
第4讲：ISA & ILP（3）
张献伟

xianweiz.github.io
DCS3013, 9/28/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Quiz Questions

• Q1: list the execution stages of ‘add R3, R1, R2’.

• Q2: for pipelining, impsbl to reach ideal speedup. Why?

• Q3: list three differences between CISC vs. RISC

• Q4:explain structural hazard.

• Q5: suppose a program has 90% portion that can be fully
parallelized, and you have 10 CPU cores to run it. Is it
possible to achieve 5x speedup? If yes, how many cores
are needed?

2

Imbalanced stages, pipelining overhead

IF, ID, EX, WB

Complex vs. reduced, differences on instructions, perf, code size, …

HW cannot support some combination of instructions

Yes. 1/(90%/10+10%) = 5.26 > 5, N = 90%/(1/5-10%) = 9

For remote attendees, plz email to zhangxw79@mail.sysu.edu.cn.

mailto:zhangxw79@mail.sysu.edu.cn

Forwarding[转发]

• Minimizing data hazards stalls by forwarding
− a.k.a., bypassing, short-circuiting
− The result is not really needed by the DSUB until after the DADD

actually produces it
− If the result can be moved from the pipeline register where the
DADD stores it to where the DSUB needs it, then the need for a
stall can be avoided

3

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

CC 1 CC 2 CC 3 CC 4 CC 5

REGIM EX DM WB

Forwarding (cont.)

4

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

• ALU inputs could use forwarded inputs from either the
same pipeline register or from different pipeline registers

REGIM EX DM WB

Forwarding is Insufficient[仅转发不够]

5

LD R1, 0(R2)

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

CC 1 CC 2 CC 3 CC 4 CC 5

AND R6, R1, R7

REGIM EX DM WB

REGIM EXOR R8, R1, R9

• LD can bypass its results to AND and OR instructions
• But not to the DSUB

− Forwarding the result in “negative time”！

Pipeline Interlock[互锁]

• Bypassing alone isn’t sufficient
− Hardware solution: detect this situation and inject a stall cycle
− Software solution: ensure compiler doesn’t generate such code

• Pipeline interlock should be added to detect a hazard and
stall the pipeline until the hazard is cleared

− The interlock stalls the pipeline, beginning with the inst that
wants to use the data until the source inst produces it

− The interlock introduces a stall or bubble

6

LD R1, 0(R2) IF ID EX MEM WB

DSUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

Control[控制]

7

• Question: what should the fetch PC be in the next cycle?
• Answer: the address of the next instruction

− If the fetched inst is a non-control-flow inst:
p Next Fetch PC is the address of the next-sequential inst

− If the inst that is fetched is a control-flow inst:
p How do we determine the next Fetch PC

• Branch (beq, bne) determines flow of control
− Fetching next inst depends on branch outcome
− Pipeline cannot always fetch correct inst

beq R9, R10, L
add R1, R2, R3
sw R6, 200(R8)
sub R4, R5, R6
mult R1, R2, R3

… …
L: lw R7, 100(R8)

Branch Hazards[分支冒险]

• Control hazard: branch has a delay in determining the
proper inst to fetch
• Basic implementation

− Branch decision is unknown until MEM stage
− 3 clock cycles are wasted

8

beq R9, R10, L
add R1, R2, R3
sw R6, 200(R8)
sub R4, R5, R6
mult R1, R2, R3

… …
… …
L: lw R7, 100(R8)

beq R9, R10, L IF ID EX MEM WB

add R1, R2, R3 IF ID EX MEM WB

sw R6, 200(R8) IF ID EX MEM WB

sub R4, R5, R6 IF ID EX MEM WB

mult OR lw IF ID EX MEM WB

Depending on the beq condition

Branch Stall Impact[停顿]

• If CPI = 1, 10% branch, stall 3 cycles à new CPI = 1.3
• Two-part solution

− Determine branch taken (or not) sooner, and[分支是否执行]
− Compute taken branch address earlier[目标地址计算]

• RISC-V solution
− Move Zero test to ID/EX stage
− Adder to calculate new PC in ID/EX stage
− 1 clock cycle penalty for branch vs. 3

• One stall cycle for every branch will yield a performance
loss of 10% - 30% depending on the branch frequency

− Need to deal with this loss

9

Pipeline Stall Reductions[减少停顿]

• #1: Stall until branch direction is clear[保持停顿]
− Freeze or flush the pipeline, holding or deleting any insts after

the branch until the branch destination is known

• #2: Predict branch not taken[预测分支不执行]
− Treat every branch as not taken, simply allowing the HW to

continue as if the branch were not taken
− If branch actually taken, turn fetched insts into no-op and

restart the fetch at the target address

• #3: Predict branch taken[预测分支执行]
− As soon as the branch is decoded and the target address is

computed, begin fetching and executing at the target
− One cycle improvement when the branch is actually taken

10

Pipeline Stall Reductions (cont.)
• #4: Delayed branch[延后分支]

− Change semantics such that branching takes place AFTER the n
insts following the branch execute

− Branch delay slot: the sequential successor
p This inst is executed whether or not the branch is taken
p Typically one inst delay in practice
p Compiler should make the successor insts valid and useful

− One slot delay in the 5-stage pipeline if branch condition and
target are resolved in the ID stage

11

branch instruction
sequential successor1
branch target if taken

Summary
• Pipelining overlaps multiple instructions in execution

− Speed up programs
• Hazards reduce effective of pipelining

− Structural hazards: conflict in use of a datapath component
− Data hazards: need to wait for result of a previous instruction
− Control hazards: address of next instruction uncertain/unknown

• To increase processor performance
− Clock rate

p Limited by technology and power dissipation
− Pipelining

p Deeper pipeline is challenging
− Multi-issue processor

p Several instructions executed simultaneously

12

Instruction-Level Parallelism(§3.1)
• ILP: overlap execution of instructions[指令级并行]

− Overlap among instructions[重叠]
p Pipelining or multiple instruction execution

− Fine-grained parallelism[细粒度]
p In contrast to process-/task/thread-level parallelism (coarse-grained)

• Pipelining: exploits ILP by executing several instructions
“in parallel”

− Overlaps execution of different instructions
− Execute all steps in the execution cycle simultaneously, but on

different instructions

• Pipeline CPI = Ideal pipeline CPI + stalls due to hazards
− Structural stalls + Data hazard stalls + Control stalls

13
https://courses.cs.washington.edu/courses/cse471/09sp/lectures/pipeliningBasics.pdf

Instruction-Level Parallelism(cont.)
• Approaches to exploit ILP[利用方法]

− Rely on hardware to help discover and exploit the parallelism
dynamically

− Rely on software technology to find parallelism, statically at
compile-time

• What determines the degree of ILP?[并行度]
− Dependences: property of the program
− Hazards: property of the pipeline (or the architecture)

• ILP challenge: overcoming data and control dependencies

14

Techniques to Improve ILP

15

Types of Dependences[依赖类型]

• True data dependences: may cause RAW hazards[数据]
− Instruction Q uses data produced by instruction P or by an

instruction which is data dependent on P
− Easy to determine for registers but hard to determine for

memory locations since addresses are computed dynamically
p Example: is 100(R1) the same location as 200(R2)?

• Name dependences: two instructions use the same name
but do not exchange data (no data dependency)[名字]

− Anti-dependence[反依赖]: instruction P reads from a register (or
memory) followed by instruction Q writing to that register (or
memory). May cause WAR hazards

− Output dependence[输出依赖]: instructions P and Q write to the
same location. May cause WAW hazards.

16

Example

17

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Register Renaming[重命名]

• How to remove name
dependences?

− Rename the dependent
uses of f0 and f4

18

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f8, -8(x1)

fadd.d f9, f8, f2

fsd f9, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

Control Dependences[控制依赖]

• Determine the order of instructions with respect to
branches[相对分支的指令顺序]

S1 is control dependent on P1 and
S2 is control dependent on P2 (and P1 ??)

• An instruction that is control dependent on P cannot be
moved to a place where it is no longer control dependent
on P, and visa-versa[不可移动]

19

if P1 then S1 ;
if P2 then S2 ;

Example 1:
add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

Example 2:
add x1, x2, x3
beq x12, x0, skip
sub x4, x5, x6
add x5, x4, x9

skip:
or x7, x8, x9

“or” depends on the execution flow possible to move “sub” before
”beq” (if x4 is not used after skip)

