@) tuxs [l ERBEHE M

s/ SUN YAT-SENUNIVERSITY PP Y{{ ~ NATIONAL SUPERCOMPUTER CENTER IN GUANGZHOU

Computer Architecture

[ NN

5251 : Domain Specific Arch (4)
AIQLINGE

xianweiz.github.io
DCS3013, 12/28/2022

w:i@i



https://xianweiz.github.io/

Quantum Computing: Key Concepts

Superposition Entanglement

Classical Physics Quantum Physics

Heads OR Tails Heads AND Tails

N Quantum Bits or Qubits = 2N States

Fraqility

Observation or noise
causes loss of information
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Quantum Algorithm (cont.)

* Prepare three qubits to represent all possible
computational basis evenly
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* We further encode the problem information into the
superposition and manipulate it

* Then we make measurements

Quantum State: Computation Basis Quantum State: Computation Basis
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Quantum Gate[=FI11]]

 Quantum gate is a transformation from one qubit state to
another

— They are the building blocks of quantum circuits, like classical
logic gates are for conventional digital circuits

— Must have the same number of inputs and outputs

o We cannot implement a quantum operator in a quantum computer if
the operation is not reversible

o Qubits do not branch out or merge together - we don’t have the nicely
if-then-else or while statements

* Currently available superconducting quantum hardware
only supports one-qubit gates and two-qubit gates on
specific pairs

— More complex operations must be decomposed into multiple
S|mpler supported ones
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Common Quantum Gates

) I i Control qubit
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Quantum Circults[&= T B %]

* A program can be written as a diagram with a sequence
of the quantum gates (a quantum circuit)

* The majority of algorithm development is still done in
terms of quantum gates
— The quantum analog of logical operations like AND, NOT, or XOR

single-qubit gate measurment
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Quantum Program[& 7]

* Quantum programs are typically represented as a circuit
which, like a classical program, is on ordered list of
instructions

— Here the instructions are quantum logic gates applied to qubits

* Programs are usually run thousands of times to obtain a
distribution over possible answers
- Since the outcome of a quantum program is a classical bitstring
- Since quantum systems are inherently noisy

[python3] $ pip install qiskit

rom giskit import QuantumProgram
iQu

antumProgram
= qp.create_quantum_register('qr',2
eate

p
2

r = gp.create_classical_register('cr'
= gp.cr _circuit('Bell’', [qgr], [cr]

riel, ar(i]

ure(qr[e], cr[e])
sure(qr[1], cr[1])

result = gp.execute( 'Bell’

print{result.get_counts('Bell'))
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Quantum Circuit Compilation[4s %]

Quantum circuit for idealized hardware
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* example generated with Qiskit/QASM Editor/Composer to
portray a quantum circuit for an ideal quantum processor
* similar to compilation in classical

computing (e.g. compile C++ code) Compile

Quantum circuit for real hardware
Quantum
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* subject to hardware constraints
* adds additional gates (swap) to satisfy
the hardware constraints
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NISQ

* Noisy Intermediate-Scale Quantum[& k= ) H B = 1]
— Noisy: devices will be disturbed by what is happening in their

environment

o E.g., small changes in temperature, or stray electric or magnetic fields,
can cause the guantum information in the computer to be degraded — a
process known as decoherence

o We need to be able to perform error correction — essentially looking at
the system to determine which disturbances have occurred, then
reversing them

- Intermediate-scale: the number of qubits will most likely be
limited to a few hundred, or perhaps a few thousand

o Long-term: much larger devices, with several millions of qubits and
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NISQ (cont.)

* Quantum computers with 50-100 qubits may be able to
perform tasks which surpass the capabilities of today's
classical digital computers, , but noise in guantum gates
will limit the size of quantum circuits that can be
executed reliably

* Quantum technologists should continue to strive for more
accurate quantum gates and, eventually, fully fault-
tolerant quantum computing
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Quantum Computing System

Architecture: Completely New Kind of Compute

Quantum Algorithm

Quantum Compiler Key system challenges for
: Quantum Practicality

= New execution model

= Error mitigation & resilience
Qubit Control Processor = Scalability

= Interconnect complexity

» Qubit device design

Control Electronics

Qubit Chip
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Hybrid Architecture

* Hybrid model to leverage both quantum and classical
computation

- Even as quantum machines scale, quantum algorithms are likely
to be specialized, making the quantum device a very domain-
specific accelerator

— Most practical applications will still require a combination of
general classical and specialized quantum processing to be
useful

Classical Quantum

Classical input computer computer
Quantum operations

\ /

Measurement values

Classical output I ]

Binary program| Quantum machine
\ state state
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Researches on Quantum Computer

8§ MORGAN & CLAYPOOL PUBLISHERS
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Quantum Computer Systems: Research for Noisy Intermediate-Scale
Quantum Computers

Yongshan Ding and Frederic T. Chong

Synthesis Lectures on Computer Architecture, June 2020, Vol. 15, No. 2 , Pages 1-227
(https://doi.org/10.2200/S01014ED1V01Y202005CAC051)

Yongshan Ding
University of Chicago

Frederic T. Chong
University of Chicago

Abstract

This book targets computer scientists and engineers who are familiar with concepts in classical
computer systems but are curious to learn the general architecture of quantum computing systems.
It gives a concise presentation of this new paradigm of computing from a computer systems' point
of view without assuming any background in quantum mechanics. As such, it is divided into two
parts. The first part of the book provides a gentle overview on the fundamental principles of the
quantum theory and their implications for computing. The second part is devoted to state-of-the-art
research in designing practical quantum programs, building a scalable software systems stack, and
controlling quantum hardware components. Most chapters end with a summary and an outlook for
future directions. This book celebrates the remarkable progress that scientists across disciplines
have made in the past decades and reveals what roles computer scientists and engineers can play
to enable practical-scale quantum computing.

Table of Contents: Preface / Acknowledgments / List of Notations / Introduction / Think Quantumly
About Computing / Quantum Application Design / Optimizing Quantum Systems--An Overview /
Quantum Programming Languages / Circuit Synthesis and Compilation / Microarchitecture and
Pulse Compilation / Noise Mitigation and Error Correction / Classical Simulation of Quantum
Computation / Concluding Remarks / Bibliography / Authors' Biographies
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Researches (cont.)

* HPCA'2021

— TILT: Achieving Higher Fidelity on a Trapped-lon Linear-Tape Quantum
Computing Architecture

— QuCloud: A New Qubit Mapping Mechanism for Multi-programming
Quantum Computing in Cloud Environment

— Systematic Approaches for Precise and Approximate Quantum State
Runtime Assertion

— Faster Schrodinger-style Simulation of Quantum Circuits

 ASPLOS’2021
— Time-Optimal Qubit Mapping
— Orchestrated Trios: Compiling for Efficient Communication in
Quantum Programs with 3-Qubit Gates

— Qraft: Reverse Your Quantum Circuit and Know the Correct Program
Output

— Logical Abstractions for Noisy Variational Quantum Algorithm
Simulation

— CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations
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Researches (cont.)

* ISCA’2021

— Exploiting Long Distance Interactions and Tolerating Atom Loss in
Neutral Atom Quantum Architectures

- Software-Hardware Co-Optimization for Computational Chemistry on
Superconducting Quantum Processors

— Designing Calibration and Expressivity-Efficient Instruction Sets for
Quantum Computing

* MICRO’2021

— Exploiting Different Levels of Parallelism in the Quantum Control
Microarchitecture for Superconducting Qubits

— AutoBraid: A Framework for Enabling Efficient Surface
Communication in Quantum Computing

- JigSaw: Boosting Fidelity of NISQ Programs via Measurement
Subsetting

— ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical
Decoupling
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- ISA & ILP

* |[LP Challenge: overcoming data and control dependencies

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls C.2
Simple branch scheduling and prediction Control hazard stalls C.2
Basic compiler pipeline scheduling Data hazard stalls 2,32
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7
Loop unrolling Control hazard stalls 3.2
Advanced branch prediction Control stalls 3.3
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 34
antidependences
Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory 3.6
Issuing multiple instructions per cycle [deal CPI 3.7, 3.8
Compiler dependence analysis, software pipelining,  Ideal CPI, data hazard stalls H.2, H.3
trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

(O *
() F b X %
SUN YAT-SEN UNIVERSITY
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lI: DLP & GPU

e Data level parallelism
— SIMD: operates on multiple data with on single instruction
o AVX-512 on Intel CPU is the typical example

— SIMT: consists of multiple scalar threads executing in a SIMD
manner

o GPU is the example with threads executing the same instruction

* GPU hardware and thread organization

CUDA thread CUDA core

— Device = SM - SIMD/Partition => Core 1 Im
— Grid = Block = Warp = Thread ] = W
+ GPU programming N

— Streams to support concurrency
— Memory hierarchy and usage (thread, cache/smem, global)
— Advanced topics: virtualization, divergence, nvlink, etc
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[I: Memory

* Memory wall issue

— On modern machines, most programs that access a lot of data
are memory bound

* Cache
— Temporal and spatial locality
- Organization, management and advanced optimizations

* DRAM and NVM

— Structure, variants, scaling issues and emerging memories

Processor-DRAM Memory Gap

pProc 1.20/yr.
“Moore’s Law” P

pProc 1.52/yr.

8 o0 (2X71:5yr)
g DRAM
& ~Processor-Memory 7%lyr.
Performance Gap: (2X/10 yrs)
creerreen } AGTOWS 50% / year) <
4
Meamc ory i PREP S S >

-~ >
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V. TLP

* Multiprocessors with thread-level parallelism
— Sharing memory, having private caches

e Cache coherence

- Snooping: every cache block is accompanied by the sharing
status of that block

o All cache controllers monitor the shared bus so they can update the
sharing status of the block, if necessary

- Directory-based: a single location (directory) keeps track of the
sharing status of a block of memory

o Reduce storage and communication overheads
* Memory consistency

- Sequential consistency: maintains all four memory operation
orderings (W—->R, R->R, R>W, W->W)

— Relaxed consistency: allows certain orderings to be violated
o TSO, PSO, RC

(3R ¢
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V: WSC & Interconnect

 Warehouse scale computer
- Request-level parallelism Warehouse
— Server -> rack -> array -> WSC S
- Power usage effectiveness (PUE)

SESenen _ -~ Computer "~

. J Core ... | Core |
* Interconnection network T Memoy
. B \ Input(Output \
— System area and on-chip = ——
. . Instru&t;gn Unit(s) uan\i 'Osna
— Topologies: Bus, Xbar, Multistage, Star, = o reey e ey O
Linear, Mesh, Tree | T "N

— Compute Express Link (CXL)
o Unified, coherent memory space
o High speed, low latency

Manycore system

A N Bottlenecks due
o A B to energy and
bandwidth
Cache |[|Cache| *=s=ssssesnaan Cache density limitations
% ;

Need to jointly
optimize on-chip
and off-chip

»
() T b K 3
(:<2) 2

A SUN YAT-SEN UNIVERSITY
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VI: DSA

* DSA will co-exist with general-purpose architecture
- Heterogeneous: CPU + GPU + accelerator

* DSA design guidelines
— Dedicated memories, larger ALU, easy parallelism, smaller data
size, domain-specific language
* Google TPU

— DNNs, matrix unit, on-chip memory, systolic execution, ISA

— Roofline performance model

o Tie architecture (peak computation and bandwidth) to application
(arithmetic intensity)

* Quantum computing

h;‘ﬂi




Goals[i§f H 5

* This course covers HW/SW, and the interface[ N 78 ]
— We will focus on performance analysis and design tradeoffs

* Two key goals of this course are[ =% H #x]

— To understand how hardware components works with the
software layer and how decisions made in hardware affect the
software/programmer

— To enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

* Two other goals of this course[ 4} H #r]
— Enable you to think critically
- Enable you to think broadly

25 w;‘gi
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Design Goals[#it H#7]

* Functional[ZhfEME]
— What functions should it support?

- Needs to be correct
o Unlike software, difficult to update once deployed

* High performance[&E 1 fE]
- “Fast” is only meaningful in the context of a set of important
tasks
- Not just “Gigahertz”
— Impossible goal: fastest possible design for all programs

 Reliable[m ] g 14]
- Does it continue to perform correctly?

— Hard fault vs. transient fault
o Example: memory errors and sun spots
— Space satellites vs. desktop vs. server reliability

U&7 ]! v
“‘ SUN YAT-SEN UNIVERSITY w ' ‘ =




Design Goals (cont.)

 Low cost[{kaiAN]
— Design cost (huge design teams, why?)[1% 1]
— Cost of making first chip after design (mask cost)[#i H]
— Per unit manufacturing cost (wafer cost)[= "]

* Low power/energy[{kfE#E]
- Energy in (battery life, cost of electricity)
— Energy out (cooling and related costs)
— Cyclic problem, very much a problem today

* Challenge: balancing the relative importance of these
goals
— And the balance is constantly changing
- No goal is absolutely important at expense of all others
— Our focus: performance, only touch on cost, power, reliability

(3R ¢
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Methodology: Design/Evaluation[77)

e Evaluate Existing
P 4 e Systems for
I \ Bottlenecks
z JAN Nz 2L
©  Technology : 7~ UL
Implement :==_ trends ____.f
Next Y £
Generation = > 3
System ~ j Simulate New
IR AL Designs and
R Organizations
it S
G)THxE
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Quantitative Principles (§1.8) &4k J5 ]

* Guidelines and principles that are useful in the design and
analysis of computers

* Take advantage of parallelism[F17]
- System level: multiple processors, multiple disks
- Individual processor: instruction parallelism, e.g., pipelining
— Detailed digital design: cache, memory

* Principle of locality[ /&1

- Programs tend to reuse data and insts they have used recently
o A program spends 90% of its execution time in only 10% of the code

* Focus on the common case[— & ]
- To make a trade-off, favor the frequent case over infrequent

[ A“" * | ¥
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Simulator#i 2L

 What is an architecture (or architectural) simulator?
— A tool that reproduces the behavior of a computing device

* Why use a simulator?
— Leverage faster, more flexible software development cycle
— Permits more design space exploration
- Facilitates validation before hardware becomes available
— Possible to increase/improve system instrumentation

T
| I
S Simulation Output
Input Set Microarchitecture I:>
\
| 1 |
\ /
~

s

Binary Operating System Simulation Statistics
J (- -7
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Example Simulator: gem5

* gem5 = Wisconsin GEMS + Michigan m5

— The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

— Widely used in academia and industry

* Why gem5?
— Runs real workloads
— Comprehensive model library (memory, 10, Full OS, Web, ...)
— Rapid early prototyping (quickly test system-level ideas)

— Can be wired to custom models (add detail where it matters,
when it matters)

Core Core e | = > ./gem5 script.py
e K N
. —>» | system.ll.mem side = G s T
system.l2.cpu side nello woria :A—A-‘A__“;
M‘(’

f
NNy
https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf Ul ‘E =
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Problem
ISA + p-arch = Arch
Program/Language
" . Y . . Runtime System
* “Architecture” = ISA + microarchitecture B
ISA (Architecture)
* ISALHE A 4R 1] B
— Agreed upon interface between sw and hw e

o SW/compiler assumes, HW promises

— What the software writer needs to know to write and debug
system/user programs

* Microarchitecture (p-arch)[#¥2e#4]

— Specific implementation of an ISA
o Implementation of the ISA under specific design constraints and goals
— Not visible to the software

i R
Qﬁarch

/05 * \ "E
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What is [SA?

e Instruction Set == A set of instructions
e The HW/SW contract[Z A F i3]

— Compiler correctly translates source code to the ISA[%% 1% 28]
— Assembler translates to relocatable binary[JC %25 ]

— Linker solidifies relocatables into object code[i%#: %]

— HW promises to do what the object code says[figif4$47]

* Not in the “contract”: non-functional aspects[dE7}1¥]
- How operations are implemented
— Which operations are fast and which are slow and when
- Which operations take more power and which take less

h;‘ﬂi



Compiler

~
; Backend ; -
; PreproeessorH Frontend ]—»Mws'sfﬂ" (codegen) [*] Assembler H
L "u__. )
Tokens Parser Sema [>| AST [->| CodeGen LL|\FI{M \
; Preprocessed Object i
| C source | source files | Executable 89 e5
: main( ) : do 05 40 00
P intr et ) L . 5 d5 fe ff ff
: : 00 00 00 00
return 0; :
Preprocessor Compiler Linker |
gcc—E hello.c-ohello.i  gcc-Shello.i-ohellos  gec hello.o —o hello

“ | e (
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Golden Age for CA

* Today is a very exciting time to study architecture
- Many new demands from the top
— Fast changing demands and personalities of users
- Many new issues at the bottom

 Computing landscape is very different from 10-20 years
ago (Recall: Intel = 25*Nvidia = 0.34*Nvidia)
- Every component and its interfaces, as well as entire system
designs are being re-examined

— You can revolutionize the way computers are built, if you
understand both the hardware and the software (and change
each accordingly)

* No clear, definitive answers to these problems[f [a] &,

35 Dhage



Academia[z AR

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson
> o Current challenges[in] ]
2020 2025 2030
D TR — End of Moore's Law and
T e : Dennard Scaling
— Overlooked security
Cloud as architecture
Q‘"“"”"’""”"‘“"“‘““ ‘ ’ * Future opportunities in
. computer architecture[#l
integration . . 18]
— Domain-specific
o e ‘ ‘ architectures
- Domain-specific
4’ e by ¢ . languages
Sl s — Open architectures
— Agile hardware
[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016) development

[2] A New Golden Age for Computer Architecture (2019)
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