T 5 AL AR

R 4

NN

F203E: TLP (6)

l—a
|—a

Xlanwelz.git

5

hub.io

DCS3013, 12/

12/2022

Dhig

https://xianweiz.github.io/

Review Questions

e Coherence vs. consistency?
Same vs different location, eventually vs when, cache vs. mem, ...

* Consistency model?
Memory ordering, W>R, W=>W, R>W, R2>R

e Sequential consistency?
Maintain all four orderings, i.e., the program order.

* Pros and cons of SC?
Simple paradigm, limited performance.

* Total Store Ordering?
Relax W—=2R. Use store buffer, i.e. R can start before W done.

 Partial Store Ordering?
Atop of TSO, further relax W—=>W.

: ; 3
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

Aggressive Memory Ordering???

* SC maintains all four memory operation orderings

* Certain orderings can be violated ???

— W=>R: store buffer to allow read execute earlier

- W=>W: reorder writes in the store buffer
o Earlier write is a cache miss, later is a hit

— R2>W, R—=2>R: processor may reorder independent instructions
o Out-of-order execution

- Note that all are valid optimizations if a program consists of a
single instruction stream[X} B 28 FE &H XX

 What if we discard all four memory orderings?
- Still a memory consistency model (Release Consistency)

g £l 3 I }hGLZ
oo/ sov wrsevonvessiry tty: / /154 18.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency slides.pdf 4

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Re

ease Consistency[rc—E]

* Re

ease Consistency (RC)

— Processors support special synchronization operations
- Memory accesses before memory fence instruction must

complete before the fence issues

- Memory accesses after fence cannot begin until fence

instruction is complete

R AN o — B 2 ORAE, 7R Z AT AN A HIATAT N
reorderable reads and writes here
IVIEIVIOI.?.\-(FENCE
reorderable reac;l.s: and writes here

MEMORY FENCE

Dhge

Express Synchronization[[d]

* ‘00’ is not allowed in SC (the example)
— But suppose architecture is of RC model, how to get the same
effect with SC (i.e., no ‘00’)?

* All modern architectures include synchronization
operations to bring their relaxed memory models under
control when necessary i

- Most common operation: barrier (or fence)

* A barrier inst forces all memory operations before it to
complete before any memory operation after it can begin

- |.e., a barrier inst effectively reinstates SC at a particular point in
program execution

Thread 1 Thread 2

S1: Store x = NEW; | S2: Store y = NEW;
1) A =1 BB = 1 FENCE FENCE
(2) print(B) (4) print(A) c Ll: Load rl1 = v; 1.2: Load r2 = x:

FENCE: S1/S2 must be completely done before L1/L2

Synchronized ProgramsilF 2+

* Two memory accesses by different processors conflict if

data race Idata race

- They access the same memory location gy Ehen Ul

var count = 0

lock (1) lock (1)

— At least one is a write s 0 C G o

* Unsynchronized program % e
— Conflicting accesses not ordered by synchronlzatlon (e.g., a
fence, operation with release/acquire semantics, barrier, etc.)

- Unsynchronized programs contain data races: the output of the
program depends on relative speed of processors (non-
deterministic program results)

* In practice, most programs are synchronized (via locks,
barriers, etc. implemented in synchronization libraries)

* Synchronized programs yield SC results on non-SC
systems|[F% 7 7ERelaxed Consistency [I FIFESC I I 45 B —FE]

- Synchronized programs are data-race-free (DRF)
@ turs INCE

Summary: Relaxed Consistency

* Motivation: obtain higher performance by allowing
reordering of memory operations (reordering is not
allowed by SC)

— Relaxed consistency models differ in which memory ordering
constraints they ignore (e.g., TSO, PSO, RC)

* One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
specific operation orderings when needed

— Optimize for the common case: most memory accesses are not
conflicting, so don’t design a system that pays the cost as if they
are

- But in practice complexities encapsulated in libraries that
provide intuitive primitives like lock/unlock, barrier (or lower
level primitives like fence)

"’E“é
X sov wr-sexonversity Wit p: //15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency slides.pdf Py

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Compiler Reordering

* Besides hardware, compilers can also reorder memory
operations
— Example: the program prints a string of 100 ‘1’s (always)
— Possible to optimize the code?

o Loop-invariant code motion: move the write outside the loop
o Dead store elimination: remove X =0

— These two programs are totally equivalent
o Produce the same output

X=0 X=1
foriin range(100): foriin range(100):
X=1 x=5 print X
print X X=1
foriin range(100):
print X

8 Dhge

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Compiler Reordering (cont.)

* Now suppose there’s another thread running in parallel
with the program, and it performs a single write to X

— The first program

o It can print strings like 11101111 ..., so long as there’s only one single
zero (because it will reset X = 1 on the next iteration)

— The second program

o It can print strings like 1110000 ..., where once it starts printing Os it
never goes back to 1s

— The first can never print 1110000...; the second cannot print

11011111... With p?rallelism, the compiler optimization no longer produces
an equivalent program.
X=0 X=1
foriin range(100): foriin range(100):
X=1 print X
print X
X=0
0 i

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Languages’ Memory Modelsiszpim)

* The compiler optimization is effectively reordering

- It’s rearranging (and removing some) memory accesses in ways
that may or may not be visible to programmers

* To preserve intuitive behavior, programming languages
need memory models of their own,

— To provide a contract to programmers about how their memory
operations will be reordered

* Memory consistency at the program level

std::memory_order

Defined in header <atomic>

typedef d
The memory model means that C++ e e i ¥
. . memory order_consume,
code now has a standardized I|brary memory order acquire, (since C++11)
memory order_release, (until C++20)
to call regardless of who made the memory_order_acq_rel,
. - memory order_seq_cst
compiler and on what platform it's } memory order;
. : enum class memory order : /*unspecified*/ {
running. There's a standard way to relaxed, consume, acquire, release, acq_rel, seq_cst
Y
control how different threads talk to inline constexpr memory order memory order relaxed = memory order::relaxed;
@n{;ne constexpr memory_orger memory_orger_consqme = memory_orger::consgme; (since C++20)
' inline constexpr memory order memory order_acquire = memory_order::acquire;
the processor s memaory. inline constexgr memorz:order memorz:order:re%ease = memorg_order::re%ease;

inline constexpr memory order memory order_acq rel = memory order::acq_rel;
inline constexpr memory order memory order_seq_cst = memory order::seq_cst;

Lo IR
https://www.cs.utexas.edu/~bornholt/post/memory-models.html 4

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

C++ Atomic[JF FH4E)]

* Multithreading: concurrency, data race, thread sync

* Synchronization primitives: synchronize code to avoid
race conditions in multithreading
- std::mutex: very annoying, be cautious of deadlock
- std::atomic: lock-free, efficient, usually for variables

std: :mutex mtx; std: :atomic<int> num = 0;
int num = 0;
void inc() {

void inc() { NUM++

std: :lock_guard<std: :mutex> lock(mtx); 1

num++;
} int main() {

std: :thread t1(inc), t2(inc);

int main() { return 0;

std: :thread t1(inc), t2(inc); 1

return 0;
¥

https://www.internaIpointers.com/post/@g_k—free—muItith reading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

u‘.i’ﬁ“ﬁ

https://www.internalpointers.com/post/lock-free-multithreading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

C++ Memory Model

* The six memory orders can be combined with each other
to achieve three ordering models

— Sequential consistent ordering: achieves synchronization and
guarantees a single total order
o memory_order_seq_cst
— Acquire-release ordering: implements synchronization, but
does not guarantee global order consistency

o memory_order_acquire / load

o memory_order_release / store

o memory_order_acq_rel / load, store, read-modify-write
o memory_order_consume

- Relaxed ordering: does not implement synchronization, but

HP typedef enum memory order {
only guarantees atom|C|ty memory order relaxed,
memory order consume,
o memory_order_relaxed memory order acquire,

memory order release,

memory order acq rel,

memory order seq cst
} memory order;

12 | ’rﬂq
https://www.sobyte.net/post/2022-06/cpp-memory-order/ 1

https://www.sobyte.net/post/2022-06/cpp-memory-order/

C++ Memory Model (cont.)

strict

seq_cst total order (SC for DRF code)

release /acquire

}message passing
release /consume

relaxed no synchronization
relaxed

BEE 7B SCHLI

memory _order relaxed AN KT BT I AT v R SIE

memory order_consume AREFEH, A RS R4 R TR
1B, DITEARSF R FHAE R R HIT

memory _order acquire ARLEFEH, A e R E LA KR T
BAE SE UG BT

memory order release AR, P Z RIS HAE S UG A BB T
AR THAE

memory_order_acq_rel [l 5} 4 & memory_order_acquirefll
memory _order_releasefric

memory _order seq cst BRI TP $ AT

13 CE
https://kernelgo.org/memory-model.html W

https://kernelgo.org/memory-model.html

Example

std::atomic<bool> x{false}, y{false};

void threadi() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_relaxed); // (2)

}

no determined order between (1) and (2)

void thread?2() {
while (ly.load(std::memory_order_relaxed)); // (3) when loop exits, y has been true. l.e., (2) happened;

assert(x.load(std::memory_order_relaxed)); // (4) but possible that (1) has not been done = (4) may fail
}

std::atomic<bool> x{false}, y{false};

void threadi() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_release); // (2)

}

(1) happens before (2):
if (2) is visible, then all before release are visible

void thread?2() {
while (ly.load(std::memory_order_acquire)); // (3) when loop exits, y has been true. l.e., (2) happened
assert(x.load(std::memory_order_relaxed)); // (4) (3) before (4) =» (1) before (4) = (4) never fails

14 ’rﬂtz
https://www.sobyte.net/post/2022-06/cpp-memory-order/ ”r i

https://www.sobyte.net/post/2022-06/cpp-memory-order/

Summary of TLP

* Multiprocessors with thread-level parallelism
— Sharing memory, having private caches

e Cache coherence

- Snooping: every cache block is accompanied by the sharing
status of that block

o All cache controllers monitor the shared bus so they can update the
sharing status of the block, if necessary

- Directory-based: a single location (directory) keeps track of the
sharing status of a block of memory

o Reduce storage and communication overheads

* Memory consistency

- Sequential consistency: maintains all four memory operation
orderings (W—->R, R->R, R>W, W->W)

— Relaxed consistency: allows certain orderings to be violated
o TSO, PSO, RC

“‘ : k)
@ tuxt bl

mﬁq E XBR T ML

\% /,."
\Csey %/ SUN YAT-SENUNIVERSITY PP QY NATIONAL SUPERCOMPUTER CENTER IN GUANGZHOU

Computer Architecture

T 5 AL AR

R 4

F201F: WSC & Interconnect
i NGE
xianweiz.github.io

DCS3013, 12/

12/2022

Dhge

https://xianweiz.github.io/

Parallelism[3f47

* Instruction-level parallelism
(ILP)
Warehouse

- Pipelining, speculation, 000, ... Scale

Computer

e Data-level parallelism (DLP)
- VECtOrS, GPU, AVX, e -~ Computer ~~

%L Sy - » : =
. Core | ... | Core ‘
* Thread-level parallelism (TLP) ““*"fﬁf,»,/ — |
— Multithreading, multi-cores et | input/Output
Instru&z’fg'?g'::‘LJnit(s) | FUSri;tti?Sr)lal
. ";':é:‘“} 2 ,:AO+BOZA1+BI:A2+BZLA3+B3,\ o S -

* Request-level parallelism (RLP) Cacheemory . || ogicGates,
— Parallelism among multi N e

decoupled tasks

17 CE
https://inst.eecs.berkeley.edu/~cs61c/resources/sul8 lec/Lecture21.pdf s

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Request-level Parallelismii k4 3f

17]

 Hundreds or thousands of requests per second

- Not your laptop or cell-phone, but popular Internet services like

web search, social networking, ...

— Such requests are largely independent
o Often involve read-mostly databases

o Rarely involve strict read—write data sharing or synchronization across

requests

* Computation easily partitioned within a request and

across different requests
¥

Google Web server -¢—»| Spell checker

] ‘I’
'1 l‘\
[\‘.
4’ |\
/ |
| \
J
/

. LIE \
X / | \ A
7 J /1/ \\

’] ‘\
Index servers Document servers

https://inst.eecs.berkeley.edu/~cs61c/resources/sul8 lec/Lecture21.pdf

Ad server

u‘.i’ﬁ“ﬁ

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Luiz André Barroso

* Google Fellow & former VP of
Engineering

* ACM-IEEE CS Eckert-Mauchly Award

— For pioneering the design of
warehouse-scale computing and
driving it from concept to industry

e Award lecture:

— Q: What to focus on while educating
the next generation of computer |
engineers and scientists? ‘

_ A: N being a good programmer iS ‘,‘reallyunportantdoesn'!matterwhalyou
really important, doesn’t matter what BEEZCGYERFIWALE
you are Where you are in the field of A Brief History of Warehouse-Scale
computer science, make sure YOU alre e ritetialate
g ra d u ati ng gOOd p rog rammers Reflections Upon Receiving the 2020 Eckert-Mauchly Award
Whatever that means for you . Luiz André Barroso ®, Google, Mountain View, CA, 94043, USA

19 INE

https://www.youtube.com/watch?v=Lv ezZX99IUU

https://www.youtube.com/watch?v=Lv_eZX99lUU

