T 5 AL AR

R 4

NN

171k TLP (3)

l—a
|—a

Xlanwelz.git

5

hub.io

DCS3013, 11/30/2022

Dhge

https://xianweiz.github.io/

Review Questions

* data coherence issue?
Processors may see different values of the same data.

e coherence vs consistency?
Cache vs memory, what vs when, same vs different locations

why let hardware enforce coherence?
More efficient; lower programming burden

* two classes of protocols?

Snooping, directory.
* snooping coherence protocol?

Each core tracks sharing status of each block.
e write invalidation?

Invalidate all other copies before writing.

ISCE

Snooping Coherence Protocols[#i#k]

* Write invalidation protocol[E Jtx%]
— Ensure that a processor has exclusive access to a data item
before it writes that item

— Exclusive access ensures that no other readable or writable
copies of an item exist when the write occurs
o All other cached copies of the item are invalidated (=~ that’s the name)

* Write update/broadcast protocol[’5 5 #7]

— Update all the cached copies of data item when that item is
written

— Must broadcast all writes to shared cache lines, and thus
consumes considerably more bandwidth

* Write invalidation protocol is by far the most common
- We’'ll focus on it

5 E ‘ [

Write Invalidation Protocol[E a1

* Write invalidate
— On write, invalidate all other copies
— Use bus itself to serialize

* Example

- Invalidation protocol working on a snooping bus for a single
block (X) with write-back caches

Contents of processor Contents of processor Contents of memory

Processor activity Bus activity A's cache B's cache location X
| Neither cache initially holds X and the value of X in memoryis0 0 |

Processor A reads X Cache miss 0 0
for X Processor A reads X, migrating from memory to the local cache

Processor B reads X Cache miss 0 0 0

for X Processor B reads X, migrating from memory to the local cache
Processor A writes a Invalidation 1 . o 0
1to X for X Processor A writes X, invalidating the copy on B

Processor B reads X Cache miss | , 1) 1
for X Processor B reads X, A responds with the value canceling the mem response

and updates both B’s cache and memory

4 Dhge

Snoopy Implementation([#iix sz

* Key is to use bus, or another broadcast medium, to
perform invalidates

e To perform an invalidate

— The processor simply acquires bus access and broadcasts the
address to be invalidated on the bus[3k75 5.2k, | #%H#hk]

— All processors continuously snoop on the bus, watching the
addresses[FIiR 2k, YT Hihk)

— The processors check whether the address on the bus is in their
cache. If so, the corresponding data in the cache is invalidated|

B, (FIEEUR] ot mor mom 4

Snooper ¢ | Snooper Snooper Snooper

D

Snoopy Implementation (cont.)

* When a write to a block that is shared occurs,[Z5 5k

— The writing processor must acquire bus access to broadcast its
invalidation

* If two processors attempt to write shared blocks at the
same time, [~ 4b B 25 A8 [F] i 5 31 3L = B

- Their attempts to broadcast an invalidate operation will be
serialized when they arbitrate for the bus[# 1T ‘T3’ #4E]

— The first processor to obtain bus access will cause any other
copies of the block it is writing to be invalidated[fE Ik Z#E]

- If the processors were attempting to write the same block, the
serialization enforced by the bus also serializes their writes[H 1T

g7 L=
5 #AF]

R f
(5) F X % ey krﬂq
\Z)

& SUN YAT-SEN UNIVERSITY ﬂ' ‘

Snoopy Implementation (cont.)

* Locate a data item when a cache miss occurs, [#% F| %]

- For write-through cache, easy to find the recent value[5i#]
o All written data are always sent to the memory
— For write-back cache, harder to find the most recent value[5 [7]]

o The newest value can be in a private cache rather than in the shared
cache or memory

* Happily, write-back caches can use the same snooping

scheme both for cache misses and for writes[[F £ #1 K]
— Each processor snoops every address placed on the shared bus|
BN AP A BEAR RS]
— If a processor finds that it has a dirty copy of the requested
cache block, it provides that block in response to the read
request and causes the memory (or lower-level cache) access to

be aborted [4b 3 A5 W > 1) —

Main Memory

Snoopy Implementation (cont.)

* Normal cache tags can be used to implement snooping,
and the valid bit for each block makes invalidation easy to
implement

— Read misses, whether generated by an invalidation or by other
events, are simply relying on the snooping capability

- For writes, we’d like to know whether any other copies of the
block are cached, because[/& & —17?]

o If no other copies, then the write need not be placed on the bus

e Add an extra bit to track whether a block is shared

— The bit is used to decide whether a write must generate an
invalidate
o Write to shared: invalidate, then mark block as “exclusive”
o Sole copy of a cache block is normally called “owner”
Em

s ‘V’ L CCCCCC J L CCCCCC J CCCCCC t cccccc
AP
C A Sncoper | | Snooper Snooper
T
\%, £
SUN YAT-SEN UNIVERSITY

Main Memory

MSI Protocol

* Invalidation protocol for write-back caches
e Each data block can be[Z{E H R A

— Uncached: not in any cache
— Clean in one or more caches and up-to-date in memory, or
— Dirty in exactly one cache Dirty in more caches???

e Correspondingly, we record the coherence state of each
block in a cache as[— &4 IR AT
— Invalid: block contains no valid data
— Shared: a clean block (can be shared by other caches), or
— Modified/Exclusive: a dirty block (cannot be in any other cache)

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any
other cache and that a read request gets the most updated data

\ ’pﬂuL
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf 4

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

MSI Protocol (cont.)

* A read miss to a block in a cache, C1, generates a bus
transaction[iE Ay H]
— |f another cache, C2, has the block “modified”, it has to write back the
block before memory supplies it[Hftcached Hr £]
o C1 gets data from the bus and the block becomes “shared” in both caches
. étvylite hit to a shared block in C1 forces an “Invalidate” [5 #yH-

Y]

— Other caches that have the block should invalidate it — the block then
becomes “modified” in C1[HfhcachelE &K EHE]

* A write hit to a modified block does not generate “Invalidate”
or change of state[5y - 1Z4]

* A write miss (to an invalid block) in C1 generates a bus
transaction[5 Ay H7]
— If a cache, C2, has the block as “shared”, it invalidates it

— If a cache, C2, has the block in “modified”, it writes back the block and
changes it state in C2 to “invalid”

— If no cache supplies the block, the memory will supply it
- When C1 gets the block, it sets its state to “modified”

\ ’pﬂuL
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf 4

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Example

e Assume that

— Blocks B1 and B2 map to the same cache location L
— Initially neither B1 or B2 is cached

— Block size = one word

. .
P1 P2
Cache Cache
Bl B2

e e Jicimald

P1 writes 10 to B1 (write miss)
P1 reads B1 (read hit)
P2 reads B1 (read miss)
P2 writes 20 to B1 |

P2 writes 40 to B2 |

P1 reads B1

write hit)
write miss)

(read miss)

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (modified)

B1 is written back

L <- B1 =10 (shared)

L = invalid

L <- B1 =10 (shared)

Put invalidate B1 on bus

L = invalid L <- B1 = 20 (modified)
. . B1 is written back
L = invalid L <- B2 = 40 (modified)

L <- B1 =20 (shared) L <- B2 = 40 (modified)

D

11

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Example (cont.)

* When an invalidate or a write miss is placed on the bus, any cores
whose private caches have copies of the block invalidate it

* For a write miss, if the block is exclusive in just one private cache,
that cache also writes back the block

— Otherwise, the data can be read from the shared cache or memory

_ L <- B1 = 20 (shared) L <- B2 = 40 (modified)

P1writes 30to BL (write hit) [< Bl =30 (modified) L <-B2=40 (modified)
. : . B1 is written back B2 is written back

P2 writes 50 to B1 (write miss) = invalid L <- B1 = 50 (modified)

P1 reads B1 (read miss) L <- B1 = 50 (shared) Elf_wéiitegtga‘(shared)

P2 reads B2 (read miss) L <- B1 =50 (shared) L <- B2 =40 (shared)

P1 writes 60 to B2 (write miss) L <- B2 = 60 (modified) L = invalid

12 IR
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

The Protocol

Fux 2

SUN YAT-SEN UNIVERSITY

State of Type of
addressed cache

Request Source cache block action Function and explanation

Read hit] Processor Shared or Normal hit Read data in local cache.

modified

Read Processor Invalid Normal miss Place read miss on bus.

miss

Read Processor Shared Replacement Address conflict miss: place read miss on bus.

miss

Read Processor Modified Replacement Address conflict miss: write-back block: then place read

miss miss on bus.

Write hitf Processor Modified Normal hit Write data in local cache.

Write hitf Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, because they do not fetch the
data but only change the state.

Write Processor Invalid Normal miss Place write miss on bus.

miss

Write Processor Shared Replacement Address conflict miss: place write miss on bus.

miss

Write Processor Modified Replacement Address conflict miss: write-back block: then place write

miss

miss on bus.

Read Bus Shared No action Allow shared cache or memory to service read miss.
miss

Read Bus Modified Coherence Attempt to read shared data: place cache block on bus,
miss write-back block, and change state to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.
Write Bus Shared Coherence Attempt to write shared block: invalidate the cache block.
miss

Write Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-
miss back the cache block and make its state invalid in the local

cache.

13

Formal SpecificationEzkE X

* Finite state transition diagram for a single private cache
block PR 4% 46 4]
— Transitions based on processor and bus requests, respectively

‘\ ciu‘ read hit
(>

l' Shared
(read only)

Write mess for this block —

Invalidate for
this block

Shared
\ (read only)

[Invalid CPU read
Place read miss on bus

CPU

D=

CPU write ‘\ / miss) read
Place read _/ e
miss on bus

Place write
miss onbu
abortmemory
access

Write-back block;

Write miss
for this block 1

Cache state transitions /
based on requests from CPU . [Exclusive
\ (read'write)

\ CPU write miss

/\ / _/' Write-back cache block
T TR Invalid/Exclusive = Shared: a read happens
CPU read hit Invalid/Shared = Exclusive: a write happens

Shared/Exclusive = Invalid: write-invalidation

@) Tux g 14 Dige

MSI Issues & Extensions[y &]

* Complications for the basic MSI protocol

— Operations are not atomic[3EJ& T #1E]
o E.g. detect miss, acquire bus, receive a response
o Creates possibility of deadlock and races

— One solution: processor that sends invalidate can hold bus until
other processors receive the invalidate

* MSI: always invalidate before writing

¢ EXte nSiO nS Is it necessary?

- Adding additional states and transitions, which optimize certain
behaviors, possibly resulting in improved performance

— Two common extensions M S |
o MESI: new ‘Exclusive’
o MOESI: new ‘Exclusive’ and ‘Owner’ M E S |

M E | :
[m’ﬁ“ﬁ

MESI and MOESI

 MESI adds state Exclusive M E S |
— Shared: Exclusive (only one cache) + Shared (2 or more caches)

— Indicate when a cache block is resident only in a single cache
but is clean[Hfthcache#f]

— A subsequent write to a block in E state by the same core need
not acquire bus access or generate an invalidate

e MOESI further adds state Owner M EOS I

— Shared: Shared Modified (O) + Shared Clean (S)

— Indicate that the associated block is owned by that cache and
out-of-date in memory[Jf, HEHAFEHT]

— In MSI/MESI, when sharing a block in M state, the state is
changed to S, and the block must be written back to memory

- In MOESI, the block can be changed from M to O without
writing it to memory

»‘vi’@“ﬁ

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

Performance of SMPs: Misses

* In a multicore using a snooping coherence protocol,
overall cache performance is a combination of
— The behavior of uniprocessor cache miss traffic
— The traffic caused by communication, resulting in invalidations

and subsequent cache misses
* Three C’s classification of uniprocessor misses
— Capacity(# &), compulsory(¥4 5 3h), conflict(Muhik i %)

* Coherence misses caused by interprocessor
communication[— & Hr 2]

— True sharing misses: directly arise from the sharing of data
among processors

— False sharing misses: the miss would not occur if the block size
were a single word

“‘ \‘ k)
@ tuxt INCE

Performance of SMPs: Misses (cont.)

* True sharing misses, in an invalidation-based protocol

— The first write by a processor to a shared block causes an
invalidation to establish ownership of that block (invalidate all)

- When another processor tries to read a modified word in that
block, a miss occurs and the resultant block is transferred
(invalidated by the store)

* False sharing misses
— Caused by the coherence alg. with a single valid bit per block

— Occurs when a block is invalidated (and a subsequent reference
causes a miss)
o Some word in the block, other than the one being read, is written into

Shared:

Time P1 P2
1 Write x1

Read x2 False sharing miss: x2 was invalidated by ‘write x1” in P1

»‘vi’@“ﬁ

