
第18讲：TLP（4）

张献伟

xianweiz.github.io

DCS3013, 12/5/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Review Questions

• Data X is shared in processors A and B. Steps for A to 
write X? (note: cache is write-back)

• Next, processor B reads X. What will happen?

• Possible to have X being modified in both A and B?

• MSI protocol?

• How does MESI improves MSI?

• False sharing miss?

2

Places a miss on bus, A responds data and also writes back to mem.

Modified/Shared/Invalid. Invalidation protocol for write-back $.

Splits S into E(1 share) and S (2+ shares), to avoid unnecessary inv.

Acquires bus, sends invalidate, then updates X (shared à modified)

No way. Modified is exclusive, writes are serialized on bus.

No real data sharing, can be avoided with 1B blocks.



Performance of SMPs: Misses (cont.)

• True sharing misses, in an invalidation-based protocol

− The first write by a processor to a shared block causes an 
invalidation to establish ownership of that block (invalidate all)

− When another processor tries to read a modified word in that 
block, a miss occurs and the resultant block is transferred 
(invalidated by the store)

• False sharing misses

− Caused by the coherence alg. with a single valid bit per block

− Occurs when a block is invalidated (and a subsequent reference 
causes a miss)

p Some word in the block, other than the one being read, is written into

3

Time P1 P2

1 Write x1

2 Read x2

x1 x2 x1 x2

False sharing miss: x2 was invalidated by ‘write x1’ in P1

Shared:

Time P1 P2

1 Write x1

2 Read x1

x1 x2 x1 x2

True sharing miss: x1 was invalidated by ‘write x1’ in P1

Shared:



Performance of SMPs: Result

• Coherence misses:

− True sharing misses
p Write to a shared block

p Read an invalidated block

− False sharing misses

p Read an unmodified word in 
an invalidated block

4

CPI for commercial benchmarks

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Increasing the cache size eliminates most 

of the uniprocessor misses while leaving 

the multiprocessor misses untouched.

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


Performance of SMPs: Result (cont.)

5



Limits of Snooping Protocol[局限]

6

• Snooping cache coherence protocols rely on broadcasting
coherence info to all processors over the chip inter-
connect[依赖于广播]

− Cache miss occurred, triggering cache communicated with all 
other caches

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


7

• On a non-uniform memory access (NUMA) shared memory 
system, regions of memory are located near the processors 
increases scalability[非一致内存访问]

− Yield higher aggregate bandwidth and reduced latency

• NUMA does little good if the coherence protocol can’t be 

scaled

− Processor can access nearby memory, but need to broadcast to 
all other processors (overhead)

Limits of Snooping Protocol (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Scaling Cache Coherence

8

• One possible solution: hierarchical snooping[多层级]

− Use snooping coherence at each level

− Advantages
q Relatively simple to build (already have to deal with similar issues due to 

multi-level caches)

− Disadvantages
q The root of network may become a performance bottleneck

q Larger latencies than direct communication

q Doesn’t apply to more general network topologies

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Scalable Coherence using Directories

9

• To avoid broadcast by storing info about status of the line 
in one place: directory[目录]

− The directory entry for a cache line contains information about 
the state of the cache line in all caches[保存状态]

− Caches look up information from the directory as necessary[查询
目录]

− Cache coherence is maintained by point-to-point messages 
between the caches (not by broadcast mechanisms)[点对点通信]

• Theoretical advantages of directory-based approach

− The root of network won’t be the performance bottleneck

− Can apply to more general network topologies(e.g. meshes, 
cubes)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Simple Directory Protocol Impl.

10

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Distributed Directory: Partition[分区]

11

• Directory partition is co-located with memory it describes

• “Home node” of a line: node with memory holding the 
corresponding data for the line

− For example: node 0 is the home node of orange line, node 1 is 
the home node of blue line

• “Requesting node”: node containing processor requesting 

line

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: read miss to clean line

12

• Read miss message sent to home node of requested line

• Home directory checks entry for line

− If dirty bit of line is OFF, respond with contents from memory, set 
presence[0] to true (to indicate line is cached by processor 0)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

• Read from main memory by processor 0 of blue line (not 
dirty)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: read miss to dirty line

13

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

• Read from main memory by processor 0 of blue line

− Dirty and its content is in P2’s cache

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: read miss to dirty line (cont.)

14

1. If dirty bit is ON, data must be sourced by another processor

2. Home node responds with id of line owner

3. Requesting node requests data from owner

4. Owner responds to requesting node

o changes state in cache to SHARED (read only)

5. Owner also responds to home node, home clears dirty

o updates presence bits, updates memory
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: write miss

15

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

• Write to memory by processor 0

− Line is clean, but resident in P1’s and P2’s caches

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: write miss (cont.)

16

1. Requesting node sends the write miss to home node

2. Home node responds with ids of nodes containing this data (sharer) 
and data

3. Requesting sharer to invalidate corresponding data

4. Get response from P1 and P2

o After receiving both invalidation acks, P0 can write

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Pros of Directory Protocol

17

• On reads, directory tells requesting node exactly where to 
get the line from

− Either from home node (if the line is clean)

− Or from the owning node (if the line is dirty)

− Either way, retrieving data involves only point-to-point 
communication

• On writes, the advantages of directories depends on the 
number of sharers

− In the limit, if all caches are sharing data, all caches must be 
communicated with (just like broadcast in a snooping protocol)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Cons of Directory Protocol

18

• Full bit vector directory representation

• One presence bit per node

• Storage proportional to P * M

− P = number of nodes (e.g., processors)

− M = number of lines in memory

• Storage overhead rises with P

− Assume 64 byte cache line size (512 bits)

− 64 nodes (P=64) -> 12.5% overhead

− 256 nodes (P=256) -> 50% overhead

− 1024 nodes (P=1024) -> 200% overhead

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Reducing Storage Overheads

19

• Optimizations on full-bit vector scheme

− Increase cache line size (reduce M term)

− Group multiple processors into a single directory “node” 
(reduce P term)

p Need only one directory bit per node, not one bit per processor 

p Hierarchical: could use snooping protocol to maintain coherence among 

processors in a node, directory across nodes

• Two alternative schemes

− Limited pointer schemes (reduce P)

− Sparse directories (reduce M)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Limited Pointer Schemes (LPS)[有限指针]

20

• Since data is expected to only be in a few caches at once, 
storage for a limited number of pointers per directory entry 
should be sufficient (only need a list of the nodes holding a 

valid copy of the line)[数据通常小范围内共享]

− Example:
q In a 1024 processor system

q Full bit vector scheme needs 1024 bits per line

q Using limited pointer scheme, 1024 bits can store approximately 100 

pointers to nodes holding the line (log(1024) = 10 bits per pointer)

q In practice, we can get by with far less than this (20-80 principle)

Graphs plot histogram of number of sharers of a line at the time of a write 

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Managing Overflow in LPS[管理溢出]

21

• Fallback to broadcast (if broadcast mechanism exists)[广播]

− When more than max number of sharers, revert to broadcast

• If no broadcast mechanism present on machine[阈值]

− Don’t allow more than a max number of sharers

− On overflow, newest sharer replaces an existing one (must 
invalidate line in the old sharer’s cache)

• Coarse vector fallback[粗粒度]

− Revert to 'bit' vector representation

− Each bit corresponds to K nodes

− On write, invalidate all nodes a bit corresponds to

If too many pointers (sharers) are required…

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Summary of Limited Pointer Schemes

22

• LPS reduces directory storage overhead caused by large P

− By adopting a compact representation of a list of shares

• But do we really need to maintain storage for a list for 
each cache-line chunk of data in memory?

• Key observation: the majority of memory is NOT resident 
in cache. And to carry out coherence protocol the system 

only needs sharing information for lines that are currently 
in cache[仅小部分数据被缓存]

− Most directory entries are empty most of the time

− 1 MB cache, 1 GB memory per node -> 99.9% of directory 
entries are idle

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Sparse Directories[稀疏目录]

23

• Directory at home node maintains pointer to only one 
node caching line (not a list of sharers)[仅指向一个]

• Pointer to next node in list is stored as extra information in 

the cache line (like the line’s tag, dirty bits, etc.)[链表]

• On read miss: add requesting node to head of list

• On write miss: propagate invalidations along list

• On evict: need to patch up list (linked list removal)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Scaling Properties of Sparse Directories

24

• Good

− Low memory storage overhead (one pointer to list head per line)

− Additional directory storage is proportional to cache size (the list 
stored in SRAM)

− Traffic on write is still proportional to number of sharers

• Bad

− Write latency proportional to #sharers 
(invalidation of lines is serial)

− Higher implementation complexity

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Only maintains 

entries for lines 

in some cache 

(not all lines in 

memory)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


25

Reduce #msg. Sent

Read from main memory by P0 of the blue line: line is 
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Five network transactions in total

Four of them are sequential (transaction 4 & 5 can parallel)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


26

Intervention Forwarding[干预转发]

Read from main memory by P0 of the blue line: line is 
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Total 4 transactions are needed

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


27

Intervention Forwarding (cont.)

1. Requests to read miss message on home node (P1)

2. Home node requests data from owner node (P2)

3. Owning node response

4. Home node updates directory, responds to requesting node with 
requested data

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

All transactions are sequential, can they be parallel?

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


28

Request Forwarding[请求转发]

Read from main memory by P0 of the blue line: line is 
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Only 3 transactions are in serial

Transaction 3 & 4 can be parallel

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


29

1. Requests to read miss message on home node (P1)

2. Home node sends target data to owner

3. Owning node responses data to the home node

4. Owning node responses data to the requesting node

Request Forwarding (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Summary of Directory-base Coherence 

30

• Primary observation: broadcast doesn’t scale, but we don’t 
need to broadcast to ensure coherence because often the 
number of caches containing a copy of a line is small

• Instead of snooping, just store the list of sharers in a 
directory and check the list when necessary

• One challenge on storage[存储]

− Use hierarchies of processors or larger cache size

− Limited pointer schemes: exploit fact that most processors not 
sharing line

− Sparse directory schemes: exploit fact that most lines not in 
cache

• Another challenge on communication[通信]

− Reduce messages sent (traffic) and parallelize trans (latency)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

