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Review
• Warehouse scale computer

− Request level parallelism
− Server-rack-array-WSC
− Load variance, fault tolerance
− Power Usage Effectiveness (PUE)

• Interconnection network
− Classification: based on number and proximity of devices to be 

connected
− Four domains: LAN, WAN, SAN, On-chip

p We are concerned with system-area and on-chip networks
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Why Study Interconnects?
• They provide external connectivity from system to 

outside world
− Also, connectivity within a single computer system at many 

levels
p I/O units, boards, chips, modules and blocks inside chips

• Interconnection networks should be well designed
− To transfer the maximum amount of information
− Within the least amount of time (and cost, power constraints)
− So as not to bottleneck the system

• Application: managing communication can be critical to 
performance
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Why Study Interconnects? (cont.)
• Trends: high demand on communication bandwidth

− Increased computing power and storage capacity
− Switched networks are replacing buses

• Computer architects/engineers must understand 
interconnect problems and solutions in order to more 
effectively design and evaluate systems
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Basic Definitions[基本定义]

• An interconnection network is a graph of nodes
interconnected using channels
• Node[节点]: a vertex in the network graph

− Terminal nodes: where messages originate and terminate
− Switch (router) nodes: forward messages from in ports to out 

ports
− Switch degree: number of in/out ports per switch

• Channel[信道]: an edge in the graph
− i.e., an ordered pair (x,y) where x and y are nodes
− Channel = link (transmission medium) + transmitter + receiver
− Channel width: w = number of bits transferred per cycle
− Phit (physical unit or digit): data transferred per cycle
− Signaling rate: f = number of transfer cycles per second
− Channel bandwidth: b = w × f
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Basic Definitions (cont.)
• Path (or route): a sequence of channels, connecting a 

source node to a destination node
• Minimal Path: a path with the minimum number of 

channels between a source and a destination
− Rxy = set of all minimal paths from x to y

• Network Diameter: longest minimal path over all (source, 
destination) pairs
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ICN Design Considerations[设计考虑]

• Application requirements
− Number of terminals or ports to support
− Peak bandwidth of each terminal
− Average bandwidth of each terminal
− Latency requirements
− Message size distribution
− Expected traffic patterns
− Required quality of service
− Required reliability and availability

• Job of an interconnection network is to transfer 
information from source node to dest. node in support of 
network transactions that realize the application

− Latency as small as possible
− As many concurrent transfers as possible
− Cost as low as possible
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ICN Design Considerations (cont.)
• Example requirements for a coherent processor-memory 

interconnect
− Processor ports 1-2048
− Memory ports 1-4096
− Peak BW 8 GB/s
− Average BW 400 MB/s
− Message latency 100 ns
− Message size 64 or 576 bits
− Traffic pattern arbitrary
− Quality of service none
− Reliability no message loss
− Availability 0.999 to 0.99999
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ICN Design Considerations (cont.)
• Technology constraints

− Signaling rate
− Chip pin count (if off-chip networking)
− Area constraints (typically for on-chip networking)
− Chip cost
− Circuit board cost (if backplane boards needed)
− Signals per circuit board
− Signals per cable
− Cable cost
− Cable length
− Channel and switch power constraints
− …
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Off-chip vs. On-chip ICNs[片外 vs. 片上]

• Off-chip: I/O bottlenecks
− Pin-limited bandwidth
− Inherent overheads of off-chip I/O transmission

• On-chip
− Wiring constraints

p Metal layer limitations
p Horizontal and vertical layout
p Short, fixed length
p Repeater[中继器] insertion limits routing of wires

• Avoid routing over dense logic
• Impact wiring density

− Power
p Consume 10-15% or more of die power budget

− Latency
p Different order of magnitude
p Routers consume significant fraction of latency
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Main Aspects of an ICN[主要因素]

• Topology[拓扑]
− How switches are connected via links

p Affects routing, throughput, latency, complexity/cost of implementation

• Routing[寻路]
− How a message gets from its source to its destination in the network

• Flow control[流控]
− Allocating network resources (channels, buffers, etc.) to packets and 

managing contention
• Switch microarchitecture[交换机微架构]

− Internal architecture of a network switch
• Network interface[网络接口]

− How to interface a terminal with a switch
• Link architecture[链接架构]

− Signaling technology and data representation on the channel
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Types of Topologies[拓扑类型]

• Direct[直接拓扑结构]
− Each router is associated with a terminal node
− All routers are sources and destinations of traffic

• Indirect[非直接拓扑结构]
− Routers are distinct from terminal nodes
− Terminal nodes can source/sink traffic
− Intermediate nodes switch traffic between terminal nodes
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Network Topologies[拓扑]

• Blocking vs. Non-Blocking
− If connecting any permutation of sources & destinations is 

possible, network is non-blocking; otherwise network is 
blocking

• A variety of network topologies have been proposed and 
implemented

− These topologies tradeoff performance for cost
− Commercial machines often implement hybrids of multiple 

topologies for reasons of packaging, cost, and available 
components
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Metrics for Comparing Topologies[指标]

• Switch degree[交换度]
− Proxy for switch complexity

• Hop count[跳数] (average and worst case)
− Proxy for network latency

• Maximum channel load[最大通道负载]
− A proxy for hotspot load

• Bisection bandwidth[对半带宽]
− Proxy for maximum traffic a network can support under a 

uniform traffic pattern

• Path diversity[路径多样性]
− Provides routing flexibility for load balancing and fault tolerance 
− Enables better congestion avoidance
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Topologies: Buses[总线]

• All processors access a common bus for exchanging data
• The distance between any two nodes is O(1) in a bus. The 

bus also provides a convenient broadcast media
• However, the bandwidth of the shared bus is a major 

bottleneck
• Typical bus based machines are limited to dozens of 

nodes
− Sun Enterprise servers and Intel Pentium based shared-bus 

multiprocessors are examples of such architectures
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Topologies: Crossbars[交叉]

• A crossbar network uses an p×m grid of switches to 
connect p inputs to m outputs in a non-blocking manner
• The cost of a crossbar of p processors grows as O(p2)

− This is generally difficult to scale for large values of p
− Examples of machines that employ crossbars include the Sun 

Ultra HPC 10000 and the Fujitsu VPP500
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Topologies: Multistage[多级]

• Indirect network with multiple switches between 
terminals
• Multistage interconnects strike a compromise between 

Buses and Crossbars
− Crossbars have excellent performance scalability but poor cost 

scalability
− Buses have excellent cost scalability, but poor performance 

scalability
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Topologies: Star Connected[星型]

• Every node is connected only to a common node at the 
center
• Distance between any pair of nodes is O(1)
• However, the central node becomes a bottleneck
• In this sense, star connected networks are static 

counterparts of buses
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Topologies: Linear Arrays, Meshes, …
• In a linear array, each node has two neighbors, one to its 

left and one to its right
− If the nodes at either end are connected, we refer to it as a 1-D 

torus or a ring

• A generalization to 2 dimensions has nodes with 4 
neighbors, to the north, south, east, and west
• A further generalization to d dimensions has nodes with 

2d neighbors
− A special case of a d-dimensional mesh is a hypercube. Here, d 

= log p, where p is the total number of nodes
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Topologies: Mesh[网格]

• Two and three dimensional meshes
− (a) 2-D mesh with no wraparound
− (b) 2-D mesh with wraparound link (2-D torus)

p Mesh is not symmetric on edges: performance very sensitive to 
placement of task on edge vs. middle

p Torus avoids this problem
− (c) a 3-D mesh with no wraparound
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Examples
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Topologies: Tree[树型]

• Diameter and average distance logarithmic
− k-ary tree, height = logk N
− Address specified d-vector of radix k coordinates describing 

path down from root
− Route up to common ancestor and down

• Trees can be laid out in 2D with no wire crossings
− This is an attractive property of trees
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Topologies: Fat-Tree[胖树]

• Links higher up the tree potentially carry more traffic than 
those at the lower levels
• For this reason, a variant called a fat-tree, fattens the 

links as we go up the tree
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And Other Topologies …
• Many other topologies with different properties 

discussed in the literature
− Clos Networks
− Omega networks
− Benes networks
− Bitonic networks
− Flattened Butterfly
− Dragonfly
− Cube-connected cycles
− HyperX
− …

• However, these are typically special purpose and not used 
in general purpose hardware
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System Evolution
• Computing

− Scalar à vector
− Homogeneous à heterogeneous: CPU + 

GPU/accelerator/FPGA/DPU

• Memory
− DRAM, GDDR, HBM
− HDD, SSD, NVM

• Interconnect
− Intra-node: PCI-e, CAPI/OpenCAPI, CCIX, UPI/QPI, NVLink, Gen-Z 
− Inter-node: Ethernet, InfiniBand, Omnipath, HPC 

Ethernet/Slingshot
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Compute Express Link (CXL)
• Unveiled in March 2019
• Open industry standard processor interconnect

− Unified, coherent memory space between the CPU and any 
memory attached CXL device.

− High-bandwidth, low-latency connection between host and 
devices including accelerators, memory expansion, and smart 
I/O devices.

− Utilizes PCI Express 5.0 physical layer infrastructure and the 
PCIe alternate protocol.

− Designed to meet demanding needs of HPC work in AI, ML, 
communication systems through enablement of coherency and 
memory semantics across heterogeneous processing and 
memory systems.
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Compute Express Link (cont.)
• The CXL transaction layer is comprised of three 

dynamically multiplexed sub-protocols on a single link
− CXL.io: functionally equivalent to the PCIe 5.0 protocol 
− CXL.cache: for devices to cache data from the CPU memory 
− CXL.memory: for processor to access the memory of attached 

devices
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CXL-based Memory
• Unified sharing memory between host and devices

− No longer use host memory as an intermediary for 
communication

• Scalable to provide more memory types and capacity
− Just attached via CXL fabric
− GFAM: Global Fabric Attached Memory
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CXL-based System
• Multi-tiered switching

− Enables the implementation of switch fabrics
− Switches can connect to other switches

• Rack-scale memory fabric
− Fine-grained resource sharing across multiple domains
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HW Companies Building Custom Chips
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SW Companies are Building HW
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Startups Building Custom Hardware
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Past General-Purpose[通用]

• Moore’s Law enabled:
− Deep memory hierarchy
− Wide SIMD units
− Deep pipelines
− Branch prediction
− Out-of-order execution
− Speculative prefetching
− Multithreading
− Multiprocessing

• The sophisticated architectures targeted general-purpose 
code

− Architects treated code as black boxes
− Extract performance from software that is oblivious to 

architecture
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Domain-Specific Architecture[领域专用]

• Hard to keep improving performance
− More transistors means more power
− Energy budget is limited: higher performance à lower 

energy/operation
− Enhancing existing cores may only boost 10% performance

• Need factor of 100 improvements in number of 
operations per instruction

− Requires domain specific architectures
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Domain-Specific Architecture (cont.)
• Computers will be much more heterogeneous[异构]

− Standard processors to run conventional large programs
p E.g., operating system

− Domain-specific processors doing only a narrow range of tasks
p But they do them extremely well

• DSA opportunities[机遇]
− Preceding architecture from the past may not be a good match 

to some domains
p E.g., caches are excellenet general-purpose architectures but not 

necessarily for DSAs
− Domain-specific algorithms are almost always for small 

compute-intensive kernels of larger systems
p DSAs should focus on the subset and not plan to run the entire program
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DSA Challenges[挑战]

• Architects must expand their areas of expertise
− Must now learn application domains and algorithms

• Nonrecurring engineering (NRE) costs[一次性工程成本]
− Find a target whose demand is large enough to justify allocating 

dedicated silicon on an SOC or even a custom chip
p The costs are amortized over the number of chips manufactured, so 

unlikely to make economic sense if you need only 1000 chips
− For smaller volume applications, use reconfigurable chips such 

as FPGAs
p Several different applications may reuse the same reconfigurable 

hardware to amortize costs
p However, the hardware is less efficient than custom chips, so the gains 

from FPGAs are more modest

• Port software[移植软件]
− Programming languages and compilers
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DSA Design Guidelines[设计准则]

• Why guidelines?
− Lead to increased area and energy efficiency
− Provide two valuable bonus effects

p Lead to simpiler designs, reducing the cost of NRE of DSAs
p For user-facing apps, better match the 99th-percentile response-time 

deadlines
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DSA Design Guidelines (cont.)
• Use dedicated memories to minimize the distance over which 

data is moved
− Hardware cache à software-controlled scratchpad

p Compiler writers and programmers of DSAs understand their domain
p Software-controlled memories are much more energy efficient

• Invest the resources saved from dropping advanced u-arch 
optimizations into more arithmetic units or bigger memories

− Owing to the superior understanding of the execution of programs

• Use the easiest form of parallelism that matches the domain
− Target domains for DSAs almost always have inherent parallelism

p How to utilize that parallelism and how to expose it to the software?
− Design the DSA around the natural granularity of the parallelism and 

expose that parallelism simply in the programming model
p SIMD > MIMD (i.e., DLP > TLP), VLIW > OoO
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