Computer Architecture

[NN

F3i: ISA&ILP (2)
GG

xianweiz.github.io
DCS3013, 9/21/2022

Dhge

https://xianweiz.github.io/

Review Questions

* Guidelines and principles in design and analysis of arch?
Parallelism, locality, common case

* Amdahl‘s Law?
Speedup is limited by the fraction.

* If 80% of a program can be parallelized to run 4x faster,
what’s the overall speedup? The theoretical max?

1/(20% + 80%/4) = 2.5x max:1/20% =5
* CPlvs. IPC?
Cycles per instruction instructions per cycle

* ISA vs. u-arch?
u-arch is the specific implementation of ISA. Arch = ISA + u-arch

* What affect CPU performance?
Program, compiler, ISA, organization, technology

“‘ \‘ k)
@ tuxt INCE

Existing ISAs

* RISC: reduced-instruction set computer[#3 &5 2 ££]
— Coined by Patterson in early 80’s
— RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
— Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

* CISC: complex-instruction set computer[& 4445 & ££]
— Term didn’t exist before “RISC”
— Examples: x86, VAX, Motorola 68000, etc.

- “freescale
TRER

000000

@ mUMENTS

* X86
o - B2/
FCERIPHE,

e ARM

__ébjg\ —ﬁﬁ%
QBEFRLIM T AR

BB, B | o E}JA
REEHBT, 02! -

o
l_a
)

- ‘—ELF:\ Eﬁ)ﬁ_\z

gEWindowsiRnFE
, ORMBEDFEEF
» D% -,

* CPUNMIEL LI (8 H | 2024 T, NI
2 B FPECPUIR AT ?)

4 JiS{CIC L
\
.
JUN YAT-SEN UNIVERSITY

https://zhuanlan.zhihu.com/p/363765166

s P2 GPU

GHiFHE
| | . L R
i Gru ks

| m |
- | e/ | t t oy
a9 bl e || SRS SN S SRR R waity. e | o
[| , | - : A, | TR g i U
BT) RARR K 0L oy gy g | B0 FR)
W/ . mA
_— | Mol 877
BRI kw | s Mwe | WEEk. A6 ‘ L
ek ML .
| | REEE. % BE. KE GPUEHMDSARE
[) 3t P HLE (@ L 2000 e SLAO. AVDR | itz AR
INNOSILICON ol | BOIAAR EMSERL. "R WA, Y6 ‘
| i 300 B, SKAIIE obals el
3 % # & © § Za) 1 5°GPU, Bl
o ESHERE GPU 425, | -
KRk Vi
A T Ao, R | o GPGPU
@; so7 | KM ALK S b i Qtntiome | 1w | 3L e, i | TS ALK
i - o g R , mESR & >
SIIESR L WK iR bl & *
WkE v | | | | |
EROES
| mEaRe | weA S
L Fi _—_ W il meke | (avp, | ERUUARE 2
i, Bz SN 0 REES VR % g
14 iR s S > 000818 JNIB KB ArTiun- gl HAFED)
; » [= L. Y
™ 1 R .. LoongArch A
ki MM AT Jes I ”Fﬂ-&m‘;t"f"’ RERE ﬁ};;:g
N e ge/Ne] MR R LSRN =
@ JEim e e Ry T 3
B g
; 1 : W O
ace B o coe, | MMEL | REEHIRERN - ol ceCihmR Tl o
m o | 0 | B CE L Gekl | SRR,
o g ® EE) : :
A gmﬁm iz JARIGI2 4 2018454
p Z y - it I Ak 3000 180 7 3 T P
R "' o ;";ﬁ}g;'{f]T!)‘t GPI01 963 7 Rl S PERIRE-REAR TR
jU) 2am B R R3DBF T a—
R (i} i - FIEF GPU. AR
T oo 8 35— 503) GPU N i e GPU
ERRS - | #20 W R HISILICON
W ivatar corex - T AR o ‘
2 GPU it fi ke
' ' WL |
Ea PERW LG KR
A EIEE e gor TP corumsory
A9E DA https://t.cj.sina.com.cn/articles/view/1874424
. WM. ek ‘
R s R 022/6fb970d600101asua
META Ly LilE 1042 BRRIKE. AMD% | itk GPU Gtk
- AN

. W K
\ ity

@tuxs 5 Dhige

https://t.cj.sina.com.cn/articles/view/1874424022/6fb970d600101asua

Performance Argument[#: 48]

* Performance equation:
— (instructions/program) * (cycles/instruction) * (seconds/cycle)

* CISC

— Reduce “instructions/program” with “complex” instructions
o But tends to increase CPI or clock period

— Easy for assembly-level programmers, good code density

- ldea: give programmers powerful insts, fewer insts to complete
the work

* RISC

— Improve “cycles/instruction” with many single-cycle instructions

— Increases “instruction/program”, but hopefully not as much
o Help from smart compiler
- |dea: compose simple insts to get complex results

CISC Assembly: RISC Assembly:

IMULX, Y LOAD A, X
LOAD B, Y

PRODA, B b
:‘ s;tmgs‘mvﬁnﬁ 6 STORE x' A Hi H_E LZ

CISC vs. RISC

* Instructions[{§4]: multi-cycle complex vs. single-cycle
reduced

* Addressing modes[F- LA 3]: many vs. few

* Encoding[Z%f4]: many formats and lengths vs. fixed-length
instruction format

* Performance[%{E]: hand assemble to get good
performance vs. reliance on compiler optimizations

* Registers[& f725]: few vs. many (compilers are better at
using them)

* Code size[ftiL K /M]: small vs. large

/ Dig:

CISC vs. RISC (cont.)

e The war started in mid 1980’s

— CISC won the high-end commercial war (1990s to today)
o Compatibility a stronger force than anyone (but Intel) thought

- RISC won the embedded computing war

* CISC: winner on revenue[i fEY 2]

— X86 was the first 16-bit microprocessor
o No competing choices = historical inertia and “financial feedback”

- Moore’s law was the helper
o Most engineering problems can be solved with more transistors

* RISC: winner on volume[7t 5]
— First ARM chip in mid-1980s = 150 billion chips
- Low-power and embedded devices (e.g., cellphones)

“‘ : k)
@ tuxt bl

x86 =2 ARM =2 RISC-V[#:47 o (735 %)

* But now, things are changing ...
— Fugaku: ARM-based supercomputer (Top2)
— Apple: ARM-based M1/2 chip
— Amazon: AWS Graviton processor

e RISC-V: a freely licensed open standard (Linux in hw)

— Builds on 30 years of experience with RISC architecture, “cleans
up” most of the short-term inclusions and omissions
o Leading to an arch that is easier and more efficient to implement

: y R I S C BRKEEF 20104

D

What is RISC-V?

e Fifth generation of RISC design from UC Berkeley[5 F1.4]
* A high-quality, license-free, royalty-free RISC ISA[H H]
* Experiencing rapid uptake in both industry and academia]

PRI & JE]
* Supported by growing shared software ecosystem[*E#5]

* Appropriate for all levels of computing system, from
microcontrollers to supercomputers[i¥id]

— 32-bit, 64-bit, and 128-bit variants @& DRAPER buessec . 3 DOVER s
M\ Mellanox B8 Microsoft NME . oKy S” cortus
o . . AMhcron’ SAMSUNG SiFive . Rambus"™"""' gy
Standard maintained by o G§g,e - sl v R
_ . _ . :‘ RISC Foundation: 65+ Members
non-profit RISC-V Foundation L o enr i
: ‘ RI S C ® @smcon m-‘A‘rrcs tatat'a @)mm Yanimicro @ ‘\
COSMN ‘ v Ti??tlcuﬁne iy

HiAga

https://riscv.org/
@ T1x2 10 INE

https://riscv.org/

RISC-V (cont.)

* The free and open RISC instruction set architecture

- Enabling a new era of processor innovation through open
standard collaboration[1]Ji& K]

— RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

What’s Different About RISC-V?

(“RISC Five’, fifth UC Berkeley RIS
. F dO . Simple, Elegant
ree and Open égEE |mpe egan

o Anyone can use 25 years later, learn
o More competition from 1st gen RISCs* :
= More innovation #ce. O Farsimpler than ARM and x86
o Pick ISA, then vendor "l o Can add custom instructions
o Input from software/architecture
» For Cloud & Edgeq experts BEFORE finalize ISA

o From large to tiny Yo k i
computers e, Community designed

« Secure/Trustworthy @ ; Evaniz.gé”Cﬁz‘X’ . E

o Design own secure core o
o Open cores = no secrets

11 Dhge

The RISC-V Architecture[ze#

* 32, 64-bit general purpose registers (GPRs)
— called x0, ..., x31 (x0 is hardwired to the value 0)

» 32, 64-bit floating point registers - FPRs (each can hold a
32-bit single precision or a 64-bit double precision value)
- called 1O, 1, ..., f31

» A few special purpose registers (example: floating point
status)

* Byte addressable memories with 64-bit addresses
e 32-bit instructions

* Only immediate and displacement addressing modes (12-
bit field)

Data transfer operations: Id, lw, Ib, |h, flw, sd, sw, sb, sh, fsw, ...

Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, ...

Control operations: beq, bne, blt, jal, jalr, ...
’l’d‘x& Floating point operations: fadd, fsub, fmult, fsqrt, ...

440 I8

L-OPS [T EEAE]

* x86: RISC inside
- Maintains x86 ISA externally for compatibility

— But executes RISC pISA internally for implementability
o x86 code is becoming more “RISC-like”

— Different p-ops for different designs
o Not part of the ISA specification, not publicly disclosed

* Example:
push Seax
becomes (we think, p-ops are proprietary)
store Seax, -4(Sesp)
addi Sesp,Sesp,-4

A

() F b X % 13
\“‘

Ny 4 SUN YAT-SEN UNIVERSITY

u‘.i’ﬁ“ﬁ

ranslation and Virtual ISAS[EH PR B]

* New compatibility interface: ISA + translation software
- Binary-translation: transform static image, run native
- Emulation: unmodified image, interpret each dynamic inst
- Typically optimized with just-in-time (JIT) compilation
— Example: x86 = LoongArch[Jz 5]
- Performance overheads reasonable (many recent advances)

* Virtual ISAs: designed for translation, not direct execution
— Target for high-level compiler (one per language)
- Source for low-level translator (one per ISA)
— Goals: Portability (abstract hardware nastiness), flexibility over
time
- Examples: Java Bytecodes, NVIDIA’s “PTX”

“‘ : k)
@ tuxt bl

Example

iEfSDevKit: 2REFLKJAREFR

()>

(B EE7

BEEIA &
JIIESE AR

O

@B
ERENmE

TFESE®

FmiFER HERERIN FEIZHT

VR iEt tEgEnth IR 2R T A

© PO PO

BRHOEAN SHED HRIEIZHR
MREER BERN HEIRE

ARSI TEMEESIDEFRIMEER

e RS THFEET R (ExaGear)

max.book118.com/html/2021/0820/7105126054003163.shtm

SUN YAT-SEN UNIVERSITY

https://max.book118.com/html/2021/0820/7105126054003163.shtm

RISC-V Instructions[#s 4

* All RISC-V instructions are 32 bits long, have 6 formats
— R-type: instructions using register-register
- |-type: instructions with immediates, loads
— S-type: store instructions
- B-type: branch instructions (beq, bge)
- U-type: instructions with upper immediates
- J-type: jump instructions (jal)

31 25 24 20 19 15 14 12::1] 76 0
funct7 rs2 rsl funct3 rd opcode R
imm|[11:0] rsl funct3 rd opcode |
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode S
imm|[12]10:5] rs2 rsl funct3 | imm(4:1[11] opcode B
imm|[31:12] rd opcode U
imm[20[10:1|11] imm[19:12] rd opcode J

16 ,E
https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf WL

Example

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode

* Fields of R-type
— opcode: partially specifies what instruction it is

— funct7+funct3: combined with opcode, these two fields
describe what operation to perform

- rsl (source register #1): specifies register of first operand
- rs2: specifies second register operand

- rd (destination register): specifies register which will receive
result of computation

o Each register field holds a 5-bit unsigned integer (0-31) corresponding to
a register number (x0-x31)

e add x18,x19,x10

0000000 rs2 rsl 000 rd 0110011

add rs2=10 rsl=19 add rd=18 Reg-Reg OP
Y IR

Executing an Instruction[#47#§4]

* Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

— Get the instruction[#:E$5 4]

Program counter

—What instruction is it ?[#/EfF]

|
: o add i l Next instruction
—iGather data read[#:1E%L] I\\ FCiCh
' @ R[x19], R[x10] =Y Decode
- Perform operation[E:/E] "~ |
o calc R[x19]+R[x10] Execule
— Store result[45 1] Refuu

o save into x18

18 NG

https://inst.eecs.berkeley.edu/~cs61c/resources/sul8_lec/Lecturell.pdf

Five-Stage Execution(§C.1)[5Hr BT

* Instruction fetch (IF)[H(f541/(IM: instruction memory)

— Fetch the next instruction from memory (and update PC to the
next sequential instruction)

* Instruction decode (ID)[/#15]/(REG: register fetch)

— Decode the inst and read the registers corresponding to register
source specifiers

» Execution/effective address (EX)[#471/(ALU)

— Operate on the operands prepared in the prior cycle

* Memory access (MEM)[Vi#%]/(DM: data memory)
— Load: read using the effective address
— Store: write to memory) o
Decode «

* Write-back (WB)[[5 5]/(REG) - P

— Writes the result into the register Execute =
CPU Main memo ry (RAM)

Examples

» Arithmetic/logic instructions: R-type rd, rs1, rs2
— |IF: fetch instruction
— ID: read registers rs1 and rs2
— EX: compute result (use ALU)
- WB: write to register rd

 Load instructions: lw rd, c(rs1)

— |IF: fetch instruction

— ID: read register rs1

— EX: use ALU to compute memory address = content of rs1 + ¢
- MEM: read from memory

- WB: write to register rd

e Store instructions: sw rs2, c(rs1)
— |F: fetch instruction
— ID: read registers rs1 and rs2
— EX: use ALU to compute memory address = content of rs1 + ¢
— WB: write value of rs2 to memory at address rs1+c
Stuxs 20 INE

Why Five Stages?

* Could we have a different number of stages?
- Yes, and other architectures do

* So why does RISC-V have five if instructions tend to idle
for at least one stage?

— The five stages are the union of all the operations needed by all
the instructions

— There is one instruction that uses all five stages: load (Iw/Ib)

R-type rd, rsi, rs2 lw rd, c(rs1)
IF: fetch instruction IF: fetch instruction
ID: read registers rs1 and rs2 ID: read register rsl
EX: compute result (use ALU) EX: use ALU to compute address =rsl1 + ¢
WB: write to register rd MEM: read from memory

WB: write to register rd

».‘:ﬂ%

Pipelining[#4- /K]

* Pipelining: an implementation technique whereby
multiple instructions are overlapped in execution
— Just like an assembly line

— Takes advantage of parallelism that exists among the actions
needed to execute an instruction

— Pipelining is the key technique to make fast processors

Stage :(Stage :(Stage -
1 0 2 A 3

Instr. No. Pipeline Stage
1 IF | ID | EX [MEM| WB
2 IF | ID | EX [MEM| WB
3 IF [ID | EX [MEM| WB
4 IF | ID | EX [MEM
5 IF | ID | EX
Cyee | 1] 238|567

Visualize Pipelining[#x?]

Cycle 1 Cycle 2 Cycle 3 Cycle4 Cycled Cycle 6 Cycle 7 Cycle 8

add $4, $5, $6 | Im ~H—REG > 4%_. DM [— WB

and $1 : $2, $3 IM > REG > 4@—» DM > WB

Iw $3, 300($0) IM REG l@ DM [—» WB

sub $7, $8, $9 M |— REG|— % DM _.I:|_. WB
IM (Fetch) ID (Reg) EX (ALU) DM (memory) WB

Cycle 1 | add $4, $5, 36 |
Cycle 2 | and $1, 52, $3 \\ add $4,95,96 |
Cycle 3| Iw $3, 300($0) \\‘ and $1, $2, $3 \\\ add $4, $5, 86 |

N N
Cycle 4 | sub$7, $8, $9\\\ w $3,300(80) ~| ™ and $1,$2,$3 ||> add$4, $5, $6
N\ N N

(2) 23) rﬂ
\¢ xS / ivﬁmﬁnﬁ ”': LZ

Revisiting Pipeline

e Automobile assembly line[{5 4 i /K 2]
- How often a completed car exits the assembly line (i.e.,
#tcars/hour) [~ fE
- The longest step determines the time between advancing the
line
e Instruction pipelining[f& 4 /K £k]
- Throughput: how often an instruction exits the pipeline[#it]

— Processor cycle: the time required between moving an inst one
step down the pipeline

o The length of a processor cycle is determined by the time required for
the slowest pipe stage

o Usually 1 clock cycle

* Pipeline designer should balance the length of each stage

»‘vi’@“ﬁ

Pipelining Effects[# &

* If stages are perfectly balanced, then the time per inst on

the pipelined processor (assuming ideal conditions)
Time per instruction on unpipelined machine

Number of pipe stages

e Speedup from pipelining equals the number of stages

- An assembly pipeline with n stages can ideally produce cars n
times fast

— Instruction exit: every n cycles vs. every single cycle

* Pipelining reduces the avg execution time per inst
— Baseline of multi clock cycles/inst: pipelining reduces CPI

— Baseline of single clock cycle/inst: pipelining decreases the
clock cycle time

“‘ : k)
@ tuxt bl

Pipelining Effects (cont.)

* Pipelining exploits parallelism among the insts[F1T]
- Not visible to the programmer

* Pipelining improves instruction throughput rather
instruction latency[#2 & &]
— Goal is to make programs, not individual insts, go faster

- Single instruction latency
o Doesn’t really matter, billions of insts in a program
o Difficult to reduce anyway

- In fact, pipelining usually slightly increases the execution time
of each inst

Cycle 1 Cycle 2 Cycle 3 Cycle4 Cycle5 Cycle 6 Cycle 7 Cycle 8

add 4, 95,6 [m | I —%—-
REG
(M}

¥

Iw $3, 300($0) IE)— |:|

sub $7, $8, $9 R wB f
b $7 | EG _—E::H m |:| - w'qmq

Performance Issues in Pipelining|fal]

* Impossible to reach the ideal speedup (= n stages)

— Usually, the stages will not be perfectly balanced[Ff 4]
o The clock can run no faster than the time needed for the slowest
pipeline stage
— Furthermore, pipelining does involve some overhead[#i4MT4H]
o Pipeline register delay + clock skew[i} &1

Example: one unpipelined processor has 1ns clock cycle and
instructions are ALUs (4 cycles, 40%), branches (4 cycles, 20%),
memory (5 cycles, 40%). Suppose that pipelining the processor

adds 0.2ns overhead to the clock. How much pipelining speedup?
- Unpipelined processor, avg inst exe time = clock cycle x avg CPl = 1 ns x (40%x4 +

20%x4 + 40%x5) = 4.4ns
- Pipelined processor, avg inst exe time=1+0.2ns=1.2 ns

“‘ : k)
@ tuxt bl

Dependences and Hazards[{&#i 1§ &

* Dependence[{ki#i]: relationship between two insts
— Data: two insts use same storage location
— Control: one inst affects whether another executes at all
- Not a bad thing, programs would be boring without them

- Enforced by making older inst go before younger one
o Happens naturally in single-/multi-cycle designs
o But notin a pipeline

* Hazard[E [5;]: dependence & possibility of wrong inst
order
— Effects of wrong inst order cannot be externally visible
o Stall: for order by keeping younger inst in same stage
— Hazards are a bad thing: stalls reduce performance

| .EUL
https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/04 pipeline.pdf Py

Pipeline Hazards (§C.2) ik &k

* Hazards prevent next instruction from executing during its
designated clock cycle[#if5$44T]
— Hazards reduce the performance from the ideal speedup gained
by pipelining
* Three classes of hazards

— Structural hazards[45#4]: HW cannot support some combination
of instructions

- Data hazards[%i#z]: An instruction depends on result of prior
instruction still in the pipeline

— Control hazards[#=il]: Pipelining of branches & other
instructions stall the pipeline until the hazard bubbles in the
pipeline

“‘ : k)
@ tuxt bl

Structural Hazards[ZE#) B [

* Different instructions are using the same resource at the
same time[& JH 5]
— Some functional unit is not fully pipelined

o Then a sequence of insts using that unpipelined unit cannot proceed at
the rate of one per clock cycle

- Some resource has not been duplicated enough

* To fix structural hazards: proper ISA/pipeline design[fi# k]
— Each inst uses every structure exactly one, for at most one cycle
— Always at the same stage relative to Fetch

* Tolerate structural hazards[%& %]
— Add stall logic to stall pipeline when hazards occur

“‘ : k)
@ tuxt bl

Structural Hazards (cont.)

 Register file[& 17 %3]
— Accessed in two stages
o Read during stage 2 (ID or REG)
o Write during stage 5 (WB)

— Solution: one read port, one write port

* Memory[N17]

— Accessed in two stages
o Instruction fetch during stage 1 (IF or IM)
o Data read/write during stage 4 (MEM)

- Solution: separate instruction cache and data cache

IM REG — —| EX WB
(- /
IM —>—>REG—|:|—~|E'—‘|:|—DM—’ — WB

L)
IM 4»|:|—‘REG—>——>EX—>—»DM—>—bWB
L L — | L]
IM — —REG — — ——{ DM WB h
gsel{ | oo - @
i i i #rN 1

Structural Hazards (cont.)

* Bubbles are inserted
— Wasted cycles = performance loss

M —*|:|——* REG

Data Hazards[##z 5)

* Pipeline changes the order of read/write accesses to
operands

— The order may differ from the order seen by sequentially
executing insts on an unpipelined processor

* Example
— All the instructions after the DADD use the result of the DADD
instruction

o What if the old result is being accessed?
* DADD writes into R1, happening in stage 5 (WB)
* DSUB reads from R1, happening in stage 2 (ID)

DADD
DSUB
AND
OR
XOR

R1, R2, R3
R4, R1, R5
R6, R1, R7
R8, R1, R9
R10, R1, R11

»‘fn’ﬁ“ﬁ

Data Hazards (cont.

v

DADD R1, R2,R3

DSUB R4, R1, R5

ADD R6, R1, R7

OR R8,R1,R9

XOR R10, R1, R11

CC1

IM

Program order

%

CC2

REG

CC

w

\2)

REG

IM

e DSUB is not even deterministic
- Right, if an interrupt occurs between DADD and DSUB

- Wrong, otherwise

)
(D) * Ja K
)

34

REG

H|:|—> REG

¢ 1IN
/
Y ADW"H—"WB
— \

\
DM
\ B

IM

Forwarding[# k)

* Minimizing data hazards stalls by forwarding
- a.k.a., bypassing, short-circuiting

— The result is not really needed by the DSUB until after the DADD
actually produces it

- If the result can be moved from the pipeline register where the
DADD stores it to where the DSUB needs it, then the need for a
stall can be avoided

CC1 CC2 CC3 CC4 CC5

DADD R1,R2,R3 | IM ﬂ|:|——> REG[—* [—| EX ‘:l‘» DM —>|:|—> WB
\
— \
I \
DSUB R4, R1, R5 IM —*| REG :|—L|E—>|:|—> DM 4>|:|—~' WB

35 Dig:

/

\

Forwarding (cont.)

CC1 CC2 CC3 CC4 CC5

0
DADD R1,R2,R3 | IM REG > EX | DM WB
|| / “ 1 i
\ —\
\ \
DSUB R4, R1, R5 IM —| REG 4} '
[|
— — \
“ —
ADD R6, R1, R7 IM > REG |— 4 DM
OR RS, R1, R9 IM HH—v REG | E—»

XOR R10,R1,R11 REG }

* ALU inputs could use forwarded inputs from either the
same pipeline register or from different pipeline registers

36 Hviﬂb‘

WB

_i-

===

Forwarding is Insufficient[{% % &k A4

CC1 CC2 CC3 CC4 CC5

_ ~_ _
LD R1,0(R2) | IM REG [|| EX |—| |- DM WB
| | /,‘ |

’

- - P
, '
DSUB R4, R1, R5 IM —>| REG [—1 |—#| EX * DM WB
I I t
\ 1
1

AND R6, R1, R7 IM —>| REG [— —* I DM
1
:

OR R8,R1,R9 IM 4>|:|——> REG HH—'IE—>

* LD can bypass its results to AND and OR instructions

* But not to the DSUB
- Forwarding the result in “negative time” !

& 2 ‘ [

