
第20讲：TLP（6）
张献伟

xianweiz.github.io
DCS3013, 12/12/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Review Questions
• Coherence vs. consistency?

• Consistency model?

• Sequential consistency?

• Pros and cons of SC?

• Total Store Ordering?

• Partial Store Ordering?

2

Memory ordering, WàR, WàW, RàW, RàR

Simple paradigm, limited performance.

Relax WàR. Use store buffer, i.e. R can start before W done.

Same vs different location, eventually vs when, cache vs. mem, … 

Maintain all four orderings, i.e., the program order.

Atop of TSO, further relax WàW.



Aggressive Memory Ordering???
• SC maintains all four memory operation orderings
• Certain orderings can be violated ???

− WàR: store buffer to allow read execute earlier
− WàW: reorder writes in the store buffer

p Earlier write is a cache miss, later is a hit
− RàW, RàR: processor may reorder independent instructions

p Out-of-order execution
− Note that all are valid optimizations if a program consists of a 

single instruction stream[对单线程都有效]

• What if we discard all four memory orderings?
− Still a memory consistency model (Release Consistency)

3
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Release Consistency[RC一致性]

• Release Consistency (RC)
− Processors support special synchronization operations
− Memory accesses before memory fence instruction must 

complete before the fence issues
− Memory accesses after fence cannot begin until fence 

instruction is complete
− 硬件不再对一致性做过多保证，需要软件介入以控制执行行为

4

reorderable reads and writes here
...

MEMORY FENCE
...

reorderable reads and writes here
...

MEMORY FENCE



Express Synchronization[同步]

• ’00’ is not allowed in SC (the example)
− But suppose architecture is of RC model, how to get the same 

effect with SC (i.e., no ‘00’)?

• All modern architectures include synchronization
operations to bring their relaxed memory models under 
control when necessary

− Most common operation: barrier (or fence) 

• A barrier inst forces all memory operations before it to 
complete before any memory operation after it can begin

− I.e., a barrier inst effectively reinstates SC at a particular point in 
program execution

5 FENCE: S1/S2 must be completely done before L1/L2



Synchronized Programs[同步程序]

• Two memory accesses by different processors conflict if
− They access the same memory location
− At least one is a write

• Unsynchronized program
− Conflicting accesses not ordered by synchronization (e.g., a 

fence, operation with release/acquire semantics, barrier, etc.)
− Unsynchronized programs contain data races: the output of the 

program depends on relative speed of processors (non-
deterministic program results)

• In practice, most programs are synchronized (via locks, 
barriers, etc. implemented in synchronization libraries)
• Synchronized programs yield SC results on non-SC 

systems[程序在Relaxed Consistency上跑和在SC上跑结果一样]
− Synchronized programs are data-race-free (DRF)

6



Summary: Relaxed Consistency
• Motivation: obtain higher performance by allowing 

reordering of memory operations (reordering is not 
allowed by SC)

− Relaxed consistency models differ in which memory ordering 
constraints they ignore (e.g., TSO, PSO, RC)

• One cost is software complexity: programmer or compiler 
must correctly insert synchronization to ensure certain 
specific operation orderings when needed

− Optimize for the common case: most memory accesses are not 
conflicting, so don’t design a system that pays the cost as if they 
are

− But in practice complexities encapsulated in libraries that 
provide intuitive primitives like lock/unlock, barrier (or lower 
level primitives like fence)

7
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Compiler Reordering
• Besides hardware, compilers can also reorder memory 

operations
− Example: the program prints
− Possible to optimize the code?

p Loop-invariant code motion: move the write outside the loop
p Dead store elimination: remove X = 0

− These two programs are totally equivalent
p Produce the same output

8

X = 0
for i in range(100):

X = 1
print X

X = 1
for i in range(100):

print X

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

a string of 100 ‘1’s (always)

X = 0
X = 1
for i in range(100):

print X

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Compiler Reordering (cont.)
• Now suppose there’s another thread running in parallel 

with the program, and it performs a single write to X
− The first program

p It can print strings like 11101111 …, so long as there’s only one single 
zero (because it will reset X = 1 on the next iteration)

− The second program
p It can print strings like 1110000 …, where once it starts printing 0s it 

never goes back to 1s
− The first can never print 1110000…; the second cannot print 

11011111…

9

X = 1
for i in range(100):

print X

X = 0

X = 0
for i in range(100):

X = 1
print X

X = 0

With parallelism, the compiler optimization no longer produces 
an equivalent program.

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Languages’ Memory Models[语言内存模型]

• The compiler optimization is effectively reordering
− It’s rearranging (and removing some) memory accesses in ways 

that may or may not be visible to programmers

• To preserve intuitive behavior, programming languages 
need memory models of their own,

− To provide a contract to programmers about how their memory 
operations will be reordered

• Memory consistency at the program level

10
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

The memory model means that C++ 
code now has a standardized library
to call regardless of who made the 
compiler and on what platform it's 
running. There's a standard way to 
control how different threads talk to 
the processor's memory.

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


C++ Atomic[原子操作]

• Multithreading: concurrency, data race, thread sync
• Synchronization primitives: synchronize code to avoid 

race conditions in multithreading
− std::mutex: very annoying, be cautious of deadlock
− std::atomic: lock-free, efficient, usually for variables

11https://www.internalpointers.com/post/lock-free-multithreading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

std::mutex mtx;
int num = 0;

void inc() {
std::lock_guard<std::mutex> lock(mtx);
num++;

}

int main() {
std::thread t1(inc), t2(inc);
return 0;

}

std::atomic<int> num = 0;

void inc() {
num++;

}

int main() {
std::thread t1(inc), t2(inc);
return 0;

}

https://www.internalpointers.com/post/lock-free-multithreading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759


C++ Memory Model
• The six memory orders can be combined with each other 

to achieve three ordering models
− Sequential consistent ordering: achieves synchronization and 

guarantees a single total order
p memory_order_seq_cst

− Acquire-release ordering: implements synchronization, but 
does not guarantee global order consistency

p memory_order_acquire / load
p memory_order_release / store
p memory_order_acq_rel / load, store, read-modify-write
p memory_order_consume

− Relaxed ordering: does not implement synchronization, but 
only guarantees atomicity

p memory_order_relaxed

12
https://www.sobyte.net/post/2022-06/cpp-memory-order/

https://www.sobyte.net/post/2022-06/cpp-memory-order/


C++ Memory Model (cont.)

13
https://kernelgo.org/memory-model.html

https://kernelgo.org/memory-model.html


Example

14
https://www.sobyte.net/post/2022-06/cpp-memory-order/

std::atomic<bool> x{false}, y{false};

void thread1() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_relaxed); // (2)

}

void thread2() {
while (!y.load(std::memory_order_relaxed)); // (3)
assert(x.load(std::memory_order_relaxed)); // (4)

}

std::atomic<bool> x{false}, y{false};

void thread1() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_release); // (2)

}

void thread2() {
while (!y.load(std::memory_order_acquire)); // (3)
assert(x.load(std::memory_order_relaxed)); // (4)

}

when loop exits, y has been true. I.e., (2) happened

when loop exits, y has been true. I.e., (2) happened;

no determined order between (1) and (2)

(1) happens before (2):
if (2) is visible, then all before release are visible

(3) before (4) è (1) before (4) è (4) never fails

but possible that (1) has not been done à (4) may fail

https://www.sobyte.net/post/2022-06/cpp-memory-order/


Summary of TLP
• Multiprocessors with thread-level parallelism

− Sharing memory, having private caches
• Cache coherence

− Snooping: every cache block is accompanied by the sharing 
status of that block

p All cache controllers monitor the shared bus so they can update the 
sharing status of the block, if necessary

− Directory-based: a single location (directory) keeps track of the 
sharing status of a block of memory

p Reduce storage and communication overheads

• Memory consistency
− Sequential consistency: maintains all four memory operation 

orderings (W→R, R→R, R→W, W→W)
− Relaxed consistency: allows certain orderings to be violated

p TSO, PSO, RC

15



第20讲：WSC & Interconnect
张献伟

xianweiz.github.io
DCS3013, 12/12/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Parallelism[并行]

• Instruction-level parallelism 
(ILP)

− Pipelining, speculation, OoO, …

• Data-level parallelism (DLP)
− Vectors, GPU, AVX, …

• Thread-level parallelism (TLP)
− Multithreading, multi-cores

• Request-level parallelism (RLP)
− Parallelism among multi 

decoupled tasks

17
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf


Request-level Parallelism[请求级并行]

• Hundreds or thousands of requests per second
− Not your laptop or cell-phone, but popular Internet services like 

web search, social networking, …
− Such requests are largely independent

p Often involve read-mostly databases
p Rarely involve strict read–write data sharing or synchronization across 

requests

• Computation easily partitioned within a request and 
across different requests

18
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf


Luiz André Barroso
• Google Fellow & former VP of 

Engineering
• ACM-IEEE CS Eckert-Mauchly Award

− For pioneering the design of 
warehouse-scale computing and 
driving it from concept to industry

• Award lecture:
− Q: What to focus on while educating 

the next generation of computer 
engineers and scientists?

− A: … being a good programmer is 
really important, doesn’t matter what 
you are where you are in the field of 
computer science; make sure you are 
graduating good programmers
whatever that means for you …

19
https://www.youtube.com/watch?v=Lv_eZX99lUU

https://www.youtube.com/watch?v=Lv_eZX99lUU

