
第3讲：ISA & ILP（2）
张献伟

xianweiz.github.io
DCS3013, 9/21/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review Questions
• Guidelines and principles in design and analysis of arch?

• Amdahl‘s Law?

• If 80% of a program can be parallelized to run 4x faster,
what’s the overall speedup? The theoretical max?

• CPI vs. IPC?

• ISA vs. u-arch?

• What affect CPU performance?

2

Speedup is limited by the fraction.

1 / (20% + 80%/4) = 2.5x max: 1 / 20% = 5

Cycles per instruction instructions per cycle

u-arch is the specific implementation of ISA. Arch = ISA + u-arch

Parallelism, locality, common case

Program, compiler, ISA, organization, technology

Existing ISAs
• RISC: reduced-instruction set computer[精简指令集]

− Coined by Patterson in early 80’s
− RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
− Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer[复杂指令集]
− Term didn’t exist before “RISC”
− Examples: x86, VAX, Motorola 68000, etc.

3

国产CPU架构
• x86

−曙光/海光

• ARM
−华为、飞腾

•自主
−龙芯、申威

4

* CPU及指令集演进 (漫画 | 20多年了，为什
么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166

国产GPU

5

https://t.cj.sina.com.cn/articles/view/1874424
022/6fb970d600101asua

https://t.cj.sina.com.cn/articles/view/1874424022/6fb970d600101asua

Performance Argument[性能的争论]

• Performance equation:
− (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC
− Reduce “instructions/program” with “complex” instructions

p But tends to increase CPI or clock period
− Easy for assembly-level programmers, good code density
− Idea: give programmers powerful insts, fewer insts to complete

the work
• RISC

− Improve “cycles/instruction” with many single-cycle instructions
− Increases “instruction/program”, but hopefully not as much

p Help from smart compiler
− Idea: compose simple insts to get complex results

6

CISC vs. RISC
• Instructions[指令]: multi-cycle complex vs. single-cycle

reduced
• Addressing modes[寻址模式]: many vs. few
• Encoding[编码]: many formats and lengths vs. fixed-length

instruction format
• Performance[性能]: hand assemble to get good

performance vs. reliance on compiler optimizations
• Registers[寄存器]: few vs. many (compilers are better at

using them)
• Code size[代码大小]: small vs. large

7

CISC vs. RISC (cont.)
• The war started in mid 1980’s

− CISC won the high-end commercial war (1990s to today)
p Compatibility a stronger force than anyone (but Intel) thought

− RISC won the embedded computing war

• CISC: winner on revenue[赢在收益]
− X86 was the first 16-bit microprocessor

p No competing choices à historical inertia and “financial feedback”
− Moore’s law was the helper

p Most engineering problems can be solved with more transistors

• RISC: winner on volume[赢在数量]
− First ARM chip in mid-1980s à 150 billion chips
− Low-power and embedded devices (e.g., cellphones)

8

x86 à ARM à RISC-V[进行中的变革]

• But now, things are changing …
− Fugaku: ARM-based supercomputer (Top2)
− Apple: ARM-based M1/2 chip
− Amazon: AWS Graviton processor

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement

9

What is RISC-V?
• Fifth generation of RISC design from UC Berkeley[第五代]

• A high-quality, license-free, royalty-free RISC ISA[自由]

• Experiencing rapid uptake in both industry and academia[
快速发展]

• Supported by growing shared software ecosystem[生态]

• Appropriate for all levels of computing system, from
microcontrollers to supercomputers[普适]

− 32-bit, 64-bit, and 128-bit variants

• Standard maintained by
non-profit RISC-V Foundation

10

https://riscv.org/

https://riscv.org/

RISC-V (cont.)
• The free and open RISC instruction set architecture

− Enabling a new era of processor innovation through open
standard collaboration[彻底开放]

− RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

11

The RISC-V Architecture[架构]

• 32, 64-bit general purpose registers (GPRs)
− called x0, … , x31 (x0 is hardwired to the value 0)

• 32, 64-bit floating point registers - FPRs (each can hold a
32-bit single precision or a 64-bit double precision value)

− called f0, f1, … , f31
• A few special purpose registers (example: floating point

status)
• Byte addressable memories with 64-bit addresses
• 32-bit instructions
• Only immediate and displacement addressing modes (12-

bit field)

12

Data transfer operations: ld, lw, lb, lh, flw, sd, sw, sb, sh, fsw, …
Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, …
Control operations: beq, bne, blt, jal, jalr, …
Floating point operations: fadd, fsub, fmult, fsqrt, …

µ-ops[微操作]

• x86: RISC inside
− Maintains x86 ISA externally for compatibility
− But executes RISC µISA internally for implementability

p x86 code is becoming more “RISC-like”
− Different µ-ops for different designs

p Not part of the ISA specification, not publicly disclosed

• Example:
push $eax
becomes (we think, µ-ops are proprietary)
store $eax, -4($esp)
addi $esp,$esp,-4

13

Translation and Virtual ISAs[翻译和虚拟]

• New compatibility interface: ISA + translation software
− Binary-translation: transform static image, run native
− Emulation: unmodified image, interpret each dynamic inst
− Typically optimized with just-in-time (JIT) compilation
− Example: x86 à LoongArch[龙芯]
− Performance overheads reasonable (many recent advances)

• Virtual ISAs: designed for translation, not direct execution
− Target for high-level compiler (one per language)
− Source for low-level translator (one per ISA)
− Goals: Portability (abstract hardware nastiness), flexibility over

time
− Examples: Java Bytecodes, NVIDIA’s “PTX”

14

Example

15

https://max.book118.com/html/2021/0820/7105126054003163.shtm

https://max.book118.com/html/2021/0820/7105126054003163.shtm

RISC-V Instructions[指令]

• All RISC-V instructions are 32 bits long, have 6 formats
− R-type: instructions using register-register
− I-type: instructions with immediates, loads
− S-type: store instructions
− B-type: branch instructions (beq, bge)
− U-type: instructions with upper immediates
− J-type: jump instructions (jal)

16
https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf

Example

• Fields of R-type
− opcode: partially specifies what instruction it is
− funct7+funct3: combined with opcode, these two fields

describe what operation to perform
− rs1 (source register #1): specifies register of first operand
− rs2: specifies second register operand
− rd (destination register): specifies register which will receive

result of computation
p Each register field holds a 5-bit unsigned integer (0-31) corresponding to

a register number (x0-x31)

• add x18,x19,x10

17
=10 =19 =18

Executing an Instruction[执行指令]

• Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

− Get the instruction[获取指令]
p add x18,x19,x10

− What instruction is it?[操作符]
p add

− Gather data read[操作数]
p R[x19], R[x10]

− Perform operation[操作]
p calc R[x19]+R[x10]

− Store result[结果]
p save into x18

18
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture11.pdf

Five-Stage Execution(§C.1)[5阶段执行]

• Instruction fetch (IF)[取指令]/(IM: instruction memory)
− Fetch the next instruction from memory (and update PC to the

next sequential instruction)
• Instruction decode (ID)[解码]/(REG: register fetch)

− Decode the inst and read the registers corresponding to register
source specifiers

• Execution/effective address (EX)[执行]/(ALU)
− Operate on the operands prepared in the prior cycle

• Memory access (MEM)[访存]/(DM: data memory)
− Load: read using the effective address
− Store: write to memory

• Write-back (WB)[回写]/(REG)
− Writes the result into the register

19

Examples
• Arithmetic/logic instructions: R-type rd, rs1, rs2

− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: compute result (use ALU)
− WB: write to register rd

• Load instructions: lw rd, c(rs1)
− IF: fetch instruction
− ID: read register rs1
− EX: use ALU to compute memory address = content of rs1 + c
− MEM: read from memory
− WB: write to register rd

• Store instructions: sw rs2, c(rs1)
− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: use ALU to compute memory address = content of rs1 + c
− WB: write value of rs2 to memory at address rs1+c

20

Why Five Stages?
• Could we have a different number of stages?

− Yes, and other architectures do

• So why does RISC-V have five if instructions tend to idle
for at least one stage?

− The five stages are the union of all the operations needed by all
the instructions

− There is one instruction that uses all five stages: load (lw/lb)

21

lw rd, c(rs1)
IF: fetch instruction
ID: read register rs1
EX: use ALU to compute address = rs1 + c
MEM: read from memory
WB: write to register rd

R-type rd, rs1, rs2
IF: fetch instruction
ID: read registers rs1 and rs2
EX: compute result (use ALU)
WB: write to register rd

Pipelining[指令流水]

• Pipelining: an implementation technique whereby
multiple instructions are overlapped in execution

− Just like an assembly line
− Takes advantage of parallelism that exists among the actions

needed to execute an instruction
− Pipelining is the key technique to make fast processors

22

Visualize Pipelining[表示?]

23

Revisiting Pipeline
• Automobile assembly line[汽车流水线]

− How often a completed car exits the assembly line (i.e.,
#cars/hour)[产能]

− The longest step determines the time between advancing the
line

• Instruction pipelining[指令流水线]
− Throughput: how often an instruction exits the pipeline[吞吐]
− Processor cycle: the time required between moving an inst one

step down the pipeline
p The length of a processor cycle is determined by the time required for

the slowest pipe stage
p Usually 1 clock cycle

• Pipeline designer should balance the length of each stage

24

Pipelining Effects[效果]

• If stages are perfectly balanced, then the time per inst on
the pipelined processor (assuming ideal conditions)

− !"#$ %$& "'()&*+)",' ,' *'%"%$-"'$. #/+0"'$
1*#2$& ,3 %"%$ ()/4$(

• Speedup from pipelining equals the number of stages
− An assembly pipeline with n stages can ideally produce cars n

times fast
− Instruction exit: every n cycles vs. every single cycle

• Pipelining reduces the avg execution time per inst
− Baseline of multi clock cycles/inst: pipelining reduces CPI
− Baseline of single clock cycle/inst: pipelining decreases the

clock cycle time

25

Pipelining Effects (cont.)
• Pipelining exploits parallelism among the insts[并行]

− Not visible to the programmer

• Pipelining improves instruction throughput rather
instruction latency[提高吞吐]

− Goal is to make programs, not individual insts, go faster
− Single instruction latency

p Doesn’t really matter, billions of insts in a program
p Difficult to reduce anyway

− In fact, pipelining usually slightly increases the execution time
of each inst

26

Performance Issues in Pipelining[问题]

• Impossible to reach the ideal speedup (= n stages)
− Usually, the stages will not be perfectly balanced[并不平衡]

p The clock can run no faster than the time needed for the slowest
pipeline stage

− Furthermore, pipelining does involve some overhead[额外开销]
p Pipeline register delay + clock skew[时钟漂移]

27

Example: one unpipelined processor has 1ns clock cycle and
instructions are ALUs (4 cycles, 40%), branches (4 cycles, 20%),
memory (5 cycles, 40%). Suppose that pipelining the processor
adds 0.2ns overhead to the clock. How much pipelining speedup?
- Unpipelined processor, avg inst exe time = clock cycle x avg CPI = 1 ns x (40%x4 +

20%x4 + 40%x5) = 4.4ns
- Pipelined processor, avg inst exe time = 1 + 0.2 ns = 1.2 ns

Dependences and Hazards[依赖和冒险]
• Dependence[依赖]: relationship between two insts

− Data: two insts use same storage location
− Control: one inst affects whether another executes at all
− Not a bad thing, programs would be boring without them
− Enforced by making older inst go before younger one

p Happens naturally in single-/multi-cycle designs
p But not in a pipeline

• Hazard[冒险]: dependence & possibility of wrong inst
order

− Effects of wrong inst order cannot be externally visible
p Stall: for order by keeping younger inst in same stage

− Hazards are a bad thing: stalls reduce performance

28
https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/04_pipeline.pdf

Pipeline Hazards (§C.2)[流水冒险]

• Hazards prevent next instruction from executing during its
designated clock cycle[妨碍执行]

− Hazards reduce the performance from the ideal speedup gained
by pipelining

• Three classes of hazards
− Structural hazards[结构]: HW cannot support some combination

of instructions
− Data hazards[数据]: An instruction depends on result of prior

instruction still in the pipeline
− Control hazards[控制]: Pipelining of branches & other

instructions stall the pipeline until the hazard bubbles in the
pipeline

29

Structural Hazards[结构冒险]

• Different instructions are using the same resource at the
same time[资源冲突]

− Some functional unit is not fully pipelined
p Then a sequence of insts using that unpipelined unit cannot proceed at

the rate of one per clock cycle
− Some resource has not been duplicated enough

• To fix structural hazards: proper ISA/pipeline design[解决]
− Each inst uses every structure exactly one, for at most one cycle
− Always at the same stage relative to Fetch

• Tolerate structural hazards[容忍]
− Add stall logic to stall pipeline when hazards occur

30

Structural Hazards (cont.)
• Register file[寄存器]

− Accessed in two stages
p Read during stage 2 (ID or REG)
p Write during stage 5 (WB)

− Solution: one read port, one write port

• Memory[内存]
− Accessed in two stages

p Instruction fetch during stage 1 (IF or IM)
p Data read/write during stage 4 (MEM)

− Solution: separate instruction cache and data cache

31

REGIM EX DM WB

REGIM EX DM WB

REGIM EX DM WB

REGIM EX DM WB

Structural Hazards (cont.)
• Bubbles are inserted

− Wasted cycles à performance loss

32

REGIM EX DM WB

REGIM EX DM WB

IM

REGIM EX DM WB

REGIM EX DM

Data Hazards[数据冒险]

• Pipeline changes the order of read/write accesses to
operands

− The order may differ from the order seen by sequentially
executing insts on an unpipelined processor

• Example
− All the instructions after the DADD use the result of the DADD

instruction
p What if the old result is being accessed?

• DADD writes into R1, happening in stage 5 (WB)
• DSUB reads from R1, happening in stage 2 (ID)

33

DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

Data Hazards (cont.)

34

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

• DSUB is not even deterministic
− Right, if an interrupt occurs between DADD and DSUB
− Wrong, otherwise

REGIM EX DM WB
Pr

og
ra

m
 o

rd
er

Forwarding[转发]

• Minimizing data hazards stalls by forwarding
− a.k.a., bypassing, short-circuiting
− The result is not really needed by the DSUB until after the DADD

actually produces it
− If the result can be moved from the pipeline register where the
DADD stores it to where the DSUB needs it, then the need for a
stall can be avoided

35

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

CC 1 CC 2 CC 3 CC 4 CC 5

REGIM EX DM WB

Forwarding (cont.)

36

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

• ALU inputs could use forwarded inputs from either the
same pipeline register or from different pipeline registers

REGIM EX DM WB

Forwarding is Insufficient[仅转发不够]

37

LD R1, 0(R2)

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

CC 1 CC 2 CC 3 CC 4 CC 5

AND R6, R1, R7

REGIM EX DM WB

REGIM EXOR R8, R1, R9

• LD can bypass its results to AND and OR instructions
• But not to the DSUB

− Forwarding the result in “negative time”！

