
第22讲：WSC & Interconnect (3)
张献伟

xianweiz.github.io
DCS3013, 12/19/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Review
• Warehouse scale computer

− Request level parallelism
− Server-rack-array-WSC
− Load variance, fault tolerance
− Power Usage Effectiveness (PUE)

• Interconnection network
− Classification: based on number and proximity of devices to be 

connected
− Four domains: LAN, WAN, SAN, On-chip

p We are concerned with system-area and on-chip networks

2



Why Study Interconnects?
• They provide external connectivity from system to 

outside world
− Also, connectivity within a single computer system at many 

levels
p I/O units, boards, chips, modules and blocks inside chips

• Interconnection networks should be well designed
− To transfer the maximum amount of information
− Within the least amount of time (and cost, power constraints)
− So as not to bottleneck the system

• Application: managing communication can be critical to 
performance

3
https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf


Why Study Interconnects? (cont.)
• Trends: high demand on communication bandwidth

− Increased computing power and storage capacity
− Switched networks are replacing buses

• Computer architects/engineers must understand 
interconnect problems and solutions in order to more 
effectively design and evaluate systems

4
https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf


Basic Definitions[基本定义]

• An interconnection network is a graph of nodes
interconnected using channels
• Node[节点]: a vertex in the network graph

− Terminal nodes: where messages originate and terminate
− Switch (router) nodes: forward messages from in ports to out 

ports
− Switch degree: number of in/out ports per switch

• Channel[信道]: an edge in the graph
− i.e., an ordered pair (x,y) where x and y are nodes
− Channel = link (transmission medium) + transmitter + receiver
− Channel width: w = number of bits transferred per cycle
− Phit (physical unit or digit): data transferred per cycle
− Signaling rate: f = number of transfer cycles per second
− Channel bandwidth: b = w × f

5https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


Basic Definitions (cont.)
• Path (or route): a sequence of channels, connecting a 

source node to a destination node
• Minimal Path: a path with the minimum number of 

channels between a source and a destination
− Rxy = set of all minimal paths from x to y

• Network Diameter: longest minimal path over all (source, 
destination) pairs

6https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


ICN Design Considerations[设计考虑]

• Application requirements
− Number of terminals or ports to support
− Peak bandwidth of each terminal
− Average bandwidth of each terminal
− Latency requirements
− Message size distribution
− Expected traffic patterns
− Required quality of service
− Required reliability and availability

• Job of an interconnection network is to transfer 
information from source node to dest. node in support of 
network transactions that realize the application

− Latency as small as possible
− As many concurrent transfers as possible
− Cost as low as possible

7https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


ICN Design Considerations (cont.)
• Example requirements for a coherent processor-memory 

interconnect
− Processor ports 1-2048
− Memory ports 1-4096
− Peak BW 8 GB/s
− Average BW 400 MB/s
− Message latency 100 ns
− Message size 64 or 576 bits
− Traffic pattern arbitrary
− Quality of service none
− Reliability no message loss
− Availability 0.999 to 0.99999

8https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


ICN Design Considerations (cont.)
• Technology constraints

− Signaling rate
− Chip pin count (if off-chip networking)
− Area constraints (typically for on-chip networking)
− Chip cost
− Circuit board cost (if backplane boards needed)
− Signals per circuit board
− Signals per cable
− Cable cost
− Cable length
− Channel and switch power constraints
− …

9https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


Off-chip vs. On-chip ICNs[片外 vs. 片上]

• Off-chip: I/O bottlenecks
− Pin-limited bandwidth
− Inherent overheads of off-chip I/O transmission

• On-chip
− Wiring constraints

p Metal layer limitations
p Horizontal and vertical layout
p Short, fixed length
p Repeater[中继器] insertion limits routing of wires

• Avoid routing over dense logic
• Impact wiring density

− Power
p Consume 10-15% or more of die power budget

− Latency
p Different order of magnitude
p Routers consume significant fraction of latency

10https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


Main Aspects of an ICN[主要因素]

• Topology[拓扑]
− How switches are connected via links

p Affects routing, throughput, latency, complexity/cost of implementation

• Routing[寻路]
− How a message gets from its source to its destination in the network

• Flow control[流控]
− Allocating network resources (channels, buffers, etc.) to packets and 

managing contention
• Switch microarchitecture[交换机微架构]

− Internal architecture of a network switch
• Network interface[网络接口]

− How to interface a terminal with a switch
• Link architecture[链接架构]

− Signaling technology and data representation on the channel

11https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf
http://15418.courses.cs.cmu.edu/spring2016content/lectures/15_interconnects/15_interconnects_slides.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf
http://15418.courses.cs.cmu.edu/spring2016content/lectures/15_interconnects/15_interconnects_slides.pdf


Types of Topologies[拓扑类型]

• Direct[直接拓扑结构]
− Each router is associated with a terminal node
− All routers are sources and destinations of traffic

• Indirect[非直接拓扑结构]
− Routers are distinct from terminal nodes
− Terminal nodes can source/sink traffic
− Intermediate nodes switch traffic between terminal nodes

12https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


Network Topologies[拓扑]

• Blocking vs. Non-Blocking
− If connecting any permutation of sources & destinations is 

possible, network is non-blocking; otherwise network is 
blocking

• A variety of network topologies have been proposed and 
implemented

− These topologies tradeoff performance for cost
− Commercial machines often implement hybrids of multiple 

topologies for reasons of packaging, cost, and available 
components

13
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Metrics for Comparing Topologies[指标]

• Switch degree[交换度]
− Proxy for switch complexity

• Hop count[跳数] (average and worst case)
− Proxy for network latency

• Maximum channel load[最大通道负载]
− A proxy for hotspot load

• Bisection bandwidth[对半带宽]
− Proxy for maximum traffic a network can support under a 

uniform traffic pattern

• Path diversity[路径多样性]
− Provides routing flexibility for load balancing and fault tolerance 
− Enables better congestion avoidance

14
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


Topologies: Buses[总线]

• All processors access a common bus for exchanging data
• The distance between any two nodes is O(1) in a bus. The 

bus also provides a convenient broadcast media
• However, the bandwidth of the shared bus is a major 

bottleneck
• Typical bus based machines are limited to dozens of 

nodes
− Sun Enterprise servers and Intel Pentium based shared-bus 

multiprocessors are examples of such architectures

15
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Topologies: Crossbars[交叉]

• A crossbar network uses an p×m grid of switches to 
connect p inputs to m outputs in a non-blocking manner
• The cost of a crossbar of p processors grows as O(p2)

− This is generally difficult to scale for large values of p
− Examples of machines that employ crossbars include the Sun 

Ultra HPC 10000 and the Fujitsu VPP500

16
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://15418.courses.cs.cmu.edu/spring2016content/lectures/15_interconnects/1
5_interconnects_slides.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Topologies: Multistage[多级]

• Indirect network with multiple switches between 
terminals
• Multistage interconnects strike a compromise between 

Buses and Crossbars
− Crossbars have excellent performance scalability but poor cost 

scalability
− Buses have excellent cost scalability, but poor performance 

scalability

17
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Topologies: Star Connected[星型]

• Every node is connected only to a common node at the 
center
• Distance between any pair of nodes is O(1)
• However, the central node becomes a bottleneck
• In this sense, star connected networks are static 

counterparts of buses

18
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Topologies: Linear Arrays, Meshes, …
• In a linear array, each node has two neighbors, one to its 

left and one to its right
− If the nodes at either end are connected, we refer to it as a 1-D 

torus or a ring

• A generalization to 2 dimensions has nodes with 4 
neighbors, to the north, south, east, and west
• A further generalization to d dimensions has nodes with 

2d neighbors
− A special case of a d-dimensional mesh is a hypercube. Here, d 

= log p, where p is the total number of nodes

19
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

(a) with no wraparound links; (b) with wraparound link.

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Topologies: Mesh[网格]

• Two and three dimensional meshes
− (a) 2-D mesh with no wraparound
− (b) 2-D mesh with wraparound link (2-D torus)

p Mesh is not symmetric on edges: performance very sensitive to 
placement of task on edge vs. middle

p Torus avoids this problem
− (c) a 3-D mesh with no wraparound

20
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Examples

21



Topologies: Tree[树型]

• Diameter and average distance logarithmic
− k-ary tree, height = logk N
− Address specified d-vector of radix k coordinates describing 

path down from root
− Route up to common ancestor and down

• Trees can be laid out in 2D with no wire crossings
− This is an attractive property of trees

22
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


Topologies: Fat-Tree[胖树]

• Links higher up the tree potentially carry more traffic than 
those at the lower levels
• For this reason, a variant called a fat-tree, fattens the 

links as we go up the tree

23
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf


And Other Topologies …
• Many other topologies with different properties 

discussed in the literature
− Clos Networks
− Omega networks
− Benes networks
− Bitonic networks
− Flattened Butterfly
− Dragonfly
− Cube-connected cycles
− HyperX
− …

• However, these are typically special purpose and not used 
in general purpose hardware

24
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf


System Evolution
• Computing

− Scalar à vector
− Homogeneous à heterogeneous: CPU + 

GPU/accelerator/FPGA/DPU

• Memory
− DRAM, GDDR, HBM
− HDD, SSD, NVM

• Interconnect
− Intra-node: PCI-e, CAPI/OpenCAPI, CCIX, UPI/QPI, NVLink, Gen-Z 
− Inter-node: Ethernet, InfiniBand, Omnipath, HPC 

Ethernet/Slingshot

25



Compute Express Link (CXL)
• Unveiled in March 2019
• Open industry standard processor interconnect

− Unified, coherent memory space between the CPU and any 
memory attached CXL device.

− High-bandwidth, low-latency connection between host and 
devices including accelerators, memory expansion, and smart 
I/O devices.

− Utilizes PCI Express 5.0 physical layer infrastructure and the 
PCIe alternate protocol.

− Designed to meet demanding needs of HPC work in AI, ML, 
communication systems through enablement of coherency and 
memory semantics across heterogeneous processing and 
memory systems.

26



Compute Express Link (cont.)
• The CXL transaction layer is comprised of three 

dynamically multiplexed sub-protocols on a single link
− CXL.io: functionally equivalent to the PCIe 5.0 protocol 
− CXL.cache: for devices to cache data from the CPU memory 
− CXL.memory: for processor to access the memory of attached 

devices

27



CXL-based Memory
• Unified sharing memory between host and devices

− No longer use host memory as an intermediary for 
communication

• Scalable to provide more memory types and capacity
− Just attached via CXL fabric
− GFAM: Global Fabric Attached Memory

28



CXL-based System
• Multi-tiered switching

− Enables the implementation of switch fabrics
− Switches can connect to other switches

• Rack-scale memory fabric
− Fine-grained resource sharing across multiple domains

29

FPGA NIC FPGA Memory

CXL 3.0 Switch CXL 3.0 Switch

CXL 3.0 Switch CXL 3.0 Switch

CXL 3.0 SwitchCXL 3.0 Switch

FPGA Host FPGA Memory

Node

Host

Node

Host



第22讲：Domain Specific Arch (1)
张献伟

xianweiz.github.io
DCS3013, 12/19/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


HW Companies Building Custom Chips

31



SW Companies are Building HW

32



Startups Building Custom Hardware

33
https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/


Past General-Purpose[通用]

• Moore’s Law enabled:
− Deep memory hierarchy
− Wide SIMD units
− Deep pipelines
− Branch prediction
− Out-of-order execution
− Speculative prefetching
− Multithreading
− Multiprocessing

• The sophisticated architectures targeted general-purpose 
code

− Architects treated code as black boxes
− Extract performance from software that is oblivious to 

architecture
34



Domain-Specific Architecture[领域专用]

• Hard to keep improving performance
− More transistors means more power
− Energy budget is limited: higher performance à lower 

energy/operation
− Enhancing existing cores may only boost 10% performance

• Need factor of 100 improvements in number of 
operations per instruction

− Requires domain specific architectures

35



Domain-Specific Architecture (cont.)
• Computers will be much more heterogeneous[异构]

− Standard processors to run conventional large programs
p E.g., operating system

− Domain-specific processors doing only a narrow range of tasks
p But they do them extremely well

• DSA opportunities[机遇]
− Preceding architecture from the past may not be a good match 

to some domains
p E.g., caches are excellenet general-purpose architectures but not 

necessarily for DSAs
− Domain-specific algorithms are almost always for small 

compute-intensive kernels of larger systems
p DSAs should focus on the subset and not plan to run the entire program

36



DSA Challenges[挑战]

• Architects must expand their areas of expertise
− Must now learn application domains and algorithms

• Nonrecurring engineering (NRE) costs[一次性工程成本]
− Find a target whose demand is large enough to justify allocating 

dedicated silicon on an SOC or even a custom chip
p The costs are amortized over the number of chips manufactured, so 

unlikely to make economic sense if you need only 1000 chips
− For smaller volume applications, use reconfigurable chips such 

as FPGAs
p Several different applications may reuse the same reconfigurable 

hardware to amortize costs
p However, the hardware is less efficient than custom chips, so the gains 

from FPGAs are more modest

• Port software[移植软件]
− Programming languages and compilers

37



DSA Design Guidelines[设计准则]

• Why guidelines?
− Lead to increased area and energy efficiency
− Provide two valuable bonus effects

p Lead to simpiler designs, reducing the cost of NRE of DSAs
p For user-facing apps, better match the 99th-percentile response-time 

deadlines

38



DSA Design Guidelines (cont.)
• Use dedicated memories to minimize the distance over which 

data is moved
− Hardware cache à software-controlled scratchpad

p Compiler writers and programmers of DSAs understand their domain
p Software-controlled memories are much more energy efficient

• Invest the resources saved from dropping advanced u-arch 
optimizations into more arithmetic units or bigger memories

− Owing to the superior understanding of the execution of programs

• Use the easiest form of parallelism that matches the domain
− Target domains for DSAs almost always have inherent parallelism

p How to utilize that parallelism and how to expose it to the software?
− Design the DSA around the natural granularity of the parallelism and 

expose that parallelism simply in the programming model
p SIMD > MIMD (i.e., DLP > TLP), VLIW > OoO

39


