
第25讲：Domain Specific Arch (4)
张献伟

xianweiz.github.io
DCS3013, 12/28/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Quantum Computing: Key Concepts

2

Quantum Algorithm (cont.)
• Prepare three qubits to represent all possible

computational basis evenly

• We further encode the problem information into the
superposition and manipulate it
• Then we make measurements

3

Quantum Gate[量子门]

• Quantum gate is a transformation from one qubit state to
another

− They are the building blocks of quantum circuits, like classical
logic gates are for conventional digital circuits

− Must have the same number of inputs and outputs
p We cannot implement a quantum operator in a quantum computer if

the operation is not reversible
p Qubits do not branch out or merge together à we don’t have the nicely

if-then-else or while statements

• Currently available superconducting quantum hardware
only supports one-qubit gates and two-qubit gates on
specific pairs

− More complex operations must be decomposed into multiple
simpler, supported ones

4

Common Quantum Gates

5

Quantum Circuits[量子电路]

• A program can be written as a diagram with a sequence
of the quantum gates (a quantum circuit)
• The majority of algorithm development is still done in

terms of quantum gates
− The quantum analog of logical operations like AND, NOT, or XOR

6

Quantum Program[量子程序]

• Quantum programs are typically represented as a circuit
which, like a classical program, is on ordered list of
instructions

− Here the instructions are quantum logic gates applied to qubits

• Programs are usually run thousands of times to obtain a
distribution over possible answers

− Since the outcome of a quantum program is a classical bitstring
− Since quantum systems are inherently noisy

7 ASPLOS’2021, Orchestrated Trios
https://jarrodmcclean.com/quantum-programming-error-mitigation-and-more/

https://jarrodmcclean.com/quantum-programming-error-mitigation-and-more/

Quantum Circuit Compilation[编译]

8
https://www.ibm.com/blogs/research/2018/08/understanding-complexity-quantum-circuit-compilation/

https://www.ibm.com/blogs/research/2018/08/understanding-complexity-quantum-circuit-compilation/

NISQ
• Noisy Intermediate-Scale Quantum[含噪声的中型量子]

− Noisy: devices will be disturbed by what is happening in their
environment

p E.g., small changes in temperature, or stray electric or magnetic fields,
can cause the quantum information in the computer to be degraded — a
process known as decoherence

p We need to be able to perform error correction — essentially looking at
the system to determine which disturbances have occurred, then
reversing them

− Intermediate-scale: the number of qubits will most likely be
limited to a few hundred, or perhaps a few thousand

p Long-term: much larger devices, with several millions of qubits and
error correction

9
John Preskill: Quantum Computing in the NISQ Era and Beyond, 2017

NISQ (cont.)
• Quantum computers with 50-100 qubits may be able to

perform tasks which surpass the capabilities of today's
classical digital computers, , but noise in quantum gates
will limit the size of quantum circuits that can be
executed reliably
• Quantum technologists should continue to strive for more

accurate quantum gates and, eventually, fully fault-
tolerant quantum computing

10
https://www.bgp4.com/2018/10/17/noisy-intermediate-scale-quantum-nisq-technology/

https://www.bgp4.com/2018/10/17/noisy-intermediate-scale-quantum-nisq-technology/

Quantum Computing System

11

Hybrid Architecture
• Hybrid model to leverage both quantum and classical

computation
− Even as quantum machines scale, quantum algorithms are likely

to be specialized, making the quantum device a very domain-
specific accelerator

− Most practical applications will still require a combination of
general classical and specialized quantum processing to be
useful

12
https://www.sigarch.org/hybrid-quantum-classical-computing/

https://www.sigarch.org/hybrid-quantum-classical-computing/

Researches on Quantum Computer

13

Researches (cont.)
• HPCA’2021

− TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum
Computing Architecture

− QuCloud: A New Qubit Mapping Mechanism for Multi-programming
Quantum Computing in Cloud Environment

− Systematic Approaches for Precise and Approximate Quantum State
Runtime Assertion

− Faster Schrödinger-style Simulation of Quantum Circuits
• ASPLOS’2021

− Time-Optimal Qubit Mapping
− Orchestrated Trios: Compiling for Efficient Communication in

Quantum Programs with 3-Qubit Gates
− Qraft: Reverse Your Quantum Circuit and Know the Correct Program

Output
− Logical Abstractions for Noisy Variational Quantum Algorithm

Simulation
− CutQC: Using Small Quantum Computers for Large Quantum Circuit

Evaluations

14

Researches (cont.)
• ISCA’2021

− Exploiting Long Distance Interactions and Tolerating Atom Loss in
Neutral Atom Quantum Architectures

− Software-Hardware Co-Optimization for Computational Chemistry on
Superconducting Quantum Processors

− Designing Calibration and Expressivity-Efficient Instruction Sets for
Quantum Computing

• MICRO’2021
− Exploiting Different Levels of Parallelism in the Quantum Control

Microarchitecture for Superconducting Qubits
− AutoBraid: A Framework for Enabling Efficient Surface

Communication in Quantum Computing
− JigSaw: Boosting Fidelity of NISQ Programs via Measurement

Subsetting
− ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical

Decoupling

15

第25讲：Summary
张献伟

xianweiz.github.io
DCS3013, 12/28/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Grading[课时及考核]

•课时（3学分，54学时）
− 1-18周，周三 5/6节（14:20-16:00）
− 10-18周，周一5/6节（14:20-16:00）
−地点：教学大楼 C105

•考核
−课堂参与（20%） -点名、提问、测试
−平时作业（40%）-课下

p 习题、实践、paper review。。。
−课程项目（40%）

p simulator

17

•课堂
−随机点名

p 缺席优先

−随机提问
p 后排优先

−随机测试
p 不定时间

•实验/作业
−个人完成

p 杜绝抄袭

−按时提交
p 超算习堂

Covered Contents

18

I: ISA & ILP
• ILP Challenge: overcoming data and control dependencies

19

II: DLP & GPU
• Data level parallelism

− SIMD: operates on multiple data with on single instruction
p AVX-512 on Intel CPU is the typical example

− SIMT: consists of multiple scalar threads executing in a SIMD
manner

p GPU is the example with threads executing the same instruction

• GPU hardware and thread organization
− Device à SM à SIMD/Partition à Core
− Grid à Block à Warp à Thread

• GPU programming
− Streams to support concurrency
− Memory hierarchy and usage (thread, cache/smem, global)
− Advanced topics: virtualization, divergence, nvlink, etc

20

III: Memory
• Memory wall issue

− On modern machines, most programs that access a lot of data
are memory bound

• Cache
− Temporal and spatial locality
− Organization, management and advanced optimizations

• DRAM and NVM
− Structure, variants, scaling issues and emerging memories

21

IV: TLP
• Multiprocessors with thread-level parallelism

− Sharing memory, having private caches
• Cache coherence

− Snooping: every cache block is accompanied by the sharing
status of that block

p All cache controllers monitor the shared bus so they can update the
sharing status of the block, if necessary

− Directory-based: a single location (directory) keeps track of the
sharing status of a block of memory

p Reduce storage and communication overheads

• Memory consistency
− Sequential consistency: maintains all four memory operation

orderings (W→R, R→R, R→W, W→W)
− Relaxed consistency: allows certain orderings to be violated

p TSO, PSO, RC

22

V: WSC & Interconnect
• Warehouse scale computer

− Request-level parallelism
− Server -> rack -> array -> WSC
− Power usage effectiveness (PUE)

• Interconnection network
− System area and on-chip
− Topologies: Bus, Xbar, Multistage, Star,

Linear, Mesh, Tree
− Compute Express Link (CXL)

p Unified, coherent memory space
p High speed, low latency

23

VI: DSA
• DSA will co-exist with general-purpose architecture

− Heterogeneous: CPU + GPU + accelerator

• DSA design guidelines
− Dedicated memories, larger ALU, easy parallelism, smaller data

size, domain-specific language

• Google TPU
− DNNs, matrix unit, on-chip memory, systolic execution, ISA
− Roofline performance model

p Tie architecture (peak computation and bandwidth) to application
(arithmetic intensity)

• Quantum computing

24

Goals[课程目标]

• This course covers HW/SW, and the interface[内容覆盖]
− We will focus on performance analysis and design tradeoffs

• Two key goals of this course are[主要目标]
− To understand how hardware components works with the

software layer and how decisions made in hardware affect the
software/programmer

− To enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

• Two other goals of this course[额外目标]
− Enable you to think critically
− Enable you to think broadly

25
https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture1-intro-afterlecture.pdf

Design Goals[设计目标]

• Functional[功能性]
− What functions should it support？
− Needs to be correct

p Unlike software, difficult to update once deployed

• High performance[高性能]
− “Fast” is only meaningful in the context of a set of important

tasks
− Not just “Gigahertz”
− Impossible goal: fastest possible design for all programs

• Reliable[可靠性]
− Does it continue to perform correctly?
− Hard fault vs. transient fault

p Example：memory errors and sun spots
− Space satellites vs. desktop vs. server reliability

26

Design Goals (cont.)
• Low cost[低成本]

− Design cost (huge design teams, why?)[设计]
− Cost of making first chip after design (mask cost)[流片]
− Per unit manufacturing cost (wafer cost)[量产]

• Low power/energy[低能耗]
− Energy in (battery life, cost of electricity)
− Energy out (cooling and related costs)
− Cyclic problem, very much a problem today

• Challenge: balancing the relative importance of these
goals

− And the balance is constantly changing
− No goal is absolutely important at expense of all others
− Our focus: performance, only touch on cost, power, reliability

27

Methodology: Design/Evaluation[方法]

28

实现下一代

分析当前

设计及评估

Quantitative Principles (§1.8)[量化原则]

• Guidelines and principles that are useful in the design and
analysis of computers
• Take advantage of parallelism[并行]

− System level: multiple processors, multiple disks
− Individual processor: instruction parallelism, e.g., pipelining
− Detailed digital design: cache, memory

• Principle of locality[局部性]
− Programs tend to reuse data and insts they have used recently

p A program spends 90% of its execution time in only 10% of the code

• Focus on the common case[一般情况]
− To make a trade-off, favor the frequent case over infrequent

29

Simulator[模拟器]

• What is an architecture (or architectural) simulator?
− A tool that reproduces the behavior of a computing device

• Why use a simulator?
− Leverage faster, more flexible software development cycle
− Permits more design space exploration
− Facilitates validation before hardware becomes available
− Possible to increase/improve system instrumentation

30

Example Simulator: gem5
• gem5 = Wisconsin GEMS + Michigan m5

− The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

− Widely used in academia and industry

• Why gem5?
− Runs real workloads
− Comprehensive model library (memory, IO, Full OS, Web, …)
− Rapid early prototyping (quickly test system-level ideas)
− Can be wired to custom models (add detail where it matters,

when it matters)

31
https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

ISA + µ-arch = Arch
• “Architecture” = ISA + microarchitecture
• ISA[指令集架构]

− Agreed upon interface between sw and hw
p SW/compiler assumes, HW promises

− What the software writer needs to know to write and debug
system/user programs

• Microarchitecture (µ-arch)[微架构]
− Specific implementation of an ISA

p Implementation of the ISA under specific design constraints and goals
− Not visible to the software

32

ISA
µ-arch

https://image.slideserve.com/466455/instruction-set-design-l.jpg

What is ISA?
• Instruction Set == A set of instructions
• The HW/SW contract[软硬件协议]

− Compiler correctly translates source code to the ISA[编译器]
− Assembler translates to relocatable binary[汇编器]
− Linker solidifies relocatables into object code[连接器]
− HW promises to do what the object code says[硬件执行]

• Not in the “contract”: non-functional aspects[非协议]
− How operations are implemented
− Which operations are fast and which are slow and when
− Which operations take more power and which take less

33

Compiler

34
gcc -S hello.i -o hello.s gcc hello.o –o hellogcc –E hello.c -o hello.i

Golden Age for CA
• Today is a very exciting time to study architecture

− Many new demands from the top
− Fast changing demands and personalities of users
− Many new issues at the bottom

• Computing landscape is very different from 10-20 years
ago (Recall: Intel = 25*Nvidia à 0.34*Nvidia)

− Every component and its interfaces, as well as entire system
designs are being re-examined

− You can revolutionize the way computers are built, if you
understand both the hardware and the software (and change
each accordingly)

• No clear, definitive answers to these problems[有问题，
缺方案]

35

Academia[学术界]

36

[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

• Current challenges[问题]
− End of Moore's Law and

Dennard Scaling
− Overlooked security

• Future opportunities in
computer architecture[机
遇]

− Domain-specific
architectures

− Domain-specific
languages

− Open architectures
− Agile hardware

development

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson

https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

