Computer Architecture

[NN

F2uf: =i (2)
Tkt

xianweiz.github.io
DCS3013, 9/14/2022

Dhge

https://xianweiz.github.io/

Review Questions

* List some goals of architecture designs?

Functional, high performance, reliable, low cost, low power, ...
* Memory wall?

Processor improves much faster than memory/disk.
* Tradeoffs in simulation?

Speed, flexibility, accuracy.

e What MTTF and MTBF are evaluated for?
Dependability/reliability/availability.

e Ways to measure performance?
Direct/profiling, simulation, modeling.

»‘vi’@“ﬁ

Simulator[#iil 84

 What is an architecture (or architectural) simulator?
— A tool that reproduces the behavior of a computing device

* Why use a simulator?
— Leverage faster, more flexible software development cycle
— Permits more design space exploration
- Facilitates validation before hardware becomes available
— Possible to increase/improve system instrumentation

T
e - I
[|
\ /
T Simulation
Input Set Microarchitecture I:> Output
[|
\ /
~

7’

Binary Operating System Simulation Statistics
J \. J

3 Dhig

Tradeoffs in Simulation[~F#i)

e Three metrics to evaluate a simulator
- Speed, Flexibility, Accuracy

* Speed[i#Z]: How fast the simulator runs (xIPS, xCPS,
slowdown)

* Flexibility[R /5 1E]: How quickly one can modify the
simulator to evaluate different algorithms and design
choices?

e Accuracy[## %]: How accurate the performance (energy)
numbers the simulator generates are vs. a real design
(Simulation error)

* The relative importance of these metrics varies
depending on where you are in the design process (what
your goal is)

X % 4

)
&P 1) FG
Naws/ suvy war-sexvnversrin ttps: //safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf l"i LZ

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

High-level Simulation[m 2]

* Key Idea: Raise the abstraction level of modeling to give
up some accuracy to enable speed & flexibility (and quick
simulator design)

- Get first-hand insights

* Advantages
— Can still make the right tradeoffs, and can do it quickly

— All you need is modeling the key high-level factors, you can omit
corner case conditions

— All you need is to get the “relative trends” accurately, not exact
performance numbers

* Disadvantages
— Opens up the possibility of potentially wrong decisions
— How do you ensure you get the “relative trends” accurately?

oy 5 I }FG
lavws/ sun war-sexunvensily ttps://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf H'H LZ

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Example Simulator: gem5

* gem5 = Wisconsin GEMS + Michigan m5

— The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

— Widely used in academia and industry

* Why gem5?
— Runs real workloads
— Comprehensive model library (memory, 10, Full OS, Web, ...)
— Rapid early prototyping (quickly test system-level ideas)

— Can be wired to custom models (add detail where it matters,
when it matters)

e?2cemMmbd

system = System()

system.cpu = 000_CPU() .
system.cpu.width = 8 > > ./gemS script.py

system.1ll = Cache () / \

—> | system.ll.mem_side = \

system.12.cpu_side hello world! 1l.misses 2836
11.hits 10374
Memory system.workload = \ cpu.ipc 1.3

'hello.exe'

simulate ()

S
| _@
https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf W H 1

https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

Example Simulator: gem5 (cont.)

Home

Before the LAB
I.Familiar with GEM5
Il.Implement FSUBR
lll.Hotspot Analysis

IV.Implement NMRU

replacement policy

V.Explore GPGPU-SIM and

GEMM
FAQ

(P

“‘ S;J*]; YﬁENﬁEﬁ

SYSU-ARCH

version 2022F

SYSU-ARCH is a LAB that focus on the use and extending of simulators.
After finishing SYSU-ARCH, you will learn

what is GEM5 and GPGPU-SIM

the basic use of GEM5 and GPGPU-SIM
how to extend in simulator

how to use simulator to research

tools like docker and wsl

reference GEM5 101(add changes to fit current version of GEM5 and new ideas)

Dark Mode

Benchmarks[3& i 4)

* SPEC: Standard Performance Evaluation Corporation

* PARSEC: Princeton Application Repository for Shared Memory
Computers

e Rodinia: GPGPU applications

* HPL: a High-Performance Linpack benchmark implementation

 MLPerf: a suite of performance benchmarks that cover a range of
leading Al workloads widely in use

* MediaBench: Multimedia and embedded applications
* Transaction processing: TPC-C, SPECjbb

* EEMBC: embedded microprocessor benchmark
consortium

/
sapec'* PAEEC MLPerf .
D

Benchmarks (cont.)

* Example: performance of Intel’s newest CPU (2021)

General-Purpose Performance Vs. 11t Gen Intel® Core™

19%

Performance Improvement at
ISO Frequency!

V 1.
III‘IIIIIIIIIIIIIIIIIIII|IIII|III.II ‘ 111 ‘f'l H\ 11

SPEC CPU 2017, SYSmark 25, Crossmark, PCMark 10, WebXPRT3, Geekbench 5.4.1 s | Geomean of Performance core (ADL) vs. Cypress Cove (RKL) Core @ISO 3.3GHz Frequency

o
S
O
2
3
O
a
o
a
>
O
@
£
)
<
©
E
2
3
o
o)
c
]
3
o
o
i
o}
2]

For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf

Benchmarks (cont.)

 MLPerf

- A broad ML
benchmark suite
for measuring
performance of
ML software
frameworks, ML
hardware
accelerators, and
ML cloud
platforms

4
MLPerf

Training time speedup

Comparison of MLPerf 1.0 Top Line Results

Taller bars are better; results are normalized to fastest Nvidia submission

;: Speedup over fastest Nvidia submission Nvicia A100 . Google TPU v4

(Available) (Preview)
20 (1.74x)
(1.55x)
(1.41x)
15
(1.10x)
(o.8ax) (0.49x)
1.0
0.5
0.0
BERT ResNet DLRM SSD Mask R-CNN Unet3D

How to Summarize Performance

e Arithmetic mean (weighted arithmetic mean)[Z AR-F-1]
— Considering the frequencies of programs in the workload

- E.g., tracks execution time: Z’i’:l% oryiv W; x T;
* Harmonic mean (weighted harmonic mean) of rates[i
;4:[:/}]]
- E.g., track MFLOPS:

n

1.1 1
l=1Ratei

* Normalized execution time is handy for scaling
performance (e.g., X times faster than Pentium 4)

* Geometric mean ==>"/[]", execution_ratio; [JL{)]

— The execution ratio is relative to a reference machine
o Based on relative performance to a reference machine

“‘ : k)
@ tuxt bl

Performance Evaluation{4:geiE4h]

e Execution time and power are the main measure
of computer performance

* Good products created when we have

- Good benchmarks
o For better or worse, benchmarks shape a field
- Good ways to summarize performance

o Reproducibility is important (should provide details of
experiments)

* Given that sales is a function, in part, of performance
relative to competition, companies invest in improving
performance summary

— If benchmarks/summary are inadequate, then choose between
improving product for real programs vs. improving product to
get more sales ===> Sales almost always wins!

“‘ : k)
@ tuxt bl

Quantitative Principles (§1.8) &4k 5]

* Guidelines and principles that are useful in the design and
analysis of computers

* Take advantage of parallelism[F17]
- System level: multiple processors, multiple disks
- Individual processor: instruction parallelism, e.g., pipelining
— Detailed digital design: cache, memory

* Principle of locality[/m &%

- Programs tend to reuse data and insts they have used recently
o A program spends 90% of its execution time in only 10% of the code

* Focus on the common case[— &]
- To make a trade-off, favor the frequent case over infrequent

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

g

Amdahl’s Law[Bi ik /K & 1)

* The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used

o RGN AR A IR AT T N BESR R B R Gt
VERESGH AR Z, BT Mah AT 7 SR A3 B0 =R,
BCPIT A7 S TRAT B TE]) BG4

 Amdahl's law defines the speedup that can be gained by
using a particular feature

- Speedup due to some enhancement E:

ExTimeyithoute Performanceg

Speedu = - -
p Poverall EXTlmewi thE Per f ormanceé,ithoutE

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

Amdahl‘s Law (cont.)

e Suppose that enhancement E accelerates a fraction of the
task by a factor S, and the remainder of the task is

unaffected
N — e

ExTimeyitng

fractionennanced

= ExTimeyithoute * [(1 — fraCtionenhanced) + S]

ExTime,,;
Spee dup _ withoutE

ExTime,,;thE

1

. raction
(1- f racaonenhanced) + ! Senhanced

; > “‘ 10
@ turs 15 Dl

Amdahl's Law (cont.)

* Example 1: Floating point instructions can be improved
to run 2X; but only 10% of actual instructions are FP.
What is the overall speedup?

— Fractiong = 10%, S = 2, Speedup = 1/(90% + 10%/2) = 1.05

* Example 2: Assume we need to improve the performance
of a graphics engine (assume 20% inst are FP Square root,
50% for all FP inst). Which choice is better?

— Choice one: Speed up FP Square root by 10x
1/(80% + 20%/10) = 1.22

— Choice two: Speed up all FP instruction by 1.6x
1/(50% + 50%/1.6) = 1.23

<~ Focus on the common case !
S fure 16 INE

Amdahl's Law (cont.)

* A program’s speedup is limited by its serial part
- For example, if 95% of the program can be parallelized, the

Speedup

theoretical maximum speedup using parallel computing would

be 20x
Amdahl's Law
“__—__________________“__-:;::::;-,T—_—_
S |
// Parallel portion
ra — 50%
/o e 75%
/ — 90%
// —— 95%
/
,,,,,,,,,,,,,,, /A O S N N ~
/7 T o
e
/ _/‘/
/ //
V%
,,,,,,,, LA |||
// __________________________ el D e e] e e e Ry
S

NNNNNNNNN
HHHHHHH

WWW
wwwww

OOOOOOOOOO

NNNNNN

Dhig

Computing CPU time

* CPU @ 2.5GHz
— 2.5G ticks per second =2 1/2.5G s/tick = 0.4ns / tick
— Tick == clock == clock cycle
* CPU time for a program, i.e., #clock cycles to execute

— CPU time = CPU clock cycles for a program x Clock cycle time
— CPU time = CPU clock cycles for a program / Clock rate

* Clock cycles per instruction (CPI)
— CPI = CPU clock cycles for a program / Instruction count
— Reverse of IPC (instructions per cycle)

* CPU time = Inst count x CPI x Clock cycle time

Instructions X Clock cycles X Seconds _ Seconds
Program Instruction Clock cycle - Program

»‘vi’@“ﬁ

Computing CPU time (cont.)

* Average Cycles per Instruction (CPI) = ’]7‘:1 CPI; * F;

- Where CPI; is the number of cycles needed to execute
instructions of type j

- and F; is the percentage (fraction) of instructions that are of

type/ _
Example: Base Machine (Reg / Reg)
Op Freq Cycles CPI;*F; (% Time)
ALU 50% 1 D (33%)
Load 20%| 2 4 (27%)
Store 10%| 2 2 (13%)
Branch 20%| 2 4 (27%)
’ i
1.5
Typical Mix

* CPU time = Cycle time = }.;_, CPI; = I

- I;is the number of instructions of type j, and Cycle time is the
inverse of the clock rate.

@ tuxs 19 IR

Computing CPU time (cont.)

e CPl is a function of the machine and program.

— The CPI depends on the actual instructions appearing in the
program—a floating-point intensive application might have a
higher CPI than an integer-based program.

- |t also depends on the CPU implementation. For example, a
Pentium can execute the same instructions as an older 80486,
but faster.

* It is common to each instruction took one cycle, making
CPI =1.
— The CPI can be >1 due to memory stalls and slow instructions.

— The CPI can be <1 on machines that execute more than 1
instruction per cycle (superscalar).

“‘ : k)
@ tuxt bl

Aspects of CPU Performance

e CPU time = Seconds _ Instructlons Cycles Seconds
program program Instructlons Cycles
Inst Count CPI Clock Rate
Program O
Compiler O O
Inst. Set O O
Organization O O
Technology O

21 Dhge

Improving CPI using caches

30%

* An example —

CPU cache memory
What is the improvement (speedup) in memory access time? :

e Caching works because of the principle of locality:

- Locality found in memory access instructions

o Temporal locality: if an item is referenced, it will tend to be referenced
again soon

o Spatial locality: if an item is referenced, items whose addresses are
close by tend to be referenced soon

— 90/10 locality rule

o A program executes about 90% of its instructions in 10% of its code

- We will look at how this principle is exploited in various
microarchitecture techniques

@ turs - INE

[NN

F2ik. 1ISAand ILP (1)
i NGE

xianweiz.github.io
DCS3013, 9/14/2022

Dhge

https://xianweiz.github.io/

The History

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 32U K]

* The growth is based on a fundamental contract between
HW and SW[1E & T #8422 1] 5]
- HW may change radically “under the hood”
o Old SW can still run on new HW (even faster)

- HW looks the same to SW, always speaking the same language
o The ISA, allows the decoupling of SW development from HW dev

of hardware :
- ¥ mobile
devices in
operation

growth

\’_/

u‘.i’ﬁ“ﬁ

What is ISA?

e Instruction Set == A set of instructions
e The HW/SW contract[Z & F 1113

— Compiler correctly translates source code to the ISA[%% 1% 28]
— Assembler translates to relocatable binary[JC %25]

— Linker solidifies relocatables into object code[i%#: %]

— HW promises to do what the object code says[figif4$47]

* Not in the “contract”: non-functional aspects[dE7}1¥]
- How operations are implemented
— Which operations are fast and which are slow and when
- Which operations take more power and which take less

»‘fn’ﬁ“ﬁ

Problem
|SA + l.l-a rC h — ArCh Algorithm
Program/Language
" . Y . . Runtime System
* “Architecture” = ISA + microarchitecture v oS M
ISA (Architecture)
e |S AH:E[* /&,\EK;J@;F@] :I;:n:archltecture
— Agreed upon interface between sw and hw st

o SW/compiler assumes, HW promises

— What the software writer needs to know to write and debug
system/user programs

* Microarchitecture (p-arch)[#¥2E#4]

— Specific implementation of an ISA
o Implementation of the ISA under specific design constraints and goals
— Not visible to the software

|:. e A G snnimms R
Qﬁarch

‘ “\ \ | } E

ISA vs. u-arch (cont.)

* Implementation (p-arch) can be various as long as it
satisfies the specification (ISA)

— Add instruction vs. Adder implementation

o Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

— x86 ISA has many implementations: 286, 386, 486, Pentium,

Pentium Pro, Pentium 4, Core, ...

* p-arch usually changes faster than ISA
- Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many u-archs

- E 5

B B WA

Qﬁarch

(s 7 Il' K
\f‘ g
\ SN 74 SUN YAT-SEN UNIVERSITY

ME“K

What Makes a Good ISA?

* Programmability[A] 4 F2 1]

— Easy to express programs efficiently?

* Implementability[7] S 4]
— Easy to design high-performance implementations?

— More recently
o Easy to design low-power implementations?
o Easy to design high-reliability implementations?
o Easy to design low-cost implementations?

e Compatibility[3f 75 14]
— Easy to maintain programmability (implementability) as
languages and programs (technology) evolves?

- x86 (IA32) generations: 8086, 286, 386, 486, Pentium,
Pentiumll, Pentiumlll, Pentium4, Core?2...

»‘vi’@“ﬁ

Existing ISAS

 RISC: reduced-instruction set computer[f & {5 2 %E]
— Coined by Patterson in early 80’s
— RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
— Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

* CISC: complex-instruction set computer[& 4445 & ££]
— Term didn’t exist before “RISC”
— Examples: x86, VAX, Motorola 68000, etc.

- “freescale
TRER

000000

@ mUMENTS

* Xx86
REBDEQ®E, OR - H%j\lﬁ/?j\lﬁ
FTEREPHE, 2]
86 e ARM

— ﬂﬁj’\j . ‘E‘Hé
RBETXRI T KN

BB, g | Q jA

ReEMS T, 2!
— Jits.

O#HisT
CE ok

MIPS

£ indowsiRFE
, ORMBEDFEEF
» ﬁ -'

*CPU/EZ% EEEE (B | 202FE T, At
2 B FECPUIE AT ?

30 Dl

S~

https://zhuanlan.zhihu.com/p/363765166

