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Review Questions

e Data X is shared in processors A and B. Steps for A to
write X? (note: cache is write-back)
Acquires bus, sends invalidate, then updates X (shared = modified)
* Next, processor B reads X. What will happen?
Places a miss on bus, A responds data and also writes back to mem.
* Possible to have X being modified in both A and B?
No way. Modified is exclusive, writes are serialized on bus.

* MSI protocol?
Modified/Shared/Invalid. Invalidation protocol for write-back S.

* How does MESI improves MSI?
Splits S into E(1 share) and S (2+ shares), to avoid unnecessary inv.

* False sharing miss?
No real data sharing, can be avoided with 1B blocks.




Performance of SMPs: Misses (cont.)

* True sharing misses, in an invalidation-based protocol

— The first write by a processor to a shared block causes an
invalidation to establish ownership of that block (invalidate all)

- When another processor tries to read a modified word in that
block, a miss occurs and the resultant block is transferred
(invalidated by the store)

* False sharing misses
— Caused by the coherence alg. with a single valid bit per block

— Occurs when a block is invalidated (and a subsequent reference
causes a miss)
o Some word in the block, other than the one being read, is written into

Shared: x1 x2 Shared: x1 X2
Time P1 P2 Time P1 P2
1 Write x1 1 Write x1

Read x1 2 Read x2

2
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w dfesfraring miss: x1 was invalidated by ‘write x1’ in P1  False sharing miss: x2 was invalidated by ‘write H’ NP1



Performance of SMPs: Result

* Coherence misses:
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Performance of SMPs: Result (cont.)
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Limits of Snooping Protocol[Js k]

* Snooping cache coherence protocols rely on broadcasting
coherence info to all processors over the chip inter-
connect[fkii T %]

— Cache miss occurred, triggering cache communicated with all
other caches

Processor Processor Processor Processor
Local Cache Local Cache Local Cache Local Cache
( Interconnect )
Memory 1/0
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Limits of Snooping Protocol (cont.)

* On a non-uniform memory access (NUMA) shared memory
system, regions of memory are located near the processors

increases scalability[dE— 2N A7 V5 1]
- Yield higher aggregate bandwidth and reduced latency

* NUMA does little good if the coherence protocol can’t be
scaled

— Processor can access nearby memory, but need to broadcast to
all other processors (overhead)

Processor Processor Processor Processor
Local Cache Local Cache Local Cache Local Cache

Memory Memory Memory Memory

( Interconnect )

/ IRE
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Scaling Cache Coherence

* One possible solution: hierarchical snooping[% J= %]
— Use snooping coherence at each level

Processor Processor Processor Processor Processor Processor Processor Processor
| Lol Cache |loalCache || || LocalCache || || Localcache | | Local Cache || || Local Cache ' Local Cache Local Cache |
[ | | | | | | [
( Interconnect ) ( Interconnect )
( Interconnect )
Memory
— Advantages

o Relatively simple to build (already have to deal with similar issues due to
multi-level caches)

— Disadvantages
o The root of network may become a performance bottleneck
o Larger latencies than direct communication
o Doesn’t apply to more general network topologies

Fuk# 8 0hig:
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Scalable Coherence using Directories

* To avoid broadcast by storing info about status of the line
in one place: directory[H 3&]

— The directory entry for a cache line contains information about
the state of the cache line in all caches[fR F#IKES]

— Caches look up information from the directory as necessary[%: 1]
H ]

— Cache coherence is maintained by point-to-point messages
between the caches (not by broadcast mechanisms)[ 5% fiE(E]

* Theoretical advantages of directory-based approach
— The root of network won’t be the performance bottleneck

— Can apply to more general network topologies(e.g. meshes,
cubes)

) )riﬁi
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Simple Directory Protocol Impl.

P presence bits: indicate whether processor P
hasline in its cache
Processor
Dirty bit: indicates line is dirty
in one of the processors’ caches
Local Cache
One directoryentryper —— ([ [T T T T TTT]
cachelineof memory | ...} Directory
One cache line of memory — M8 [
Memory
[ Scalable Interconnect

(PR v
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Distributed Directory: Partition[4[X]

Processor0 Processor 1 Processor 2
Local Cache Local Cache { Local Cache

Directory Directory Directory
N = e o o R R | ) = e P = [ = e
ol I | DEDJ | |}
e e Ry o
Mem ory ----Mem 5.'@'.'.'.'.' "" Mem ory
""""""""""
-

Scalable Interconnect ]

* Directory partition is co-located with memory it describes

“Home node” of a line: node with memory holding the
corresponding data for the line

— For example: node 0 is the home node of ,hode 1is
the home node of blue line

“Requesting node”: node containing processor requesting
line
I‘i‘i““ﬁ http://15418.courses.cs.cmu.edu/sp]r-ii-g2017/lecture/directorvcoherence w"'ﬂi
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Example: read miss to clean line

* Read from main memory by processor O of blue line (not
dirty)

Processor 0 Processor 1 Processor 2
Local Cache Local Cache Local Cache
Directory A Directory Directory
o = . o e . o e
= e e i A I 1 O (nl mm) Ry - — 5] o o =
Memory Memory Memory
"""""""""" [peatestegssitaaiiat|
[ Scalable Intercon )
1. Request: read miss msg

2. Response (line of data from memory)

* Read miss message sent to home node of requested line

* Home directory checks entry for line

— If dirty bit of line is OFF, respond with contents from memory, set
presence[0] to true (to indicate line is cached by processor 0)

fﬁxﬁ 12 W%E"?
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Example: read miss to dirty line

* Read from main memory by processor O of blue line
— Dirty and its content is in P2’s cache

Processor 0 Processor 1 Processor 2
Local Cache Local Cache

Directory A A Directory Directory A
o O e O e
= = B B O O o .:- o — R R
......................................... < beccccscccsccccsscsnsccnns

Memory ----Memory---- Memory
"""""""""" 1
p

Scalable Interconnect ]
§
1. Request: read miss msg 5. Response: data-+dir revision
2. Response: owner id
3. Request: data
4. Response: data

F 0k & 13
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Example: read miss to dirty line (cont.)

Processor 0 Processor 1 Processor2
 loalCache | | LoalCache J | lealGade |
f ] L . (Esssm—y)
Directory 4 4 Directory Directory &11
weest L B - 'I'"'::”I....i—— e pg ey
e OW - 6&:::: ........... or,
"""""""""" [rEsss————
( Scalable ]|
1. Request: read miss msg 5. Response: data-dir revision
2, Response: owner 'id
3. Request: data

4.Response: data

1. If dirty bit is ON, data must be sourced by another processor

2. Home node responds with id of line owner

3. Requesting node requests data from owner

4. Owner responds to requesting node
o changes state in cache to SHARED (read only)

5. Owner also responds to home node, home clears dirty

@ o updates presence bits, updates memory

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence
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Example: write miss

* Write to memory by processor O
— Line is clean, but resident in P1’s and P2’s caches

Processor 0 Processor 1 Processor 2
s s
Directory AA A Directory A Directory A

caerst=en 111101 2 | W -:f: R — o i e |
-Memory--———{|| [ —-Memory---——+1 | | |- Memory -

p

Scalable Intercohrect
§

1. Request: write miss msg

2. Response: sharer ids + data

3. Request: invalidate (2 msgs)

4b. Response: ack from P1

4a. Response: ack from P2

@ 1122 s
Rez? s urserunmairy http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence



http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: write miss (cont.)

Processor 0 Processor 1 Processor 2
e =
Directory Ar A A Directory A Directory y
== - = = R
g = i o e e s O 1 R 2 | - il
SR e A | | B et e I | .
[ Scalable J
1. Request: write miss msg
2. Response: sharer ids + data

3. Request: invalidate (2 msgs)

4b. Response: ack from P1

4a. Response: ack from P2

1. Requesting node sends the write miss to home node

2. Home node responds with ids of nodes containing this data (sharer)
and data

3. Requesting sharer to invalidate corresponding data

4. Get response from P1 and P2

—~ . O After receiving both invalidation acks, PO can write A
Fax® 1o . IR
e http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence
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Pros of Directory Protocol

* On reads, directory tells requesting node exactly where to
get the line from
— Either from home node (if the line is clean)
— Or from the owning node (if the line is dirty)

— Either way, retrieving data involves only point-to-point
communication

* On writes, the advantages of directories depends on the
number of sharers

- In the limit, if all caches are sharing data, all caches must be
communicated with (just like broadcast in a snooping protocol)

2 e ; .
&) T K & 17 g

954 WO v Ty http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence



http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Cons of Directory Protocol

 Full bit vector directory representation

P
* One presence bit per node [T 117

 Storage proportional to P * M

- P = number of nodes (e.g., processors)
— M = number of lines in memory

e Storage overhead rises with P
- Assume 64 byte cache line size (512 bits)
— 64 nodes (P=64) -> 12.5% overhead
— 256 nodes (P=256) -> 50% overhead
- 1024 nodes (P=1024) -> 200% overhead

L8 IRE
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Reducing Storage Overheads

* Optimizations on full-bit vector scheme
— Increase cache line size (reduce M term)
— Group multiple processors into a single directory “node”
(reduce P term)

o Need only one directory bit per node, not one bit per processor

o Hierarchical: could use snooping protocol to maintain coherence among
processors in a node, directory across nodes

P
HEEEESE

* Two alternative schemes
— Limited pointer schemes (reduce P)
— Sparse directories (reduce M)

fii‘.ﬁ% 19 W:G 3
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Limited Pointer Schemes (LPS)# iR ig4t

* Since data is expected to only be in a few caches at once,
storage for a limited number of pointers per directory entry
should be sufficient (only need a list of the nodes holding a

valid copy of the line)[ %8 &% /M ia
— Example:
o Ina 1024 processor system

3

N IEE]

o Full bit vector scheme needs 1024 bits per line

o Using limited pointer scheme, 1024 bits can store approximately 100
pointers to nodes holding the line (log(1024) = 10 bits per pointer)

o In practice, we can get by with far less than this (20-80 principle)

90

- “”r” Ocean
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40 1
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o123 4567z EeAaREAES 30883
S Ne g X = ARSI ORS
Graphs plot histogram of number of sharers of a line at the time of a write _
@ taxs 20 it
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A}

Managing Overflow in LPS[& ¥ % 1)

If too many pointers (sharers) are required...

Fallback to broadcast (if broadcast mechanism exists)[) %]
— When more than max number of sharers, revert to broadcast

* If no broadcast mechanism present on machine[|®1E]
— Don’t allow more than a max number of sharers

— On overflow, newest sharer replaces an existing one (must
invalidate line in the old sharer’s cache)

* Coarse vector fallback[fH ki ]
— Revert to 'bit' vector representation
— Each bit corresponds to K nodes
— On write, invalidate all nodes a bit corresponds to

OV ; .
fi§_§ » !'G :
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Summary of Limited Pointer Schemes

* LPS reduces directory storage overhead caused by large P
— By adopting a compact representation of a list of shares

* But do we really need to maintain storage for a list for
each cache-line chunk of data in memory?

* Key observation: the majority of memory is NOT resident
in cache. And to carry out coherence protocol the system
only needs sharing information for lines that are currently
in cache[{X /N7 H s 4 22 47

— Most directory entries are empty most of the time

— 1 MB cache, 1 GB memory per node -> 99.9% of directory
entries are idle

22 m "G*
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence 4
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Sparse Directories[#isi H 3]

* Directory at home node maintains pointer to only one
node caching line (not a list of sharers)[{¥f&[n]—1]

e Pointer to next node in list is stored as extra information in
the cache line (like the line’s tag, dirty bits, etc.)[#£ 3]

* On read miss: add requesting node to head of list
* On write miss: propagate invalidations along list
* On evict: need to patch up list (linked list removal)

Directory (home node for line)

line data

nextptr

prev ptr

Processor cache: node 0 Processor cache: node 1 Processor cache: node 2

(last reader) (last reader) ' G
A

L R —— NI
¥ i" - PIWN©
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Scaling Properties of Sparse Directories

e Good

- Low memory storage overhead (one pointer to list head per line)

- Add

itional directory storage is proportional to cache size (the list

stored in SRAM)
— Traffic on write is still proportional to number of sharers

Only maintains

entries for lines

Directory (home node for line) o B 3 d

in some cache — Write latency proportional to #sharers
(not all linesin M : : : : : :
memory) (invalidation of lines is serial)
—_— — Higher implementation complexity
next ptr
prev ptr
* Y ¥ V
1 — >
. <
Processor cache: node 0 Processor cache: node 1 Processor cache: node 2
(last reader) 24 (last reader) | ’;Ei
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence 44
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Reduce #msg. Sent

Read from main memory by PO of the blue line: line is
dirty (contained in P2’s cache)

Processor 0 Processor 1 Processor 2
i
Directory A A Directory Directory A
----- - R ~B-ER
""" B EEE e i — AR e
----------------------------------------- ‘ b e sss s s n s m ..
Memory ----Memory---- Memory
""""""""""" =g
(G
Scalable Intercohrject j
(N
1. Request: read miss msg 5. Response: data-+dir revision
2. Response: owner id
3. Request: data

4. Response: data

Five network transactions in total
Four of them are sequential (transaction 4 & 5 can parallel)

At okl o [
¥k 3 25 Uil
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Intervention Forwarding[+ i k)

Read from main memory by PO of the blue line: line is
dirty (contained in P2’s cache)

Processor 0 Processor 1 Processor 2
Local Cache Local Cache Local Cache
Directory A Directory Directory A
= 2 00 o N | R =5 T Y . | = E) e o e
ol = ) I | I el —— ] 0. = i
= = = | | = ﬂ o I — [ == 1Ay " panaray
----------------------------------------- < b ccncccncnccnccnncnns
Memory---- ----Memory---- ----Memory
""""""""""" |
4
Scalable Intercohnect J
o
1. Request: read miss msg 2. Request: intervention read

4. Response: data 3. Response: data-+dir revision

Total 4 transactions are needed

3 L ol o I
¥k 3 26 Uil
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence
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Intervention Forwarding (cont.)

Processor 0 Processor 1 Processor 2
Local Cache Local Cache Local Cache
Directory A Directory Directory A
CREE I [ B [ B
N I N . | [ S B B DU S == _'] ____________ ] i
=== S | | = 8 -:. R — T Ay
----------------------------------------- 4 bsccrscnnncnncssnnnnnn
Memory ----Memory---- Memory
""""""""""" i |
(2
Scalable Intercohnect J
X
- 2.R t:i tion read
1 Request: read miss msg <. nequest: intervention read
4. Response: data 3. Response: data-+dir revision

1. Requests to read miss message on home node (P1)
2. Home node requests data from owner node (P2)
3. Owning node response

4. Home node updates directory, responds to requesting node with

rgquested data All transactions are sequential, can they be parallel?
taxd . e
e http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence
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Request Forwarding[ik# k]

Read from main memory by PO of the blue line: line is
dirty (contained in P2’s cache)

Processor 0 Processor 1 Processor 2
Local Cache ‘ Local Cache Local Cache ‘
Directory A Directory Directory A
""" [ e ﬁju o S e
.......................................... 4 ersescscsnsssnsenan.
Memory ----Memory---- Memory
""""""""""" B |
Pl
Scalable Interconnect ]
1. Request: read miss mso 2. Request: send data to requestor

3/4. Response: data
(2 msgs: sent to both home node and requestor)

Only 3 transactions are in serial

Transaction 3 & 4 can be parallel

3 L ol o I
¥k 3 28 Uil
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Request Forwarding (cont.)

Processor 1

Local Cache

Processor 0
Local Cache
Directory A
. 1 e
""Ej".f::"f ......
P

Directory

Processor 2
Direct
ensaTTen T 1-'.--.
....ﬁ..'.:,‘,,r, .....
—‘Mem ory

Scalable Interconnect

1. Request: read miss msg

2. Request: send data to requestor

3/4. Response: data
(2 msgs: sent to both home node and requestor)

1. Requests to read miss message on home node (P1)

2. Home node sends target data to owner

3. Owning node responses data to the home node

4. Owning node responses data to the requesting node

3 L

¥ ok B
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Summary of Directory-base Coherence

* Primary observation: broadcast doesn’t scale, but we don’t
need to broadcast to ensure coherence because often the
number of caches containing a copy of a line is small

* Instead of snooping, just store the list of sharers in a
directory and check the list when necessary

* One challenge on storage[{#1i#i]
— Use hierarchies of processors or larger cache size

— Limited pointer schemes: exploit fact that most processors not
sharing line

— Sparse directory schemes: exploit fact that most lines not in
cache

* Another challenge on communication[i#15]

- Reduce messages sent (traffic) and parallelize trans (latency)
') F b X F ﬂr.!'G'L
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