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Review Questions
• Guidelines and principles in design and analysis of arch?

• Amdahl‘s Law?

• If 80% of a program can be parallelized to run 4x faster, 
what’s the overall speedup? The theoretical max?

• CPI vs. IPC?

• ISA vs. u-arch?

• What affect CPU performance?
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Speedup is limited by the fraction.

1 / (20% + 80%/4) = 2.5x max: 1 / 20% = 5

Cycles per instruction instructions per cycle

u-arch is the specific implementation of ISA. Arch = ISA + u-arch

Parallelism, locality, common case

Program, compiler, ISA, organization, technology



Existing ISAs
• RISC: reduced-instruction set computer[精简指令集]

− Coined by Patterson in early 80’s
− RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
− Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer[复杂指令集]
− Term didn’t exist before “RISC”
− Examples: x86, VAX, Motorola 68000, etc.
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国产CPU架构
• x86

−曙光/海光

• ARM
−华为、飞腾

•自主
−龙芯、申威
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* CPU及指令集演进 (漫画 | 20多年了，为什
么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166


国产GPU
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https://t.cj.sina.com.cn/articles/view/1874424
022/6fb970d600101asua

https://t.cj.sina.com.cn/articles/view/1874424022/6fb970d600101asua


Performance Argument[性能的争论]

• Performance equation:
− (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC
− Reduce “instructions/program” with “complex” instructions

p But tends to increase CPI or clock period
− Easy for assembly-level programmers, good code density
− Idea: give programmers powerful insts, fewer insts to complete 

the work
• RISC

− Improve “cycles/instruction” with many single-cycle instructions
− Increases “instruction/program”, but hopefully not as much

p Help from smart compiler
− Idea: compose simple insts to get complex results
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CISC vs. RISC
• Instructions[指令]: multi-cycle complex vs. single-cycle 

reduced
• Addressing modes[寻址模式]: many vs. few
• Encoding[编码]: many formats and lengths vs. fixed-length 

instruction format
• Performance[性能]: hand assemble to get good 

performance vs. reliance on compiler optimizations
• Registers[寄存器]: few vs. many (compilers are better at 

using them)
• Code size[代码大小]: small vs. large
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CISC vs. RISC (cont.)
• The war started in mid 1980’s

− CISC won the high-end commercial war (1990s to today)
p Compatibility a stronger force than anyone (but Intel) thought

− RISC won the embedded computing war

• CISC: winner on revenue[赢在收益]
− X86 was the first 16-bit microprocessor

p No competing choices à historical inertia and “financial feedback”
− Moore’s law was the helper

p Most engineering problems can be solved with more transistors

• RISC: winner on volume[赢在数量]
− First ARM chip in mid-1980s à 150 billion chips
− Low-power and embedded devices (e.g., cellphones)
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x86 à ARM à RISC-V[进行中的变革]

• But now, things are changing …
− Fugaku: ARM-based supercomputer (Top2)
− Apple: ARM-based M1/2 chip
− Amazon: AWS Graviton processor

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans 

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement
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What is RISC-V?
• Fifth generation of RISC design from UC Berkeley[第五代]

• A high-quality, license-free, royalty-free RISC ISA[自由]

• Experiencing rapid uptake in both industry and academia[
快速发展]

• Supported by growing shared software ecosystem[生态]

• Appropriate for all levels of computing system, from 
microcontrollers to supercomputers[普适]

− 32-bit, 64-bit, and 128-bit variants

• Standard maintained by 
non-profit RISC-V Foundation
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https://riscv.org/

https://riscv.org/


RISC-V (cont.)
• The free and open RISC instruction set architecture

− Enabling a new era of processor innovation through open 
standard collaboration[彻底开放]

− RISC-V ISA delivers a new level of open, extensible software and 
hardware freedom on architecture, paving the way for the next 
50 years of computing design and innovation
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The RISC-V Architecture[架构]

• 32, 64-bit general purpose registers (GPRs)
− called x0, … , x31 (x0 is hardwired to the value 0)

• 32, 64-bit floating point registers - FPRs (each can hold a 
32-bit single precision or a 64-bit double precision value)

− called f0, f1, … , f31
• A few special purpose registers (example: floating point 

status)
• Byte addressable memories with 64-bit addresses
• 32-bit instructions
• Only immediate and displacement addressing modes (12-

bit field)
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Data transfer operations: ld, lw, lb, lh, flw, sd, sw, sb, sh, fsw, … 
Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, … 
Control operations: beq, bne, blt, jal, jalr, … 
Floating point operations: fadd, fsub, fmult, fsqrt, …



µ-ops[微操作]

• x86: RISC inside
− Maintains x86 ISA externally for compatibility
− But executes RISC µISA internally for implementability

p x86 code is becoming more “RISC-like” 
− Different µ-ops for different designs

p Not part of the ISA specification, not publicly disclosed

• Example:
push $eax
becomes (we think, µ-ops are proprietary)
store $eax, -4($esp)
addi $esp,$esp,-4
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Translation and Virtual ISAs[翻译和虚拟]

• New compatibility interface: ISA + translation software
− Binary-translation: transform static image, run native
− Emulation: unmodified image, interpret each dynamic inst
− Typically optimized with just-in-time (JIT) compilation
− Example: x86 à LoongArch[龙芯]
− Performance overheads reasonable (many recent advances)

• Virtual ISAs: designed for translation, not direct execution
− Target for high-level compiler (one per language)
− Source for low-level translator (one per ISA)
− Goals: Portability (abstract hardware nastiness), flexibility over 

time
− Examples: Java Bytecodes, NVIDIA’s “PTX” 
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Example
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https://max.book118.com/html/2021/0820/7105126054003163.shtm

https://max.book118.com/html/2021/0820/7105126054003163.shtm


RISC-V Instructions[指令]

• All RISC-V instructions are 32 bits long, have 6 formats
− R-type: instructions using register-register 
− I-type: instructions with immediates, loads
− S-type: store instructions
− B-type: branch instructions (beq, bge)
− U-type: instructions with upper immediates
− J-type: jump instructions (jal)
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https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf



Example

• Fields of R-type
− opcode: partially specifies what instruction it is
− funct7+funct3: combined with opcode, these two fields 

describe what operation to perform
− rs1 (source register #1): specifies register of first operand
− rs2: specifies second register operand
− rd (destination register): specifies register which will receive 

result of computation
p Each register field holds a 5-bit unsigned integer (0-31) corresponding to 

a register number (x0-x31)

• add x18,x19,x10
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=10 =19 =18



Executing an Instruction[执行指令]

• Very generally, what steps do you take to figure out the 
effect/result of the next RISC-V instruction?

− Get the instruction[获取指令]
p add x18,x19,x10

− What instruction is it?[操作符]
p add

− Gather data read[操作数]
p R[x19], R[x10]

− Perform operation[操作]
p calc R[x19]+R[x10]

− Store result[结果]
p save into x18
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https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture11.pdf



Five-Stage Execution(§C.1)[5阶段执行]

• Instruction fetch (IF)[取指令]/(IM: instruction memory)
− Fetch the next instruction from memory (and update PC to the 

next sequential instruction)
• Instruction decode (ID)[解码]/(REG: register fetch) 

− Decode the inst and read the registers corresponding to register 
source specifiers

• Execution/effective address (EX)[执行]/(ALU)
− Operate on the operands prepared in the prior cycle

• Memory access (MEM)[访存]/(DM: data memory)
− Load: read using the effective address
− Store: write to memory

• Write-back (WB)[回写]/(REG)
− Writes the result into the register
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Examples
• Arithmetic/logic instructions: R-type rd, rs1, rs2

− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: compute result (use ALU)
− WB: write to register rd

• Load instructions: lw rd, c(rs1)
− IF: fetch instruction
− ID: read register rs1
− EX: use ALU to compute memory address = content of rs1 + c
− MEM: read from memory
− WB: write to register rd

• Store instructions: sw rs2, c(rs1)
− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: use ALU to compute memory address = content of rs1 + c
− WB: write value of rs2 to memory at address rs1+c
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Why Five Stages?
• Could we have a different number of stages?

− Yes, and other architectures do

• So why does RISC-V have five if instructions tend to idle 
for at least one stage?

− The five stages are the union of all the operations needed by all 
the instructions

− There is one instruction that uses all five stages: load (lw/lb)
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lw rd, c(rs1)
IF: fetch instruction
ID: read register rs1
EX: use ALU to compute address = rs1 + c
MEM: read from memory
WB: write to register rd

R-type rd, rs1, rs2
IF: fetch instruction
ID: read registers rs1 and rs2
EX: compute result (use ALU)
WB: write to register rd



Pipelining[指令流水]

• Pipelining: an implementation technique whereby 
multiple instructions are overlapped in execution

− Just like an assembly line
− Takes advantage of parallelism that exists among the actions 

needed to execute an instruction
− Pipelining is the key technique to make fast processors
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Visualize Pipelining[表示?]
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Revisiting Pipeline
• Automobile assembly line[汽车流水线]

− How often a completed car exits the assembly line (i.e., 
#cars/hour)[产能]

− The longest step determines the time between advancing the 
line

• Instruction pipelining[指令流水线]
− Throughput: how often an instruction exits the pipeline[吞吐]
− Processor cycle: the time required between moving an inst one 

step down the pipeline
p The length of a processor cycle is determined by the time required for 

the slowest pipe stage
p Usually 1 clock cycle

• Pipeline designer should balance the length of each stage
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Pipelining Effects[效果]

• If stages are perfectly balanced, then the time per inst on 
the pipelined processor (assuming ideal conditions)

− !"#$ %$& "'()&*+)",' ,' *'%"%$-"'$. #/+0"'$
1*#2$& ,3 %"%$ ()/4$(

• Speedup from pipelining equals the number of stages
− An assembly pipeline with n stages can ideally produce cars n

times fast
− Instruction exit: every n cycles vs. every single cycle

• Pipelining reduces the avg execution time per inst
− Baseline of multi clock cycles/inst: pipelining reduces CPI
− Baseline of single clock cycle/inst: pipelining decreases the 

clock cycle time
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Pipelining Effects (cont.)
• Pipelining exploits parallelism among the insts[并行]

− Not visible to the programmer

• Pipelining improves instruction throughput rather 
instruction latency[提高吞吐]

− Goal is to make programs, not individual insts, go faster
− Single instruction latency

p Doesn’t really matter, billions of insts in a program
p Difficult to reduce anyway

− In fact, pipelining usually slightly increases the execution time 
of each inst
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Performance Issues in Pipelining[问题]

• Impossible to reach the ideal speedup (= n stages)
− Usually, the stages will not be perfectly balanced[并不平衡]

p The clock can run no faster than the time needed for the slowest 
pipeline stage

− Furthermore, pipelining does involve some overhead[额外开销]
p Pipeline register delay + clock skew[时钟漂移]
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Example: one unpipelined processor has 1ns clock cycle and 
instructions are ALUs (4 cycles, 40%), branches (4 cycles, 20%), 
memory (5 cycles, 40%). Suppose that pipelining the processor 
adds 0.2ns overhead to the clock. How much pipelining speedup?
- Unpipelined processor, avg inst exe time = clock cycle x avg CPI = 1 ns x (40%x4 + 

20%x4 + 40%x5) = 4.4ns
- Pipelined processor, avg inst exe time = 1 + 0.2 ns = 1.2 ns



Dependences and Hazards[依赖和冒险]
• Dependence[依赖]: relationship between two insts

− Data: two insts use same storage location
− Control: one inst affects whether another executes at all
− Not a bad thing, programs would be boring without them
− Enforced by making older inst go before younger one

p Happens naturally in single-/multi-cycle designs
p But not in a pipeline

• Hazard[冒险]: dependence & possibility of wrong inst
order

− Effects of wrong inst order cannot be externally visible
p Stall: for order by keeping younger inst in same stage

− Hazards are a bad thing: stalls reduce performance
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https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/04_pipeline.pdf



Pipeline Hazards (§C.2)[流水冒险]

• Hazards prevent next instruction from executing during its 
designated clock cycle[妨碍执行]

− Hazards reduce the performance from the ideal speedup gained 
by pipelining

• Three classes of hazards
− Structural hazards[结构]: HW cannot support some combination 

of instructions
− Data hazards[数据]: An instruction depends on result of prior 

instruction still in the pipeline
− Control hazards[控制]: Pipelining of branches & other 

instructions stall the pipeline until the hazard bubbles in the 
pipeline
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Structural Hazards[结构冒险]

• Different instructions are using the same resource at the 
same time[资源冲突]

− Some functional unit is not fully pipelined
p Then a sequence of insts using that unpipelined unit cannot proceed at 

the rate of one per clock cycle
− Some resource has not been duplicated enough

• To fix structural hazards: proper ISA/pipeline design[解决]
− Each inst uses every structure exactly one, for at most one cycle
− Always at the same stage relative to Fetch

• Tolerate structural hazards[容忍]
− Add stall logic to stall pipeline when hazards occur
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Structural Hazards (cont.)
• Register file[寄存器]

− Accessed in two stages
p Read during stage 2 (ID or REG)
p Write during stage 5 (WB)

− Solution: one read port, one write port

• Memory[内存]
− Accessed in two stages

p Instruction fetch during stage 1 (IF or IM)
p Data read/write during stage 4 (MEM)

− Solution: separate instruction cache and data cache
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REGIM EX DM WB

REGIM EX DM WB

REGIM EX DM WB

REGIM EX DM WB



Structural Hazards (cont.)
• Bubbles are inserted

− Wasted cycles à performance loss
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REGIM EX DM WB

REGIM EX DM WB

IM

REGIM EX DM WB

REGIM EX DM



Data Hazards[数据冒险]

• Pipeline changes the order of read/write accesses to 
operands

− The order may differ from the order seen by sequentially 
executing insts on an unpipelined processor

• Example
− All the instructions after the DADD use the result of the DADD 

instruction
p What if the old result is being accessed?

• DADD writes into R1, happening in stage 5 (WB)
• DSUB reads from R1, happening in stage 2 (ID)
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DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11



Data Hazards (cont.)
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DADD  R1, R2, R3

DSUB  R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD   R6, R1, R7

OR     R8, R1, R9

XOR   R10, R1, R11

• DSUB is not even deterministic
− Right, if an interrupt occurs between DADD and DSUB
− Wrong, otherwise

REGIM EX DM WB
Pr
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Forwarding[转发]

• Minimizing data hazards stalls by forwarding
− a.k.a., bypassing, short-circuiting
− The result is not really needed by the DSUB until after the DADD

actually produces it
− If the result can be moved from the pipeline register where the 
DADD stores it to where the DSUB needs it, then the need for a 
stall can be avoided
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DADD  R1, R2, R3

DSUB  R4, R1, R5 REGIM EX DM WB

CC 1 CC 2 CC 3 CC 4 CC 5

REGIM EX DM WB



Forwarding (cont.)
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DADD  R1, R2, R3

DSUB  R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD   R6, R1, R7

OR     R8, R1, R9

XOR   R10, R1, R11

• ALU inputs could use forwarded inputs from either the 
same pipeline register or from different pipeline registers

REGIM EX DM WB



Forwarding is Insufficient[仅转发不够]
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LD  R1, 0(R2)

DSUB  R4, R1, R5 REGIM EX DM WB

REGIM EX DM

CC 1 CC 2 CC 3 CC 4 CC 5

AND   R6, R1, R7

REGIM EX DM WB

REGIM EXOR     R8, R1, R9

• LD can bypass its results to AND and OR instructions
• But not to the DSUB

− Forwarding the result in “negative time”！


