
第23讲：Domain Specific Arch (2)
张献伟

xianweiz.github.io
DCS3013, 12/21/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review
• Interconnection network (ICN)

− ICN can be the system bottleneck, should be well designed
− Topologies: Bus, Xbar, Multistage, Star, Linear, Mesh, Tree
− Compute Express Link (CXL)

p Unified, coherent memory space
p High speed, low latency

• Domain specific architecture (DSA)
− Past architecture targets general-purpose code
− DSA is needed to provide 100sX performance

p Hardware software co-design
− DSA design guidelines

p Lead to simpler designs
p To achieve higher area and energy efficiency

2

DSA Design Guidelines
• Use dedicated memories to minimize the distance over which

data is moved
− Hardware cache à software-controlled scratchpad

p Compiler writers and programmers of DSAs understand their domain
p Software-controlled memories are much more energy efficient

• Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

− Owing to the superior understanding of the execution of programs

• Use the easiest form of parallelism that matches the domain
− Target domains for DSAs almost always have inherent parallelism

p How to utilize that parallelism and how to expose it to the software?
− Design the DSA around the natural granularity of the parallelism and

expose that parallelism simply in the programming model
p SIMD > MIMD (i.e., DLP > TLP), VLIW > OoO

3

DSA Design Guidelines (cont.)
• Reduce data size and type to the simplest needed for the

domain
− Apps in many domains are typically memory-bound, using

narrower data types helps increase the effective memory
bandwidth and on-chip memory utilizations

− Narrower and simpler data also enable to pack more arithmetic
units into the same chip area

• Use a domain-specific programming language to port
code to the DSA

− WRONG: you new arch is so attractive that programmers will
rewrite their code just for you hw

− Fortunately, domain-specific languages were popular even
before architects’ switched attentions

p Halide for vision processing, TensorFlow for DNNs

4

The Trend
• The ABC of AI: Algorithm + Big-data + Computing

5

Example Domain
• Deep neural networks (DNNs)

− Revolutioning many areas of computing today
− Are applicable to a wide range of problems

p So, a DNN-specific arch can be reused for solutions in speech, vision,
language, translation, search ranking, and many more areas

• DNN structure
− Inspired by neuron of the brain

p Each neuron simply computes the sum over a set of products of weights
or parameters and data values
• E.g., pixels for image-processing

− The sum is then put through a nonlinear function to determine
its output

p E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU)
p Output is called activation

• The output of the neuron that has been “activated”
6

DNNs
• Most practitioners will choose an existing design

− Topology
− Data type

• Training (learning)[训练]
− Calculate weights using backpropagation algorithm
− Supervised learning: stochastic gradient descent[随机梯度下降]

• Inference[推理]
− Use neural network for classification

7

Multilayer Perceptron[多层感知机]

• Feed-forward neural networks
− The units are arranged into a graph without any cycles

p so that all the computation can be done sequentially
− Fully connected: every unit in one layer is connected to every

unit in the next layer

• MLP, the original DNNs, is just a vector matrix multiply of
the input vector times the weights array

8

Parameters:
Dim[i]: number of neurons
Dim[i-1]: dimension of input vector
Number of weights: Dim[i-1] x Dim[i]
Operations: 2 x Dim[i-1] x Dim[i]
Operations/weight: 2

Convolutional Neural Network[卷积]

• CNNs are widely used for computer vision applications
• Each layer raises the level of abstraction

− Lines à corners à shapes à …

• Feature map[特征图]: a set of 2D maps produced by each
neural layer

− Each cell is identifying one feature in the area of the input

• Stencil computation[模版计算]: uses neighboring cells in a
fixed pattern to update all the elements of an array

− 循环运算：遍历计算区域，每个位置均执行相同的计算操作

9

Convolutional Neural Network (cont.)
• Parameters:

− DimFM[i-1]: Dimension of the (square) input Feature
Map

− DimFM[i]: Dimension of the (square) output Feature
Map

− DimSten[i]: Dimension of the (square) stencil
− NumFM[i-1]: Number of input Feature Maps
− NumFM[i]: Number of output Feature Maps
− Number of neurons: NumFM[i] x DimFM[i]2

− Number of weights per output Feature Map:
NumFM[i-1] x DimSten[i]2

− Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

− Number of operations per output Feature Map: 2 x
DimFM[i]2 x Number of weights per output Feature
Map

− Total number of operations per layer: NumFM[i] x
Number of operations per output Feature Map = 2 x
DimFM[i]2 x NumFM[i] x Number of weights per
output Feature Map = 2 x DimFM[i]2 x Total number
of weights per layer

− Operations/Weight: 2 x DimFM[i]2

10

Recurrent Neural Network[循环]

• Popular for speech recognition on language translations
• RNNs can remember facts

− Long short-term memory (LSTM) network

11
English to Spanish translation

Recurrent Neural Network (cont.)
• Parameters:

− Number of weights per cell:
3 x (3 x Dim x Dim)+(2 x Dim
x Dim) + (1 x Dim x Dim) =
12 x Dim2

− Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim2

− Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

− Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x Dim2 + 4 x Dim

− Operations/Weight: ~2

12

Example Domain: DNNs
• Batches[批]

− Reuse weights once fetched from memory across multiple
inputs

p Increases operational intensity

• Quantization[量化]
− Numerical precision is less important for DNNs than for many

applications
p Use 8- or 16-bit fixed point

• Summary: need the following kernels
− Matrix-vector multiply
− Matrix-matrix multiply
− Stencil
− ReLU
− Sigmoid
− Hyperbolic tangent[双曲正切]

13

Tensor Processing Unit (TPU)
• Google’s first custom ASIC DSA for WSCs

− Its domain is the inference phase of DNNs
− It is programmed using the TensorFlow framework
− The first TPU was been deployed in 2015

p Originated as far back as 2006, to improve perf by 10x over GPUs

14

Tensor Processing Unit (cont’d)

15
https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf

https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf

TPU Chip Overview
• TPU chip is half the size of the other chips

− 28 nm process with a die size ≤ 331 mm2

− This is partially due to simplification of control logic

• Floor plan of TPU die
− 50%+ on arithmetic

and memory

16

TPU Architecture[架构]

• A coprocessor on the PCIe I/O bus
• A large software-managed on-chip memory

17
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA[指令]

• The host CPU sends TPU instructions over the PCIe bus
into an instruction buffer[指令发送]

− TPU has no PC, and it has no branch instructions
− 5 main (CISC) instructions (11 in total)

p Other 6: alternate host memory read/write, set configuration, two
versions of synchronization, interrupt host, debug-tag, nop and halt

• Instruction execution[指令执行]
− Average clock cycles per instruction: > 10
− 4-stage overlapped execution, 1 instruction type/stage

p Execute other instructions while matrix multiplier busy

• Complexity in software[软件复杂性]
− No branches, in-order issue
− SW controlled buffers, SW controlled pipeline synchronization

18
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA (cont.)
• Read_Host_Memory

− Reads data from the CPU memory into the unified buffer
• Read_Weights

− Reads weights from the Weight Memory (DDR3) into the Weight FIFO
as input to the Matrix Unit

• MatrixMultiply/Convolve
− Perform a matrix-matrix multiply, a vector-matrix multiply, an

element-wise matrix multiply, an element-wise vector multiply, or a
convolution from the Unified Buffer into the accumulators

p Takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to complete

• Activate
− Computes activation function

• Write_Host_Memory
− Writes data from unified buffer

into host memory
19

TPU Microarchitecture[微架构]

• The u-arch philosophy of TPU is to keep the Matrix
Multiply Unit busy

− Hide the execution of the other insts by overlapping with the
MatrixMultiply inst

p Each of the other 4 insts have separate execution hw

• Problem: energy/time for repeated SRAM accesses of
matrix multiply

− Solution: “Systolic execution” to compute data on the fly in
buffers by pipelining control and data[脉动阵列执行]

20 脉动阵列 -因Google TPU获得新生 ,
https://zhuanlan.zhihu.com/p/26522315

https://zhuanlan.zhihu.com/p/26522315

TPU Software[软件]

• Software stack had to be compatible with CPUs/GPUs[兼容]
− So that applications could be ported quickly
− The portion of the app run on the TPU is typically written using

TensorFlow and is compiled into an API that can run on CPUs/GPUs

• Like GPUs, the TPU stack is split into[分层]
− Kernel Driver: lightweight and handles only memory management

and interrupts
p Designed for long-term stability

− Use Space Driver: changes frequently, and
handles the following

p Sets up and controls TPU execution
p Reformats data into TPU order
p Translates API calls into TPU insts and turns

them into an app binary

21

How TPU Follows the Guidelines
• Use dedicated memories

− 24 MB dedicated buffer, 4 MB accumulator buffers

• Invest resources in arithmetic units and dedicated
memories

− 60% of the memory and 250X the arithmetic units of a server-
class CPU

• Use the easiest form of parallelism that matches the
domain

− Exploits 2D SIMD parallelism

• Reduce the data size and type needed for the domain
− Primarily uses 8-bit integers

• Use a domain-specific programming language
− Uses TensorFlow

22

TPU Performance[性能]

23

• Compare using six benchmarks
− Representing 95% of TPU inference workload in Google data

center in 2016
− Typically written in TensorFlow, pretty short (100-1500 LOCs)

• Chips/servers being compared
− CPU server: Intel 18-core, dual-socket Haswell; host server for

GPUs/TPUs
− GPU accelerator: Nvidia K80

Roofline Performance Model[屋顶线]

• The roofline model was introduced in 2009
− Samuel Williams, Andrew Waterman, and David Patterson.

2009. Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM

• It provides an easy way to get performance bounds for
compute and memory bandwidth bound computations
• It relies on the concept of Computational Intensity (CI)

− Sometimes also called Arithmetic or Operational Intensity

• The model provides a relatively simple way for
performance estimates based on the computational
kernel and hardware characteristics

− Performance [GF/s] = function (hardware and software
characteristics)

24
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Roofline Performance Model(cont.)
• Basic idea

− Plot peak FP throughput as a function of arithmetic intensity
− Ties together FP performance and memory performance for a

target machine

• Arithmetic intensity[运算密度]
− Ratio of FP operations per byte of memory accessed

p (total #FP operations for a program) / (total data bytes transferred to
main memory during program execution)

25

Arithmetic Intensity[运算密度]

• 𝐴. 𝐼. = !
"

(FLOP/Byte)
− W: amount of work, i.e. floating point operations required
− Q: memory transfer, i.e. access from DRAM to lowest level

cache

• Examples

26

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]

1 ADD
2 (8 byte) loads
1 (8 byte) write
AI = 1 / (2*8 + 8) = 1/24

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i]

1 ADD
1 MUL
2 (8 byte) loads
1 (8 byte) write
AI = 2 / (2*8 + 8) = 1/12

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Example

• Amount of FLOPS: 3(N-2)
− For every i: out[i] = in[i-1]-2*in[i]+in[i+1] à 3 flop
− Loop over: for (int i=1; i<N-1; i++) à (N-2) repetitions

• Memory accesses Q: depends on cache size
− No cache (read directly from slow memory) à every data

accessed is counted
p 4 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/16

− Perfect cache (infinite sized cache) à data is read & written
only once

p 2 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/8

27

float in[N], out[N];
for (int i=1; i<N-1; i++)

out[i] = in[i-1]-2*in[i]+in[i+1];

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

Roofline Analysis
• ”Roofline” sets an upper bound on perf of a kernel

depending on its arithmetic intensity
− Think of arithmetic intensity as a pole that hits the roof

p Hits the flat part: perf is computationally limited
p Hits the slanted part: perf is ultimately limited by memory bandwidth

• Ridge point: the diagonal and horizontal roofs meet
− Far to right: only very intensive kernels can achieve max perf
− Far to left: almost any kernel can potentially hit max perf

28

Example
• Consider: for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

− For each “i” :
p 1 addition, 1 multiplication
p 2 loads of 8 bytes each
p 1 store

• Execution on BlueGene/Q
− Peak 204.8 GFLOP/node

• Performance estimates:
− AI = 2/(3*8) = 1 / 12 1/12 < 7.11 → We are in the memory BW

limited area on the Roofline plot
− 7.11/(1/12)= 85.32
− 204.8 / 85.32 = 2.4 GF/s

29
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

