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Review

* Warehouse scale computer
— Request level parallelism
— Server-rack-array-WSC
— Load variance, fault tolerance
- Power Usage Effectiveness (PUE)

* Interconnection network

— Classification: based on number and proximity of devices to be
connected

— Four domains: LAN, WAN, SAN, On-chip

o We are concerned with system-area and on-chip networks
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Why Study Interconnects?

* They provide external connectivity from system to
outside world

— Also, connectivity within a single computer system at many
levels

o /O units, boards, chips, modules and blocks inside chips
* Interconnection networks should be well desighed
— To transfer the maximum amount of information

- Within the least amount of time (and cost, power constraints)
- So as not to bottleneck the system

* Application: managing communication can be critical to
performance
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Why Study Interconnects? (cont.)

* Trends: high demand on communication bandwidth

- Increased computing power and storage capacity
- Switched networks are replacing buses

» Computer architects/engineers must understand
interconnect problems and solutions in order to more

effectively design and evaluate systems
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Basic Definitions[# 4z X

* An interconnection network is a graph of nodes
interconnected using channels

* Node[ 77./4]: a vertex in the network graph
— Terminal nodes: where messages originate and terminate

— Switch (router) nodes: forward messages from in ports to out
ports

— Switch degree: number of in/out ports per switch

* Channel[/Z:&]: an edge in the graph
- i.e., an ordered pair (x,y) where x and y are nodes
— Channel = link (transmission medium) + transmitter + receiver
— Channel width: w = number of bits transferred per cycle
— Phit (physical unit or digit): data transferred per cycle
— Signaling rate: f = number of transfer cycles per second
— Channel bandwidth: b = w x f

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fal5/cse610/slides/07-icn.pdf »y ;G z
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Basic Definitions (cont.)

* Path (or route): a sequence of channels, connecting a
source node to a destination node

* Minimal Path: a path with the minimum number of
channels between a source and a destination
— Rxy = set of all minimal paths from xtoy

* Network Diameter: longest minimal path over all (source,
destination) pairs

K [
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ICN Design Considerations[#it#% &)

* Application requirements
— Number of terminals or ports to support
— Peak bandwidth of each terminal
— Average bandwidth of each terminal
- Latency requirements
— Message size distribution
- Expected traffic patterns
- Required quality of service
— Required reliability and availability

* Job of an interconnection network is to transfer
information from source node to dest. node in support of
network transactions that realize the application

— Latency as small as possible
— As many concurrent transfers as possible
— Cost as low as possible

() . . M[HG
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ICN Design Considerations (cont.)

* Example requirements for a coherent processor-memory
interconnect

— Processor ports 1-2048 o conones
— Memory ports 1-4096 s o e
— Peak BW 8 GB/s - | L=
— Average BW 400 MB/s - +-
- Message latency 100 ns = *:E
— Message size 64 or 576 bits 2 £
— Traffic pattern arbitrary - $2
— Quality of service none : I
— Reliability no message loss == o
— Availability 0.999 to 0.99999

Intel® Ultra Path Interconnect (Intel® UPI)

{ R |
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ICN Design Considerations (cont.)

* Technology constraints
- Signaling rate
— Chip pin count (if off-chip networking)
— Area constraints (typically for on-chip networking)
— Chip cost
— Circuit board cost (if backplane boards needed)
— Signals per circuit board
— Signals per cable
— Cable cost
— Cable length
- Channel and switch power constraints  [rpcore

I’IP core J B ‘ 1P coré]

geRouter . .
o | 1P core‘
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Off-chip vs. On-chip ICNS[}4h vs. A k]

* Off-chip: I/O bottlenecks e
- Pin-limited bandwidth ITrace
— Inherent overheads of off-chip I/O transmission engih

* On-chip ) [ES

- Wiring constraints
o Metal layer limitations
o Horizontal and vertical layout
o Short, fixed length
o Repeater[r4k%%] insertion limits routing of wires '" <™

switch

* Avoid routing over dense logic link
* Impact wiring density
— Power
o Consume 10-15% or more of die power budget
- Latency
o Different order of magnitude
o Routers consume significant fraction of latency

https://compas.cs.stonybrook.edu/~nhona rr]r'mgnd/courses/fa 15/cse610/slides/07-icn.pdf »y !lﬂli
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Main Aspects of an ICN[FZH &)

 Topology[#H#}]
— How switches are connected via links
o Affects routing, throughput, latency, complexity/cost of implementation

* Routing[3- %]
— How a message gets from its source to its destination in the network
* Flow control[/i#%]

— Allocating network resources (channels, buffers, etc.) to packets and
managing contention

e Switch microarchitecture[%Z # LR ZE#4]
— Internal architecture of a network switch

* Network interface[™ 484+ 11]
— How to interface a terminal with a switch

* Link architecture[# 48 44]
- Signaling technology and data representation on the channel

* bk & https://compas.cs.stonybrook. edu/“nhonarmand/oi) rses/fal5/cse610/slides/07-icn.pdf ‘E*
”@«é" . " http://15418.courses.cs.cmu.edu/spring2016content/lectures/15 interconnects/15 interconnects slides.pdf  Wp¥
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Types of Topologies[#rHhEH)

o Direct[E £:3h M 45 H4]
— Each router is associated with a terminal node
— All routers are sources and destinations of traffic

* Indirect[dE BB M50

— Routers are distinct from terminal nodes
— Terminal nodes can source/sink traffic
— Intermediate nodes switch traffic between terminal nodes

Static network Indirect network
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Network Topologies[#ri#h]

* Blocking vs. Non-Blocking

- If connecting any permutation of sources & destinations is
possible, network is non-blocking; otherwise network is
blocking

* A variety of network topologies have been proposed and
implemented
— These topologies tradeoff performance for cost

— Commercial machines often implement hybrids of multiple
topologies for reasons of packaging, cost, and available

components 5; I I @

D) Bus Linear Ring Tree i
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Metrics for Comparing Topologies[fg#x]

* Switch degree[5Z #: )&
— Proxy for switch complexity

* Hop count[Bk%%] (average and worst case)
— Proxy for network latency

* Maximum channel load[& K3#iE 171%%]
— A proxy for hotspot load
 Bisection bandwidth[X} 75 7]

— Proxy for maximum traffic a network can support under a
uniform traffic pattern

* Path diversity[#15 2 F:14]

— Provides routing flexibility for load balancing and fault tolerance
— Enables better congestion avoidance

h;‘ﬂi
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To

nologies: Buses[#£;]

* Al

processors access a common bus for exchanging data

* The distance between any two nodes is O(1) in a bus. The
bus also provides a convenient broadcast media

* However, the bandwidth of the shared bus is a major
bottleneck

* Typical bus based machines are limited to dozens of
nodes

— Sun Enterprise servers and Intel Pentium based shared-bus

multiprocessors are examples of such architectures

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5§

Bns

o Memory 1 Memory 2 Memory 3 Memory 4 Memory 5§ A
gx *!.e *J‘K’% )’;E

™http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf
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Topologies: Crossbars[zs ¥

* A crossbar network uses an pxm grid of switches to
connect p inputs to m outputs in a non-blocking manner

* The cost of a crossbar of p processors grows as O(p2)
- This is generally difficult to scale for large values of p

— Examples of machines that employ crossbars include the Sun
UItra HPC 10000 and the FUJItSU VPPSOO

m E.'.:Fr: ;’XLUM
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Sun SPAR( T2 (8 cores, 8 L2 cache banks) Oracle SPARCTS5 (16 cores, 8 L3 cache banks)

Note that crosshar (CCX) occupies about the same chip area as a core
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Topologies: Multistage[£ %]

* Indirect network with multiple switches between
terminals

* Multistage interconnects strike a compromise between
Buses and Crossbars
— Crossbars have excellent performance scalability but poor cost

scalability
— Buses have excellent cost scalability, but poor performance

>Ca I d b | I | ty Processors Multistage interconnection network Memory banks
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T — 1]

Stage1 | | Stage2 _ Stagen | .
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Topologies: Star Connected[£#]

* Every node is connected only to a common node at the
center

* Distance between any pair of nodes is O(1)
* However, the central node becomes a bottleneck

* |n this sense, star connected networks are static
counterparts of buses
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Topologies: Linear Arrays, Meshes, ...

* In a linear array, each node has two neighbors, one to its
left and one to its right

— If the nodes at either end are connected, we refer to it as a 1-D
torus or aring

* A generalization to 2 dimensions has nodes with 4
neighbors, to the north, south, east, and west

* A further generalization to d dimensions has nodes with
2d neighbors

— A special case of a d-dimensional mesh is a hypercube. Here, d
= log p, where p is the total number of nodes

(Y ) ( — 1) ()

@ (b)
(a) with no wraparound links; (b) with wraparound link.
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Topologies: Mesh{m#&]

e Two and three dimensional meshes
- (a) 2-D mesh with no wraparound

- (b) 2-D mesh with wraparound link (2-D torus)

o Mesh is not symmetric on edges: performance very sensitive to
placement of task on edge vs. middle

o Torus avoids this problem
- (c) a 3-D mesh with no wraparound
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Topologies: Tree[##!]

* Diameter and average distance logarithmic
— k-ary tree, height = logk N

— Address specified d-vector of radix k coordinates describing
path down from root

— Route up to common ancestor and down

* Trees can be laid out in 2D with no wire crossings
— This is an attractive property of trees
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Topologies: Fat-Tree[ )

* Links higher up the tree potentially carry more traffic than
those at the lower levels

* For this reason, a variant called a fat-tree, fattens the
links as we go up the tree

(a) Binary tree

AN /\\
d@(éé)@ OO

(b) Binary fat—tree
‘»’ \ :’ 3
@) TurE 23 Dyl
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And Other Topologies ...

* Many other topologies with different properties
discussed in the literature
— Clos Networks
— Omega networks
— Benes networks
— Bitonic networks
- Flattened Butterfly
— Dragonfly
— Cube-connected cycles
- HyperX

* However, these are typically special purpose and not used
in general purpose hardware

24 u‘;;‘ﬁf
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System Evolution
* Computing

— Scalar = vector

- Homogeneous = heterogeneous: CPU +
GPU/accelerator/FPGA/DPU
* Memory

- DRAM, GDDR, HBM
- HDD, SSD, NVM
* I[Interconnect

a >
gy
— Intra-node: PCl-e, CAPI/OpenCAPI, CCIX, UPI/QPI, NVLink, Gen-Z
- Inter-node: Ethernet, InfiniBand, Omnipath, HPC
Ethernet/Slingshot
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Compute Express Link (CXL)

e Unveiled in March 2019

* Open industry standard processor interconnect

- Unified, coherent memory space between the CPU and any
memory attached CXL device.

- High-bandwidth, low-latency connection between host and
devices including accelerators, memory expansion, and smart
|/O devices.

— Utilizes PCI Express 5.0 physical layer infrastructure and the
PCle alternate protocol.

- Designed to meet demanding needs of HPC work in Al, ML,
communication systems through enablement of coherency and
memory semantics across heterogeneous processing and

memory systems. _Compute
‘ ( . Express
N Llnkm

&
(&) T K 2
¥ )
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Compute Express Link (cont.)

* The CXL transaction layer is comprised of three
dynamically multiplexed sub-protocols on a single link
— CXL.io: functionally equivalent to the PCle 5.0 protocol
— CXL.cache: for devices to cache data from the CPU memory
— CXL.memory: for processor to access the memory of attached

devices
Caching Devices / Accelerators Memory Buffers Accelerators with Memory
Accelerator ]
il E g Memory g‘ g‘ Accelerator
g >~ EE
ﬁCXL ﬁCXL ﬁCXL
(e o o
g — | Cache Q— [Cache’ Q — | Cache
& | Processor ’no: __| Processor x | Processor
a o) a)
CXL.io CXL.cache CXL.io CXL.mem CXL.io CXL.cache CXL.mem

(5 ry
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CXL-based Memory

e Unified sharing memory between host and devices

- No longer use host memory as an intermediary for
communication

* Scalable to provide more memory types and capacity
— Just attached via CXL fabric
— GFAM: Global Fabric Attached Memory

—————————————————————————————————————————

--------------------

-----------

1
1
1
Pooled Memory i
E
1

————————————————




CXL-based System

* Multi-tiered switching
- Enables the implementation of switch fabrics

— Switches can connect to other switches

e Rack-scale memory fabric
— Fine-grained resource sharing across multiple domains

Compute Node0 Compute Nodel Compute Node2 Compute NodeN
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HW Companies Building Custom Chips
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SW Companies are Bmldmg HW

Chips Off the Old Block: Computers Are
Taking Design Cues From Human Brains
(September 16, 2017)

After training a speech-recognition algorithm,

for example, Microsoft offers it up as an online

service, and it actually starts identifying - S T e
commands that people speak into their S
smartphones. G.P.U.s are not quite as :
efﬁci:nt during this stage of :‘he process. AWS Inferentia
So, many companies are now building

chips specifically to do what the other

chips have learned.

Google built its own specialty chip, a Tensor
Processing Unit, or T.P.U. Nvidia is building a
similar chip. And Microsoft has
reprogrammed specialized chips from E = :
Altera, which was acquired by Intel, so that it N\ . =7 : Ee"

too can run neural networks more easily. ) - W;—aauemguag




Startups Building Custom Hardware
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Past General-Purposeri# ]

* Moore’s Law enabled:
— Deep memory hierarchy
- Wide SIMD units
— Deep pipelines
— Branch prediction
— Out-of-order execution
— Speculative prefetching
- Multithreading 1
- Multiprocessing

40 years of Processor Performance

e vs. VAX11-780

Performanc

- cisc

iy 2X13.5yrs
(22%Hy)

* The sophisticated architectures targeted general-purpose
code
— Architects treated code as black boxes
— Extract performance from software that is oblivious to

architecture A
Dtuxs 34 g




Domain-Specific Architecture4isi %

* Hard to keep improving performance
— More transistors means more power

— Energy budget is limited: higher performance - lower
energy/operation

- Enhancing existing cores may only boost 10% performance

* Need factor of 100 improvements in number of
operations per instruction

- Requires domain specific architectures

10-50X improvement 100-1000X improvement

].1 in TOPS & TOPS /W In TOPS & TOPS /W
S,

Frequency/Ease of Use

. Performance / Power Efficiency
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Domain-Specific Architecture (cont.)

* Computers will be much more heterogeneous[5#4]
— Standard processors to run conventional large programs
o E.g., operating system
— Domain-specific processors doing only a narrow range of tasks
o But they do them extremely well

* DSA opportunities[HLi]
- Preceding architecture from the past may not be a good match
to some domains

o E.g., caches are excellenet general-purpose architectures but not
necessarily for DSAs

— Domain-specific algorithms are almost always for small
compute-intensive kernels of larger systems

o DSAs should focus on the subset and not plan to run the entire program
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DSA Challenges[#ki#]

* Architects must expand their areas of expertise
— Must now learn application domains and algorithms

* Nonrecurring engineering (NRE) costs[— XM T2 4]
- Find a target whose demand is large enough to justify allocating
dedicated silicon on an SOC or even a custom chip

o The costs are amortized over the number of chips manufactured, so
unlikely to make economic sense if you need only 1000 chips

— For smaller volume applications, use reconfigurable chips such
as FPGAs

o Several different applications may reuse the same reconfigurable
hardware to amortize costs

o However, the hardware is less efficient than custom chips, so the gains
from FPGAs are more modest

* Port software[# i # /4]
- Programming languages and compilers
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DSA Design Guidelines[#it i)

* Why guidelines?
- Lead to increased area and energy efficiency

— Provide two valuable bonus effects

9@th Percentile Value

HTTP Request

== Response Time

o Lead to simpiler designs, reducing the cost of NRE of DSAs

o For user-facing apps, better match the 99th-percentile response-time
deadlines

Guideline

TPU

Catapult

Crest

Pixel Visual Core

Design target

Data center ASIC

Data center FPGA

Data center ASIC

PMD ASIC/SOC IP

1. Dedicated 24 MiB Unified Buffer, Vanes N.A Per core: 128 KiB line

memones 4 MiB Accumulators buffer, 64 KiB P.E.
memory

2. Larger 65,536 Mulaply- Vanes N.A Per core: 256 Multiply-
anthmetic unit  accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD,  SIMD, MISD N.A. MPMD, SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit integer  21-bit H. P. 8-bit, 16-bit, 32-bit integer
size 32-bit Fl. PL

5. Domain- TensorFlow Venlog TensorFlow Halide/TensorFlow
snecific lane.
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DSA Design Guidelines (cont.)

* Use dedicated memories to minimize the distance over which
data is moved
— Hardware cache = software-controlled scratchpad

o Compiler writers and programmers of DSAs understand their domain
o Software-controlled memories are much more energy efficient

* Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

— Owing to the superior understanding of the execution of programs

e Use the easiest form of parallelism that matches the domain
— Target domains for DSAs almost always have inherent parallelism
o How to utilize that parallelism and how to expose it to the software?

— Design the DSA around the natural granularity of the parallelism and
expose that parallelism simply in the programming model

o SIMD > MIMD (i.e., DLP > TLP), VLIW > 000
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