mﬁq E XBR T ML

\% /,."
\Csey %/ SUN YAT-SENUNIVERSITY PP QY NATIONAL SUPERCOMPUTER CENTER IN GUANGZHOU

Computer Architecture

[NN

Z5233F: Domain Specific Arch (2)
AINGINGE

xianweiz.github.io
DCS3013, 12/21/2022

Dhge

https://xianweiz.github.io/

Review

* Interconnection network (ICN)
- ICN can be the system bottleneck, should be well designed
— Topologies: Bus, Xbar, Multistage, Star, Linear, Mesh, Tree
— Compute Express Link (CXL)

o Unified, coherent memory space
o High speed, low latency

* Domain specific architecture (DSA)

1. Dedicated
— Past architecture targets general-purpose code memones
— DSA is needed to provide 100sX performance 2 Lager |
dniimceoac uny
o Hardware software co-design 3 Easy
— DSA design guidelines parallelism
.) 4. Smaller data
o Lead to simpler designs size
o To achieve higher area and energy efficiency 5. Doman

specific lane.

@ turs - INE

DSA Design Guidelines

* Use dedicated memories to minimize the distance over which
data is moved
— Hardware cache = software-controlled scratchpad

o Compiler writers and programmers of DSAs understand their domain
o Software-controlled memories are much more energy efficient

* Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

— Owing to the superior understanding of the execution of programs

e Use the easiest form of parallelism that matches the domain
— Target domains for DSAs almost always have inherent parallelism
o How to utilize that parallelism and how to expose it to the software?

— Design the DSA around the natural granularity of the parallelism and
expose that parallelism simply in the programming model

o SIMD > MIMD (i.e., DLP > TLP), VLIW > 000

(D) ‘ ‘
(&) FTmX % 3 Dade

DSA Design Guidelines (cont.)

* Reduce data size and type to the simplest needed for the
domain

— Apps in many domains are typically memory-bound, using
narrower data types helps increase the effective memory
bandwidth and on-chip memory utilizations

- Narrower and simpler data also enable to pack more arithmetic
units into the same chip area

e Use a domain-specific programming language to port
code to the DSA

— WRONG: you new arch is so attractive that programmers will
rewrite their code just for you hw

- Fortunately, domain-specific languages were popular even
before architects’ switched attentions

o Halide for vision processing, TensorFlow for DNNs

() N

The Trend

* The ABC of Al: Algorithm + Big-data + Computing

EXPLODING MODEL COMPLEXITY
30,000X in 5 Years | Now Doubling Every 2 Months

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00

Petaflop/s - Days

1.E-01
AlexNet = oe®

LE02 goe®

1.E-03

ResNet
ve® 1 J

@ GPT-3
*'. Megatron-BERT
Megatron-GPT2 " © Turing NLG

GPT.. @*
.

Ll
BERT @

2012

1’&&&

SUN YAT-SEN UNIVERSITY

2014

2017 2020

EnC)

LA R

Leuauyle

180

140

140

120

100

80

60

40

20

175 ZB

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

ASICs

Example Domain

* Deep neural networks (DNNs)
— Revolutioning many areas of computing today

— Are applicable to a wide range of problems

o So, a DNN-specific arch can be reused for solutions in speech, vision,
language, translation, search ranking, and many more areas

* DNN structure

— Inspired by neuron of the brain

o Each neuron simply computes the sum over a set of products of weights
or parameters and data values

* E.g., pixels for image-processing

— The sum is then put through a nonlinear function to determine
its output . ,
o E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU) |

: out
n,

o Output is called activation
* The output of the neuron that has been “activated”

“‘ : k)
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ

in
n

DNNSs

* Most practitioners will choose an existing design
— Topology
— Data type
* Training (learning)[VI %]
— Calculate weights using backpropagation algorithm
— Supervised learning: stochastic gradient descent[FEALESE T F4F]

* Inference[#E#]
— Use neural network for classification

,
Hidden Layer 2) (Hidd €
7\ \\ = Name DNN layers Weights Operations/Weight
T b \ ,,// 7K .
2 Swee- | \\ <78 MLPO 5 20M 200
// ”/’ ® \\s\ ~ . NG MLPI] 4 M 168
%K XA » LSTMO 58 52M 64
LN
2% \\. LSTMI 56 34M 9%
PRSI YATAS
-/ \ X~ CNNO 16 8M 2888
/ W@ @
N\ ZZ7<N CNNI 89 100M 1750

7 Dhge

Multilayer Perceptron(z ZE%n#1]

* Feed-forward neural networks

— The units are arranged into a graph without any cycles
o so that all the computation can be done sequentially

— Fully connected: every unit in one layer is connected to every
unit in the next layer

* MLP, the original DNNSs, is just a vector matrix multiply of
the input vector times the weights array

Layerfi-1] Layerfi]
Dim{i-1] Parameters:
- e] o Dim[i]: number of neurons
\GMX (o —»| Output Dim[i-1]: dimension of input vector
g--[/] Number of weights: Dim[i-1] x Dim[i]
imy

Operations: 2 x Dim[i-1] x Dim[i]

| Operations/weight: 2
Weights

Dim[i-1]

(< s-?: 1ol
@) tux s 8 Dade

Convolutional Neural Network[#:#]

* CNNs are widely used for computer vision applications

* Each layer raises the level of abstraction
— Lines = corners = shapes =2 ...

* Feature map[4F1-Kl]: a set of 2D maps produced by each
neural layer
— Each cell is identifying one feature in the area of the input

* Stencil computation[i)ik it]: uses neighboring cells in a
fixed pattern to update all the elements of an array
- fE B T X, t/\uﬁiﬁ%ﬂﬁﬁaﬂﬁﬁﬁﬁw’ﬁ

Input image Output fea

* PN i)
() F o X # [' o
J SUN YAT-SEN UNIVERSITY ! ‘.\”"1/ Nonlinear function ! H' ‘ LZ

Convolutional Neural Network (cont.)

* Parameters:

- DimFM][i-1]: Dimension of the (square) input Feature

Layer[i-1] Layer(i] Map
input feat tput feat . I .
e I maps)\ - DimFM][i]: Dimension of the (square) output Feature
» D””FM} Ma
=) p
& Qo / / - DimSten[i]: Dimension of the (square) stencil
T DA] — NumFMI[i-1]: Number of input Feature Maps
E . - NumFM][i]: Number of output Feature Maps
- 4

- Number of neurons: NumFM][i] x DimFM[i]?

. - Number of weights per output Feature Map:
/DimSten[i] NumFM/[i-1] x DimSten[i]?

- Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

- Number of operations per output Feature Map: 2 x
DimFM[i]?2 x Number of weights per output Feature
Map

NumFM[i-1]

- Total number of operations per layer: NumFM[i] x
Number of operations per output Feature Map = 2 x
DimFM[i]2x NumFM][i] x Number of weights per
output Feature Map = 2 x DimFM][i]? x Total number
of weights per layer

- Operations/Weight: 2 x DimFM[i]2

D) F 10 .fg

Recurrent Neural Network[{E#F)

* Popu

ar for speech recognition on language translations

* RNNs can remember facts
- Long short-term memory (LSTM) network

‘now” —| LSTM0 |—{ LSTM1 |-~ ... —[LSTMn |-~
! ! !

“is" —={ LSTMo0 LSTM1 — ... —={ LSTMn |—

! B! i i
‘the” —[LSTMO |~ LSTM1 |~ ... —{LSTMn |~
' !

“time" —{ LSTMO LSTM1 |— ... —={ LSTMn |—

! !
<end_input> —| LSTM0 |—{ LSTM1 | — “momento”
! i

“momento” —=| LSTM0 LSTM1 e.. LSTMn “el”

! ! i

“el" —| LSTMO |—{ LSTM1 | — ... —{ LSTMn | “es"
B! B! B!

‘es” —=| LSTMO LSTM1 ... LSTMn “ahora”

i R !
b “ahora” —~| LSTMo I—-{ LSTM1 |—~ o —- <end_output>

Tt

Time

"English to Spanish translation

11 Dhge

Recurrent Neural Network (cont.)

[LTMemoryin | [STMemoryin |
|

Input

LN A
VMX —a{ nif) VMX | Vector matrix multiply
¥ 4 -
N\
(- | Element-wise multiply
N
Output gate P
weights (+) Element-wise addition
,
72N
- (nif) Nonlinear function
(X —a()—o) N
L <
- O Concatenation
\ ——
\
\
Forget gate _ _
weights [+\HI (rif) ‘/ N\
}_/ NSNS Output
N / A
= VMX —-fnn\) ,/
/' \ I/'
/
T //
=
Input gate a:) VMX
weights \/\-/
~
VMX r—>\“" ') Short term
- weights
Input
weights

' 1
LTMemoryout | ISTMemoryout

12

e Parameters:

Number of weights per cell:
3 x (3 x Dim x Dim)+(2 x Dim
X Dim) + (1 x Dim x Dim) =
12 x Dim?2

Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim?

Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x Dim2+ 4 x Dim

Operations/Weight: ~2

Dhge

Example Domain: DNNs

e Batchesl[ilt]

- Reuse weights once fetched from memory across multiple
inputs
o Increases operational intensity

e Quantization[&E1L]

— Numerical precision is less important for DNNs than for many
applications

o Use 8- or 16-bit fixed point
 Summary: need the following kernels
- Matrix-vector multiply
- Matrix-matrix multiply
- Stencil
- RelLU
- Sigmoid m @
_ (=]
— Hyperbolic tangent[X il 1E)] - ®
@ Fuxt 13 Dheg:

FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

Tensor Processing Unit (TPU)

e Google’s first custom ASIC DSA for WSCs

- Its domain is the inference phase of DNNs
- It is programmed using the TensorFlow framework

— The first TPU was been deployed in 2015
o Originated as far back as 2006, to improve perf by 10x over GPUs

TPU v1 TPUV2
Launched in 2015 Launched in 2017
Inference only Inference and training

o) Tux % 14 Dige

Tensor Processing Unit (cont’d)
Feature TPUvI | TPUv2 TPUv3 TPUv4i NVIDIA T4
Peak TEFLOPS / Chip 92 (8b int) 46 (bf16) 123 (bf16) | 138 (bf16/8b int)|65 (ieee fp16)/130 (8b int)
First deployed (GA date) I Q22015 Q32017 042018 Q12020 042018
DNN Target Nnference onlyf Training & Inf.| Training & Inf.| Inference only Inference only
Network links x Gbits/s / Chip -- | 4x496 4 x 656 2 x 400 --
Max chips / supercomputer -- | 256 1024 - --
Chip Clock Rate (MHz) 700 700 940 1050 585 / (Turbo 1590)
Idle Power (Watts) Chip [28 53 84 23 36
TDP (Watts) Chip/ System | 75/220 280 / 460 450 / 660 1754275 70/ 175
Die Size (mm?) <330 | < 625 <700 <400 545
Transistors (B) 3 L 9 10 16 14
Chip Technology 28 nm 16 nm 16 nm Znm 12 nm
Memory size (on-/off-chip) | 28MB/8GB | 32MB / 16GB [32MB / 32GB| 144MB / 8GB 18MB / 16GB
Memory GB/s / Chip I 34 700 900 614 320 (if ECC 1s disabled)
MXU Size / Core | 1256x256 | 1128x128 2128x128 | 4128x128 8 8x8
Cores / Chip 1 ! 2 2 1 40
Chips / CPUHost B - - 8 8
Table 1. Key characteristics of DSAs. The underlines show changes over the prior TPU generation, from left to right. System TDP

includes power for the DSA memory system plus its share of the server host power, e.g., add host TDP/8 for 8 DSAs per host.

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

Ten Lessons From Three Generations Shaped Google’s TPUv41
Industrial Product
Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin, George Kurian,
James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,

‘ ‘ ‘f'vhb\'g‘ Zongwei Zhou, and David Patterson, Google LLC ‘ EELZ
N sun var-sox omvansiry https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf s

https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf

TPU Chip Overview

* TPU chip is half the size of the other chips
— 28 nm process with a die size <331 mm?
— This is partially due to simplification of control logic

* Floor plan of TPU die
- 50%+ on arithmetic
and memory

Local Unified Buffer for

activations

(96Kx256x8b = 24 MiB)

Matrix multiply unit
(256x256x8b = 64K MAC)
24%

29% of chip
D Host Accumulators D
2 Interf. 2% (4Kx256x32b = 4 MiB) 6% 2
M T M
port Activation pipeline 6% port
dadr3 . : ddr3
PCle 3%
o Interface 3% Misc. VO 7% | ——
16 I ﬂ ‘
D

TPU Architecture[Ze#)

* A coprocessor on the PCle I/O bus
* A large software-managed on-chip memory

e The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units DDR3 DRAM chips

e 700 MHz clock rate . sociss ‘

e Peak: 92T operations/second DOR3 Interface 252

o 65536*2*700M - [

e >25X as many MACs vs GPU . |

e >100X as many MACs vs CPU 5 A S SENEE

e 4 MiB of on-chip Accumulator s utter [sysorc [IO
memory § g Ac(tli“l’::'on s[z:ap (256x256 per cycle)

e 24 MiB of on-chip Unified Buffer 2 : el
(activation memory) =

e 3.5X as much on-chip memory [=]
vs GPU Activation

e Two 2133MHz DDR3 DRAM E=r Normalize / Pool
channels poes | —] oy

e 8 GiB of off-chip weight DRAM Nt o Saale
memory

17 i
oy wrsexonvessiy Wt ps - //www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc ;

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU [SA[#E 4]

* The host CPU sends TPU instructions over the PCle bus
into an instruction buffer[{g 4 & i%]

— TPU has no PC, and it has no branch instructions

— 5 main (CISC) instructions (11 in total)

o Other 6: alternate host memory read/write, set configuration, two
versions of synchronization, interrupt host, debug-tag, nop and halt

* Instruction execution[+54 #447]
— Average clock cycles per instruction: > 10
— 4-stage overlapped execution, 1 instruction type/stage
o Execute other instructions while matrix multiplier busy
« Complexity in software[# /4 & 2]
— No branches, in-order issue
- SW controlled buffers, SW controlled pipeline synchronization

»
A § _ELZ
N/ son wr-sevunvemsity ht s //www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc 4

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA (cont.)

 Read _Host_Memory
— Reads data from the CPU memory into the unified buffer
 Read Weights
— Reads weights from the Weight Memory (DDR3) into the Weight FIFO
as input to the Matrix Unit
* MatrixMultiply/Convolve

— Perform a matrix-matrix multiply, a vector-matrix multiply, an
element-wise matrix multiply, an element-wise vector multiply, or a
convolution from the Unified Buffer into the accumulators

o Takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to complete

DDR3 DRAM chips

* Activate
— Computes activation function
* Write_Host_Memory
— Writes data from unified buffer B
into host memory

D

TPU Microarchitectureis e

* The u-arch philosophy of TPU is to
Multiply Unit busy

keep the Matrix

— Hide the execution of the other insts by overlapping with the

MatrixMultiply inst

o Each of the other 4 insts have separate execution hw

* Problem: energy/time for repeated SRAM accesses of

matrix multiply

— Solution: “Systolic execution” to compute data on the fly in
buffers by pipelining control and data[/ks) 451 $447]

= -

|
|

Partial sums

-

MEMORY 5 MILLION
OPERATIONS
—+ —= —= Data » 100ns | | PERSECOND
l X} H TTTTTT
— 1 | - inputs .
PE|PE
Nt] . L . THE SYSTOLIC ARRAY
s y o o weights
Done yat =
https://zhuanlan.zhihu.com/p/26522315

INSTEAD OF:

WkshFE %) - Kl Google TPUFRE 4=

https://zhuanlan.zhihu.com/p/26522315

TPU Software[# 4

o

» Software stack had to be compatible with CPUs/GPUs[#
— So that applications could be ported quickly

— The portion of the app run on the TPU is typically written using
TensorFlow and is compiled into an API that can run on CPUs/GPUs

e Like GPUs, the TPU stack is split into[47 /=]

— Kernel Driver: lightweight and handles only memory management
and interrupts

o Designed for long-term stability W |
— Use Space Driver: changes frequently, and) S — 1 [Soode)
handles the following D
o Sets up and controls TPU execution A S el) |
o Reformats data into TPU order [User Space Driver]
o Translates API calls into TPU insts and turns { KerneIIDriver ‘

them into an app binary SR (S

A0BIS NdL

How TPU Follows the Guidelines

e Use dedicated memories

— 24 MB dedicated buffer, 4 MB accumulator buffers

e Invest resources in arithmetic units and dedicated

memories

- 60% of the memory and 250X the arithmetic units of a server-

class CPU

e Use the easiest form of parallelism that matches the

domain
— Exploits 2D SIMD parallelism

* Reduce the data size and type needed for the domain

— Primarily uses 8-bit integers

e Use a domain-specific programming language

— Uses TensorFlow

22

activations

TPU Performancei:ge

 Compare using six benchmarks

- Representing 95% of TPU inference workload in Google data
center in 2016

- Typically written in TensorFlow, pretty short (100-1500 LOCs)
* Chips/servers being compared

— CPU server: Intel 18-core, dual-socket Haswell; host server for
GPUs/TPUs

— GPU accelerator: Nvidia K80
Inference Datacenter Workload (95%)

Layers I T TPU Ops TPU 9
Name |[LOC Nonlnear |y ichts| Weight | Batch .
JSunction < Deployed
FC |Conv|TVector|Pool| Total Byte Size
MLPO 0.1k| 5 5 ReLU | 20M 200 200 61%
MLPI | 1k | 4 4 | ReLU | 5M 168 168 2
LSTMO| 1k | 24 34 sg | S18MOId, | son | 64 64
tanh
o 29%
LSTMI|1.5k 37 19 s6 | MENC | 34M | 96 96
CNNO | 1k 16 16 | ReLU | 8M | 2888 8 56,
CNNI | 1k| 4 | 72 13| 89 | ReLU |100M| 1750 32 i

23 Dhig

Roofline Performance Model[ZTiiZ:)

* The roofline model was introduced in 2009

— Samuel Williams, Andrew Waterman, and David Patterson.
2009. Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM

* It provides an easy way to get performance bounds for
compute and memory bandwidth bound computations

* It relies on the concept of Computational Intensity (Cl)
- Sometimes also called Arithmetic or Operational Intensity

* The model provides a relatively simple way for
performance estimates based on the computational
kernel and hardware characteristics

— Performance [GF/s] = function (hardware and software
characteristics)

\ ’pﬂuL
wrsevonversh tps: //www.dam.brown.edu/people/lgrinb/APMA2821/Lectures 2015/APMA2821H-L roof line model.pdf 4

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Roofline Performance Model(cont.)

* Basic idea
— Plot peak FP throughput as a function of arithmetic intensity

- Ties together FP performance and memory performance for a
target machine

 Arithmetic intensity[iz 5 %]

— Ratio of FP operations per byte of memory accessed

o (total #FP operations for a program) / (total data bytes transferred to
main memory during program execution)

OQ) O(log(N)) Otﬁl\l)
”~ e = ~ -A~ -~ i e
! Y
Arithmetic intensity
A J \ 4 K | 4
Spectral
it ay methods Lo N-body
(SpMV) (FFTs) matrix : (Particle
2pVIV) (BLAS3) methods)
Structured | Structured
grids grids

(Stencils, (Lattice
PDEs) methods)

@) tuxs 25 i

!

Arithmetic Intensity[iz &%,

e A1 = %(FLOP/Byte)

- W: amount of work, i.e. floating point operations required
- Q: memory transfer, i.e. access from DRAM to lowest level

cache

* Examples 1 ADD
for (i=0;i < N; ++i) 2 (8 byte) loads
z[i] = x[i]+y([i] 1 (8 byte) write

=1/(2*8 +8)=1/24

1 ADD

for (i=0; i< N; ++i) 1 MUL
z[i] = x[i]+y[i]*x[i] 2 (8 byte) loads

1 (8 byte) write
=2/(2*8+8)=1/12

26 ﬂ
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures 2015/APMA2821H-L roof line model.pdf 2rN 1

,‘
(&) T b X '5'

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Example

float in[N], out[N];
for (int i=1; i<N-1; i++)
out[i] = in[i-1]-2*in[i]+in[i+1];

 Amount of FLOPS: 3(N-2)
— For every i: out[i] = in[i-1]-2*in[i]+in[i+1] = 3 flop
— Loop over: for (int i=1; i<N-1; i++) = (N-2) repetitions

* Memory accesses Q: depends on cache size
— No cache (read directly from slow memory) = every data
accessed is counted
o 4 accesses x (N-2) repetitions x 4 bytes 2 A.l. =3/16

— Perfect cache (infinite sized cache) = data is read & written
only once

o 2 accesses x (N-2) repetitions x 4 bytes 2> A.l. = 3/8

27 | ’rﬂ
https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01 slides.pdf 1 1

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

Roofline Analysis

* "Roofline” sets an upper bound on perf of a kernel
depending on its arithmetic intensity

— Think of arithmetic intensity as a pole that hits the roof

o Hits the flat part: perf is computationally limited
o Hits the slanted part: perf is ultimately limited by memory bandwidth

* Ridge point: the diagonal and horizontal roofs meet
— Far to right: only very intensive kernels can achieve max perf
— Far to left: almost any kernel can potentially hit max perf

Pecformance [GFLOPS)

Attainable
Performance P
Bound based on bandwidth - FLOP/s &
.’ Memory _ | = Compute
Bound “—i{——> Bound
Bound based on peak performance
T
Maximum
- Attainable
A pp : Performance
-
App,
.
App, f 3
T - >]
/j’ yte/s] = Op: |
- > i Wy 1
T FLOP/Byte

Example

* Consider: for (i = 0; i < N; ++i) y[i] = a*x]i]+y[i]
— For each “i” : t
ol addltlon, 1 multiplication

o 2 loads of 8 bytes each g
o 1 store g (2048
e Execution on BlueGene/Q g
- Peak 204.8 GFLOP/node 8 .
* Performance estimates: 711

- Al = 2/(3*8) =1 / 12 1/12 <7.11- Arithmetic Intensity (FLOPS/BYTE)
limited area on the Roofline plot

- 7.11/(1/12)= 85.32
- 204.8 / 85.32 = 2.4 GF/s

29 @
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures 2015/APMA2821H-L roof line model.pdf 2rN 1

,‘
(5 'e K :‘5‘

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

