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Review Questions

* List some goals of architecture designs?

Functional, high performance, reliable, low cost, low power, ...
* Memory wall?

Processor improves much faster than memory/disk.
* Tradeoffs in simulation?

Speed, flexibility, accuracy.

e What MTTF and MTBF are evaluated for?
Dependability/reliability/availability.

e Ways to measure performance?
Direct/profiling, simulation, modeling.
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Simulator[#iil 84

 What is an architecture (or architectural) simulator?
— A tool that reproduces the behavior of a computing device

* Why use a simulator?
— Leverage faster, more flexible software development cycle
— Permits more design space exploration
- Facilitates validation before hardware becomes available
— Possible to increase/improve system instrumentation
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Tradeoffs in Simulation[~F#i)

e Three metrics to evaluate a simulator
- Speed, Flexibility, Accuracy

* Speed[i#Z]: How fast the simulator runs (xIPS, xCPS,
slowdown)

* Flexibility[ R /5 1E]: How quickly one can modify the
simulator to evaluate different algorithms and design
choices?

e Accuracy[## % ]: How accurate the performance (energy)
numbers the simulator generates are vs. a real design
(Simulation error)

* The relative importance of these metrics varies
depending on where you are in the design process (what
your goal is)

X % 4

)
&P 1) FG
Naws/  suvy war-sexvnversrin ttps: //safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf l"i LZ



https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

High-level Simulation[m 2]

* Key Idea: Raise the abstraction level of modeling to give
up some accuracy to enable speed & flexibility (and quick
simulator design)

- Get first-hand insights

* Advantages
— Can still make the right tradeoffs, and can do it quickly

— All you need is modeling the key high-level factors, you can omit
corner case conditions

— All you need is to get the “relative trends” accurately, not exact
performance numbers

* Disadvantages
— Opens up the possibility of potentially wrong decisions
— How do you ensure you get the “relative trends” accurately?
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Example Simulator: gem5

* gem5 = Wisconsin GEMS + Michigan m5

— The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

— Widely used in academia and industry

* Why gem5?
— Runs real workloads
— Comprehensive model library (memory, 10, Full OS, Web, ...)
— Rapid early prototyping (quickly test system-level ideas)

— Can be wired to custom models (add detail where it matters,
when it matters)

e?2cemMmbd

system = System()

system.cpu = 000_CPU() .
system.cpu.width = 8 > > ./gemS script.py

system.1ll = Cache () / \

—> | system.ll.mem_side = \

system.12.cpu_side hello world! 1l.misses 2836
11.hits 10374
Memory system.workload = \ cpu.ipc 1.3

'hello.exe'

simulate ()
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Example Simulator: gem5 (cont.)

Home

Before the LAB
I.Familiar with GEM5
Il.Implement FSUBR
lll.Hotspot Analysis

IV.Implement NMRU

replacement policy

V.Explore GPGPU-SIM and

GEMM
FAQ
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SYSU-ARCH

version 2022F

SYSU-ARCH is a LAB that focus on the use and extending of simulators.
After finishing SYSU-ARCH, you will learn

what is GEM5 and GPGPU-SIM

the basic use of GEM5 and GPGPU-SIM
how to extend in simulator

how to use simulator to research

tools like docker and wsl

reference GEM5 101(add changes to fit current version of GEM5 and new ideas)
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Benchmarks[3& i 4)

* SPEC: Standard Performance Evaluation Corporation

* PARSEC: Princeton Application Repository for Shared Memory
Computers

e Rodinia: GPGPU applications

* HPL: a High-Performance Linpack benchmark implementation

 MLPerf: a suite of performance benchmarks that cover a range of
leading Al workloads widely in use

* MediaBench: Multimedia and embedded applications
* Transaction processing: TPC-C, SPECjbb

* EEMBC: embedded microprocessor benchmark
consortium

/
sapec'* PAEEC MLPerf .
D




Benchmarks (cont.)

* Example: performance of Intel’s newest CPU (2021)

General-Purpose Performance Vs. 11t Gen Intel® Core™

19%

Performance Improvement at
ISO Frequency!
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SPEC CPU 2017, SYSmark 25, Crossmark, PCMark 10, WebXPRT3, Geekbench 5.4.1 s | Geomean of Performance core (ADL) vs. Cypress Cove (RKL) Core @ISO 3.3GHz Frequency
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For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf




Benchmarks (cont.)

 MLPerf

- A broad ML
benchmark suite
for measuring
performance of
ML software
frameworks, ML
hardware
accelerators, and
ML cloud
platforms

4
MLPerf

Training time speedup

Comparison of MLPerf 1.0 Top Line Results

Taller bars are better; results are normalized to fastest Nvidia submission

;: Speedup over fastest Nvidia submission Nvicia A100 . Google TPU v4

(Available) (Preview)
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How to Summarize Performance

e Arithmetic mean (weighted arithmetic mean)[Z AR-F-1]
— Considering the frequencies of programs in the workload

- E.g., tracks execution time: Z’i’:l% oryiv  W; x T;
* Harmonic mean (weighted harmonic mean) of rates[ i
;4:[:/}]]
- E.g., track MFLOPS:

n

1.1 1
l=1Ratei

* Normalized execution time is handy for scaling
performance (e.g., X times faster than Pentium 4)

* Geometric mean ==>"/[]", execution_ratio; [JL{ )]

— The execution ratio is relative to a reference machine
o Based on relative performance to a reference machine
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Performance Evaluation{4:geiE4h]

e Execution time and power are the main measure
of computer performance

* Good products created when we have

- Good benchmarks
o For better or worse, benchmarks shape a field
- Good ways to summarize performance

o Reproducibility is important (should provide details of
experiments)

* Given that sales is a function, in part, of performance
relative to competition, companies invest in improving
performance summary

— If benchmarks/summary are inadequate, then choose between
improving product for real programs vs. improving product to
get more sales ===> Sales almost always wins!
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Quantitative Principles (§1.8) &4k 5]

* Guidelines and principles that are useful in the design and
analysis of computers

* Take advantage of parallelism[F17]
- System level: multiple processors, multiple disks
- Individual processor: instruction parallelism, e.g., pipelining
— Detailed digital design: cache, memory

* Principle of locality[/m &%

- Programs tend to reuse data and insts they have used recently
o A program spends 90% of its execution time in only 10% of the code

* Focus on the common case[— & ]
- To make a trade-off, favor the frequent case over infrequent
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Amdahl’s Law[Bi ik /K & 1)

* The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used
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 Amdahl's law defines the speedup that can be gained by
using a particular feature

- Speedup due to some enhancement E:

ExTimeyithoute Performanceg

Speedu = - -
p Poverall EXTlmewi thE Per f ormanceé,ithoutE
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Amdahl‘s Law (cont.)

e Suppose that enhancement E accelerates a fraction of the
task by a factor S, and the remainder of the task is

unaffected
N — e

ExTimeyitng

fractionennanced

= ExTimeyithoute * [(1 — fraCtionenhanced) + S ]

ExTime,,;
Spee dup _ withoutE

ExTime,,;thE

1

. raction
(1- f racaonenhanced) + ! Senhanced
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Amdahl's Law (cont.)

* Example 1: Floating point instructions can be improved
to run 2X; but only 10% of actual instructions are FP.
What is the overall speedup?

— Fractiong = 10%, S = 2, Speedup = 1/(90% + 10%/2) = 1.05

* Example 2: Assume we need to improve the performance
of a graphics engine (assume 20% inst are FP Square root,
50% for all FP inst). Which choice is better?

— Choice one: Speed up FP Square root by 10x
1/(80% + 20%/10) = 1.22

— Choice two: Speed up all FP instruction by 1.6x
1/(50% + 50%/1.6) = 1.23

<~ Focus on the common case !
S fure 16 INE




Amdahl's Law (cont.)

* A program’s speedup is limited by its serial part
- For example, if 95% of the program can be parallelized, the

Speedup

theoretical maximum speedup using parallel computing would

be 20x
Amdahl's Law
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Computing CPU time

* CPU @ 2.5GHz
— 2.5G ticks per second =2 1/2.5G s/tick = 0.4ns / tick
— Tick == clock == clock cycle
* CPU time for a program, i.e., #clock cycles to execute

— CPU time = CPU clock cycles for a program x Clock cycle time
— CPU time = CPU clock cycles for a program / Clock rate

* Clock cycles per instruction (CPI)
— CPI = CPU clock cycles for a program / Instruction count
— Reverse of IPC (instructions per cycle)

* CPU time = Inst count x CPI x Clock cycle time

Instructions X Clock cycles X Seconds _ Seconds
Program Instruction Clock cycle - Program
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Computing CPU time (cont.)

* Average Cycles per Instruction (CPI) = ’]7‘:1 CPI; * F;

- Where CPI; is the number of cycles needed to execute
instructions of type j

- and F; is the percentage (fraction) of instructions that are of

type/ _
Example: Base Machine (Reg / Reg)
Op Freq Cycles CPI;*F; (% Time)
ALU 50% 1 D (33%)
Load 20%| 2 4 (27%)
Store 10%| 2 2 (13%)
Branch 20%| 2 4 (27%)
’ i
1.5
Typical Mix

* CPU time = Cycle time = }.;_, CPI; = I

- I;is the number of instructions of type j, and Cycle time is the
inverse of the clock rate.
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Computing CPU time (cont.)

e CPl is a function of the machine and program.

— The CPI depends on the actual instructions appearing in the
program—a floating-point intensive application might have a
higher CPI than an integer-based program.

- |t also depends on the CPU implementation. For example, a
Pentium can execute the same instructions as an older 80486,
but faster.

* It is common to each instruction took one cycle, making
CPI =1.
— The CPI can be >1 due to memory stalls and slow instructions.

— The CPI can be <1 on machines that execute more than 1
instruction per cycle (superscalar).
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Aspects of CPU Performance

e CPU time = Seconds _ Instructlons Cycles Seconds
program program Instructlons Cycles
Inst Count CPI Clock Rate
Program O
Compiler O O
Inst. Set O O
Organization O O
Technology O

21 Dhge




Improving CPI using caches

30%

* An example —

CPU cache memory
What is the improvement (speedup) in memory access time? :

e Caching works because of the principle of locality:

- Locality found in memory access instructions

o Temporal locality: if an item is referenced, it will tend to be referenced
again soon

o Spatial locality: if an item is referenced, items whose addresses are
close by tend to be referenced soon

— 90/10 locality rule

o A program executes about 90% of its instructions in 10% of its code

- We will look at how this principle is exploited in various
microarchitecture techniques
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The History

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 32U K]

* The growth is based on a fundamental contract between
HW and SW[1E & T #8422 1] 5 ]
- HW may change radically “under the hood”
o Old SW can still run on new HW (even faster)

- HW looks the same to SW, always speaking the same language
o The ISA, allows the decoupling of SW development from HW dev

# of hardware :
- ¥ mobile
devices in
operation

growth
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What is ISA?

e Instruction Set == A set of instructions
e The HW/SW contract[Z & F 1113

— Compiler correctly translates source code to the ISA[%% 1% 28]
— Assembler translates to relocatable binary[JC %25 ]

— Linker solidifies relocatables into object code[i%#: %]

— HW promises to do what the object code says[figif4$47]

* Not in the “contract”: non-functional aspects[dE7}1¥]
- How operations are implemented
— Which operations are fast and which are slow and when
- Which operations take more power and which take less
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Problem
|SA + l.l-a rC h — ArCh Algorithm
Program/Language
" . Y . . Runtime System
* “Architecture” = ISA + microarchitecture v oS M
ISA (Architecture)
e |S AH:E[* /&,\EK;J@;F@] :I;:n:archltecture
— Agreed upon interface between sw and hw st

o SW/compiler assumes, HW promises

— What the software writer needs to know to write and debug
system/user programs

* Microarchitecture (p-arch)[#¥2E#4]

— Specific implementation of an ISA
o Implementation of the ISA under specific design constraints and goals
— Not visible to the software

|:. e A G snnimms R
Qﬁarch
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ISA vs. u-arch (cont.)

* Implementation (p-arch) can be various as long as it
satisfies the specification (ISA)

— Add instruction vs. Adder implementation

o Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

— x86 ISA has many implementations: 286, 386, 486, Pentium,

Pentium Pro, Pentium 4, Core, ...

* p-arch usually changes faster than ISA
- Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many u-archs
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What Makes a Good ISA?

* Programmability[A] 4 F2 1]

— Easy to express programs efficiently?

* Implementability[ 7] S 4]
— Easy to design high-performance implementations?

— More recently
o Easy to design low-power implementations?
o Easy to design high-reliability implementations?
o Easy to design low-cost implementations?

e Compatibility[3f 75 14]
— Easy to maintain programmability (implementability) as
languages and programs (technology) evolves?

- x86 (IA32) generations: 8086, 286, 386, 486, Pentium,
Pentiumll, Pentiumlll, Pentium4, Core?2...
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Existing ISAS

 RISC: reduced-instruction set computer[f & {5 2 %E]
— Coined by Patterson in early 80’s
— RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
— Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

* CISC: complex-instruction set computer[& 4445 & ££]
— Term didn’t exist before “RISC”
— Examples: x86, VAX, Motorola 68000, etc.
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