
第2讲：量化设计分析（2）
张献伟

xianweiz.github.io
DCS3013, 9/14/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review Questions
• List some goals of architecture designs?

• Memory wall?

• Tradeoffs in simulation?

• What MTTF and MTBF are evaluated for?

• Ways to measure performance?

2

Processor improves much faster than memory/disk.

Speed, flexibility, accuracy.

Dependability/reliability/availability.

Direct/profiling, simulation, modeling.

Functional, high performance, reliable, low cost, low power, …

Simulator[模拟器]

• What is an architecture (or architectural) simulator?
− A tool that reproduces the behavior of a computing device

• Why use a simulator?
− Leverage faster, more flexible software development cycle
− Permits more design space exploration
− Facilitates validation before hardware becomes available
− Possible to increase/improve system instrumentation

3

Tradeoffs in Simulation[平衡]

• Three metrics to evaluate a simulator
− Speed, Flexibility, Accuracy

• Speed[速度]: How fast the simulator runs (xIPS, xCPS,
slowdown)
• Flexibility[灵活性]: How quickly one can modify the

simulator to evaluate different algorithms and design
choices?
• Accuracy[准确度]: How accurate the performance (energy)

numbers the simulator generates are vs. a real design
(Simulation error)
• The relative importance of these metrics varies

depending on where you are in the design process (what
your goal is)

4
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

High-level Simulation[高层级模拟]

• Key Idea: Raise the abstraction level of modeling to give
up some accuracy to enable speed & flexibility (and quick
simulator design)

− Get first-hand insights

• Advantages
− Can still make the right tradeoffs, and can do it quickly
− All you need is modeling the key high-level factors, you can omit

corner case conditions
− All you need is to get the “relative trends” accurately, not exact

performance numbers

• Disadvantages
− Opens up the possibility of potentially wrong decisions
− How do you ensure you get the “relative trends” accurately?

5
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Example Simulator: gem5
• gem5 = Wisconsin GEMS + Michigan m5

− The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

− Widely used in academia and industry

• Why gem5?
− Runs real workloads
− Comprehensive model library (memory, IO, Full OS, Web, …)
− Rapid early prototyping (quickly test system-level ideas)
− Can be wired to custom models (add detail where it matters,

when it matters)

6
https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

Example Simulator: gem5 (cont.)

7

Benchmarks[基准测试集]

• SPEC: Standard Performance Evaluation Corporation

• PARSEC: Princeton Application Repository for Shared Memory
Computers

• Rodinia: GPGPU applications

• HPL: a High-Performance Linpack benchmark implementation

• MLPerf: a suite of performance benchmarks that cover a range of
leading AI workloads widely in use

• MediaBench: Multimedia and embedded applications
• Transaction processing: TPC-C, SPECjbb
• EEMBC: embedded microprocessor benchmark

consortium

8

Benchmarks (cont.)

9
https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf

• Example: performance of Intel’s newest CPU (2021)

Benchmarks (cont.)

10

• MLPerf
− A broad ML

benchmark suite
for measuring
performance of
ML software
frameworks, ML
hardware
accelerators, and
ML cloud
platforms

How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean)[算术平均]

− Considering the frequencies of programs in the workload
− E.g., tracks execution time: ∑!"#$ %!

$
or ∑!"#$ 𝑊! ∗ 𝑇!

• Harmonic mean (weighted harmonic mean) of rates[调和
平均]

− E.g., track MFLOPS: $
∑!"#
$ #

%&'(!

• Normalized execution time is handy for scaling
performance (e.g., X times faster than Pentium 4)

• Geometric mean ==>! ∏!"#
$ execuaon_𝑟𝑎𝑡𝑖𝑜! [几何平均]

− The execution ratio is relative to a reference machine
p Based on relative performance to a reference machine

11

Performance Evaluation[性能评估]

• Execution time and power are the main measure
of computer performance
• Good products created when we have

− Good benchmarks
p For better or worse, benchmarks shape a field

− Good ways to summarize performance
p Reproducibility is important (should provide details of

experiments)

• Given that sales is a function, in part, of performance
relative to competition, companies invest in improving
performance summary

− If benchmarks/summary are inadequate, then choose between
improving product for real programs vs. improving product to
get more sales ===> Sales almost always wins!

12

Quantitative Principles (§1.8)[量化原则]

• Guidelines and principles that are useful in the design and
analysis of computers
• Take advantage of parallelism[并行]

− System level: multiple processors, multiple disks
− Individual processor: instruction parallelism, e.g., pipelining
− Detailed digital design: cache, memory

• Principle of locality[局部性]
− Programs tend to reuse data and insts they have used recently

p A program spends 90% of its execution time in only 10% of the code

• Focus on the common case[一般情况]
− To make a trade-off, favor the frequent case over infrequent

13

Amdahl‘s Law[阿姆达尔定律]

• The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used
•系统中对某一部件采用更快执行方式所能获得的系统
性能改进程度，取决于这种执行方式被使用的频率，
或所占总执行时间的比例

• Amdahl's law defines the speedup that can be gained by
using a particular feature

− Speedup due to some enhancement E:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝'()*+,, =
𝐸𝑥𝑇𝑖𝑚𝑒-!./'0.1
𝐸𝑥𝑇𝑖𝑚𝑒-!./1

=
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒1

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒-!./20.1

14

Amdahl‘s Law (cont.)
• Suppose that enhancement E accelerates a fraction of the

task by a factor S, and the remainder of the task is
unaffected

𝐸𝑥𝑇𝑖𝑚𝑒-!./1
= 𝐸𝑥𝑇𝑖𝑚𝑒-!./'0.1 ∗ [1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)$/+$3)4 +

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)$/+$3)4
𝑆]

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑇𝑖𝑚𝑒-!./'0.1
𝐸𝑥𝑇𝑖𝑚𝑒-!./1

=
1

1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)$/+$3)4 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)$/+$3)4𝑆

15

Amdahl's Law (cont.)
• Example 1: Floating point instructions can be improved

to run 2X; but only 10% of actual instructions are FP.
What is the overall speedup?

− FractionE = 10%, S = 2, Speedup = 1/(90% + 10%/2) = 1.05

• Example 2: Assume we need to improve the performance
of a graphics engine (assume 20% inst are FP Square root,
50% for all FP inst). Which choice is better?

− Choice one: Speed up FP Square root by 10x
1/(80% + 20%/10) = 1.22

− Choice two: Speed up all FP instruction by 1.6x
1/(50% + 50%/1.6) = 1.23

16
👉 Focus on the common case！

Amdahl's Law (cont.)
• A program’s speedup is limited by its serial part

− For example, if 95% of the program can be parallelized, the
theoretical maximum speedup using parallel computing would
be

17

20x

👉Make the fast case common！

Computing CPU time
• CPU @ 2.5GHz

− 2.5G ticks per second à 1/2.5G s/tick = 0.4ns / tick
− Tick == clock == clock cycle

• CPU time for a program, i.e., #clock cycles to execute
− CPU time = CPU clock cycles for a program x Clock cycle time
− CPU time = CPU clock cycles for a program / Clock rate

• Clock cycles per instruction (CPI)
− CPI = CPU clock cycles for a program / Instruction count
− Reverse of IPC (instructions per cycle)

• CPU time = Inst count x CPI x Clock cycle time
− 5$6.*03.!'$6

7*'8*+9 𝑥 :,'3; 3<3,)65$6.*03.!'$ x =)3'$46
:,'3; 3<3,) = =)3'$467*'8*+9

18

Computing CPU time (cont.)
• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝐶𝑃𝐼) = ∑>"#$ 𝐶𝑃𝐼> ∗ 𝐹>

− Where CPIj is the number of cycles needed to execute
instructions of type j

− and Fj is the percentage (fraction) of instructions that are of
type j

• 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = 𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 ∗ ∑%"#$ 𝐶𝑃𝐼% ∗ 𝐼%
− Ij is the number of instructions of type j, and Cycle time is the

inverse of the clock rate.

19

Computing CPU time (cont.)
• CPI is a function of the machine and program.

− The CPI depends on the actual instructions appearing in the
program—a floating-point intensive application might have a
higher CPI than an integer-based program.

− It also depends on the CPU implementation. For example, a
Pentium can execute the same instructions as an older 80486,
but faster.

• It is common to each instruction took one cycle, making
CPI = 1.

− The CPI can be >1 due to memory stalls and slow instructions.
− The CPI can be <1 on machines that execute more than 1

instruction per cycle (superscalar).

20

Aspects of CPU Performance
• 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = =)3'$46

?*'8*+9 = 5$6.*03.!'$6
?*'8*+9 ∗ :<3,)6

5$6.*03.!'$6 ∗
=)3'$46
:<3,)6

21

Inst Count CPI Clock Rate

Program ❍
Compiler ❍ ❍
Inst. Set ❍ ❍
Organization ❍ ❍
Technology ❍

Improving CPI using caches
• An example

What is the improvement (speedup) in memory access time? :

• Caching works because of the principle of locality:
− Locality found in memory access instructions

p Temporal locality: if an item is referenced, it will tend to be referenced
again soon

p Spatial locality: if an item is referenced, items whose addresses are
close by tend to be referenced soon

− 90/10 locality rule
p A program executes about 90% of its instructions in 10% of its code

− We will look at how this principle is exploited in various
microarchitecture techniques

22

第2讲：ISA and ILP（1）
张献伟

xianweiz.github.io
DCS3013, 9/14/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

The History
• For more than 50 years, we have enjoyed exponentially

increasing compute power[算力急剧增长]

• The growth is based on a fundamental contract between
HW and SW[得益于软硬件之间的协议]

− HW may change radically “under the hood”
p Old SW can still run on new HW (even faster)

− HW looks the same to SW, always speaking the same language
p The ISA, allows the decoupling of SW development from HW dev

24

What is ISA?
• Instruction Set == A set of instructions
• The HW/SW contract[软硬件协议]

− Compiler correctly translates source code to the ISA[编译器]
− Assembler translates to relocatable binary[汇编器]
− Linker solidifies relocatables into object code[连接器]
− HW promises to do what the object code says[硬件执行]

• Not in the “contract”: non-functional aspects[非协议]
− How operations are implemented
− Which operations are fast and which are slow and when
− Which operations take more power and which take less

25

ISA + µ-arch = Arch
• “Architecture” = ISA + microarchitecture
• ISA[指令集架构]

− Agreed upon interface between sw and hw
p SW/compiler assumes, HW promises

− What the software writer needs to know to write and debug
system/user programs

• Microarchitecture (µ-arch)[微架构]
− Specific implementation of an ISA

p Implementation of the ISA under specific design constraints and goals
− Not visible to the software

26

ISA
µ-arch

https://image.slideserve.com/466455/instruction-set-design-l.jpg

ISA vs. µ-arch (cont.)
• Implementation (µ-arch) can be various as long as it

satisfies the specification (ISA)
− Add instruction vs. Adder implementation

p Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

− x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

• µ-arch usually changes faster than ISA
− Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many u-archs

27

ISA
µ-arch

What Makes a Good ISA?
• Programmability[可编程性]

− Easy to express programs efficiently?

• Implementability[可实现性]
− Easy to design high-performance implementations?
− More recently

p Easy to design low-power implementations?
p Easy to design high-reliability implementations?
p Easy to design low-cost implementations?

• Compatibility[兼容性]
− Easy to maintain programmability (implementability) as

languages and programs (technology) evolves?
− x86 (IA32) generations: 8086, 286, 386, 486, Pentium,

PentiumII, PentiumIII, Pentium4, Core2…

28

Existing ISAs
• RISC: reduced-instruction set computer[精简指令集]

− Coined by Patterson in early 80’s
− RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
− Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer[复杂指令集]
− Term didn’t exist before “RISC”
− Examples: x86, VAX, Motorola 68000, etc.

29

国产架构
• x86

−曙光/海光

• ARM
−华为、飞腾

•自主
−龙芯、申威

30

* CPU及指令集演进 (漫画 | 20多年了，为什
么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166

