol, 

overall cache performance is a combination of
− The behavior of uniprocessor cache miss traffic
− The traffic caused by communication, resulting in invalidations 

and subsequent cache misses

• Three C’s classification of uniprocessor misses
− Capacity(容量), compulsory(冷启动), conflict(地址冲突)

• Coherence misses caused by interprocessor
communication[一致性缺失]

− True sharing misses: directly arise from the sharing of data 
among processors

− False sharing misses: the miss would not occur if the block size 
were a single word

17



Performance of SMPs: Misses (cont.)
• True sharing misses, in an invalidation-based protocol

− The first write by a processor to a shared block causes an 
invalidation to establish ownership of that block (invalidate all)

− When another processor tries to read a modified word in that 
block, a miss occurs and the resultant block is transferred 
(invalidated by the store)

• False sharing misses
− Caused by the coherence alg. with a single valid bit per block
− Occurs when a block is invalidated (and a subsequent reference 

causes a miss)
p Some word in the block, other than the one being read, is written into

18

Time P1 P2

1 Write x1

2 Read x2

x1 x2 x1 x2

False sharing miss: x2 was invalidated by ‘write x1’ in P1

Shared:


