Computer Architecture

AR IR

R 45

etk ISA&ILP (4)
TRk

l—a
|—a

5

xianweiz.github.io

DCS3013, 10/19/2022

Dhge

https://xianweiz.github.io/

Techniques to Improve ILP

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls 2
Simple branch scheduling and prediction Control hazard stalls 2
Basic compiler pipeline scheduling Data hazard stalls oy 3.2
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences B
Loop unrolling Control hazard stalls 32
Advanced branch prediction Control stalls 5
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 34
antidependences
Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory 3.6
[ssuing multiple instructions per cycle Ideal CPI 3.7,38
Compiler dependence analysis, software pipelining, Ideal CPI, data hazard stalls H.2, H3
trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

() F o X %
SUN YAT-SEN UNIVERSITY

D

Branch Prediction(§3.3) 4 3 i)

* Branches hurt pipeline performance
— Branch hazards and stalls

e Static branch prediction[&# 72 32 Hll]
— The default is to assume that branches are not taken
- May have a design which predicts that branches are taken

 Reasonable to assume that[{x %] add x1,x2, x3
— Forward branches are often not taken beq x4, x0, L
(sub x1, x5, x6
— Backward branches are often taken L: ...
* More predictors based on branch orx7, x1, x8
directions add x1,x2, x3

predicting the probability of branching E;q Z'zxi'oxzkip

— Dynamic predictors rely on the history to sub x4, X5, x6
. predict the future branch direction

— Profiling is the standard technique for éSkip:

».;'G%

Dynamic Branch Prediction(§C2.7)[3h %]

* Performance depends on the accuracy of prediction and
the cost of miss-prediction[{4: G 1]

* The simplest branch prediction scheme: Branch
Prediction Buffer[/)32 Fiiil| 22 17

- 1-bit table (cache) indexed by some bits of the address of the
branch instructions (can be accessed in decode stage) ->

hashing[+g4 ik R AR B

— Record whether or not the branch was taken last time — may
have collision[{#4%]

- Will cause two miss-predictions in a loop (at start and end of

loop)
_ Taken Not taken
— PN Not taken
Pq:%/wz Predict taken Predict untaken
/: 1 0
taken/not -take | < k
] 4 Taken H‘vi'ﬂ“‘

Two-bit Branch Predictors

* Change your prediction only if miss-predict twice[fa & %]

— A branch that strongly favors taken or not taken (many branches
do), will be miss-predicted less often than with a 1-bit predictor

_~Takeri-.,

Not taken .
Predict taken Predict taken
L Taken e
Taken * Not taken ; Not taken
Predict not taken : Predict not taken
o ... Taken L
Nottaken
* In general, n-bit predictors are called Local Predictors[/534
Noio Y [mn|
blES)
- Use a saturated counter (++ on correct prediction, -- on wrong
prediction)

- n-bit prediction is not much better than 2-bit prediction (n > 2).

— éBHT with 4K entries is as good as an infinite size BHT[TR 22
X]

() W IIRG

Correlating Branch Predictors[s<E:Tsiim]

 Hypothesis[{1%]: recent branches are correlated (behavior of
recently executed branches affects prediction of current branch)

 Example 1:

addi x3, x1, -2
bnez x3, L1 ...
if (aa==2) add x1, x0, x0
aa=0; L1: addi x3, x2, -2
if (bb==2) bnez X3, L2
bb=0; add x2, x0, x0
if (aa!=bb) { L2: sub x3, x1, x2
begz x3, L3

//B1 (aa !=2)
//aa=0

//B2 (bb !=2)
//bb=0
//x3=aa-bb
//B3 (aa == bb)

If B1 is not taken (aa==2) and B2 is not taken (bb==2), then B3 will be

taken (aa==bb)

If B1 and B2 are taken (aal=2, bb!=2), then B3 will probably not be

taken

* Example 2: if(d==0) d=1;
if (d==1) ...

u‘.lﬂ“ﬁ

Correlating Branch Predictors (cont.)

* Keep history of the m most recently Branch address (4 bits)
executed branches in an m-bit shift I
register[T2 L 27 17 28] 2-bits per branch
— Record the prediction for each branch local predictors

inst, and each of the 2™ combinations

* |In general, (m,n) predictor means
record last m branches to select
between 2™ history tables each with n-
bit predictor

— Simple access scheme (double indexing).
— A (0O,n) predictor is a local n-bit predictor.

e Size of table is N*n*2™m

— N is the number of table entries 2-bit global

— There is a tradeoff between N branch history
(determines collision), n (accuracy of local (01 = not taken then taken)
prediction) and m (determines history)

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

—-
| Prediction

EREN (NRE

H>I i

Tournament Predictor[zs Z& i 5]

 Combines a global predictor and a local predictor with a
strategy for selecting the appropriate predictor (multi-level

/\ T
Use predictor 1 Use predictor 2
1/0 4 lon o/t o/1 1 L 1/0
Use predictor 1 1/0 Use predictor 2
< h S
0/0, 1/1 0/0,1/1

pl/p2 == predictor 1 is correct/ predictor 2 is correct

* The Alpha 21264 selects between
- A (12,2) global predictor with 4K entries

— A local predictor which selects a prediction based on the outcome of
the last 10 executions of any given branch.

“‘ : k)
@ tuxt bl

Performance[4:gg]

* Miss prediction rate for three different predictors

80/0 B o Sl w0 U et G S e e 2 e 0 S o 0B 3 e i My e e ek A g A NGB s A i

Conditional branch misprediction rate

0%

kS
Local 2-bit predictors

SOA) Al m e s e e e e ee s es s s e s s s e s ama e smsassssmesssmsesesemeasemnaeaas

|
Correlating predictors

A
Tournament predictors

0

I I I | I | I I | | |

I | I | I

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Total predictor size

Branch Target Buffers(§3.9)[H krgzf[X]

* To increase instruction fetch bandwidth
— Store the address of the branch’s target, in addition to the prediction

I PC of instruction to fetch
Look up Predicted PC

No: instruction is not
= predicted to be a taken
branch; proceed normally

Yes: then instruction is taken branch and predicted
PC should be used as the next PC

e Can determine the target address while fetching the branch
instruction
- How do you even know that the instruction is a branch?
— Can’t afford to use wrong branch address due to collision -- why?

lg J‘ 10 \}\ fﬂ
\ b / S;tYAT-SENﬁEﬁ H ' H’ LZ

Branch Prediction & Pipelining

e Assuming that branch condition and target are resolved in ID
stage

Send PC to memory and
branch-target buffer

n kill fetched instruction;

EX restart fetch at other continue execution

* A similar chart may be drawn if branch condition/target are
resolved in EX

11 Dhig

Instruction Scheduling[#& 4 &

e Scheduling: act of finding independent instructions
— Static: done at compile time by the compiler (sw)

— Dynamic: done at runtime by the processor (hw)
o Scoreboard, Tomasulo’s algorithm, Reorder Buffer (ROB)

Static Scheduling Dynamic Scheduling

Application Application
0S 0S
Compiler Firmware Compiler Firmware
e —
CPU 1/0 CPU 1/0

Memory Memory

Digital Circuits Digital Circuits

Gates & Transistors Gates & Transistors

»
https://acg.cis.upenn.edu/milom/mini-coufs&=March-2013/lectures/08 scheduling.pdf), "E LZ
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

Compiler Technigues to Expose ILP

* Scheduling[]

— To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be
overlapped in the pipeline[EZ]

— To avoid a pipeline stall, the execution of a dependent inst must

be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[/) %]

* A compiler’s ability to perform the scheduling depends on
— Amount of ILP in the program[f& /5514
— Latencies of the functional units in the pipeline[f# 445]

 Compiler can increase the amount of available of ILP by
transforming loops[f& ¥ #t]

»‘vi’@“ﬁ

Loop Dependences(§3.2) (1B K #i]

* [B1There is a loop carried
for (i=999; i >= 0; i = i-1) dependence since the
x[i+1] = x[i] + y[il; statement in an iteration
depends on an earlier iteration

for (i=999; i >=0;i=i-1) [t]There is no loop carried
x[i] = x[i] +s; dependence

* The iterations of a loop can be executed in parallel if
there is no loop carried dependence

“‘ : k)
@ tuxt bl

Example: Loop Transformation[#&¥F 4% #)

Loop: fld fo, 0(x1) //fO=array element
for (i=999; i >= 0; i = i-1) fadd.d f4,f0,f2 //add scalarin f2
fsd f4, 0(x1) //store result
addi x1,x1,-8 //decrement pointer
//8 bytes (per DW)
bne x1, x2, Loop //branch x1 I=x2

X[i] = x[i] + s;

* Assume the latencies of FP operations
— 3 cycles if an FP ALU op follows and depends on an FP ALU op
— 2 cycles if an FP store follows and depends on an FP ALU op
— 1 cycle is an FP ALU op follows and depends on an FP load
— 1 cycle if a branch follows and depends on on Integer ALU op

: ;)
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ

Basic Scheduling|fie

[
;E,
&

e Re-order the statements

— Actual work: load, add and store

- loop overhead: addi, bne, two

cycle
Loop: fld fo, O(x1) 1
stall 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 0(x1) 6
addi x1,x1,-8 7

stall 8
bne x1, x2, loop 9

9 clock cycles per iteration

stalls

cycle
Loop: fld fo, O(x1) 1
addi x1,x1,-8 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 8(x1) 6
bne x1, x2, loop 7

7 clock cycles per iteration

»‘vi’@“ﬁ

Loop Unrolling[#&F & T

* Simply replicates the loop body multiple times, adjusting
the loop termination code[& fill->1H %]
— Increases the number of insts relative to the branch and
overhead insts[3¥% G #3544k
- Eliminates branches, thus allowing insts from different iterations
to be scheduled together[# %4> 52, JL [%]

Loop: fld fo, 0(x1) Loop: fld fo, 0(x1)
fadd.d f4, f0, f2 fld f6, -8(x1)
fsd f4, 0(x1) fld fo, -16(x1)
fld f6, -8(x1) fld f14, -24(x1)
fadd.d f8, f6, f2 fadd.d f4, f0, f2
fsd f8, -8(x1) fadd.d f8, 6, f2 A total of 14 clock cycles
fid f0, -16(x1) fadd.d f12, f0, 2 (3.5 cycles per iter)
fadd.d 12, f0, f2 fadd.d f16, f14, 2
fsd f12, -16(x1) fsd f4, 0(x1)
fld f14, -24(x1) fsd f8, -8(x1)
fadd.d f16, f14, 2 fsd f12, -16(x1)
fsd f16, -24(x1) fsd f16, -24(x1)
addi x1, x1, -32 addi x1, x1, -32

bne x1,x2, loop bne x1,x2, loop i‘rm%

Unrolling LimitationsFR i)

* The gains from loop unrolling are

limited by
. Loop: fld
— A decrease in the amount of fld
overhead amortized with each unroll fld
. . . fld
o Unrolled 4 times = 8 times: % cycle/iter fadd.d
- % cycle/iter fadd.d
— Growth in code size caused by]‘:aggj
. d .
unrolling fsd
o May increase in the inst cache miss rate fsd
)) . fsd
o May bring register pressure (more live e
vaIues) addi
— Compiler limitations bne

o Sophisticated transformations increases
the compiler complexity

fO, O(x1)

f6, -8(x1)
fo, -16(x1)
f14, -24(x1)
f4, fO, f2

f8, f6, f2
f12, fo, f2
fie, f14, f2
f4, 0(x1)

f8, -8(x1)
f12, -16(x1)
f16, -24(x1)
x1, x1, -32
x1, x2, loop

»‘vi’@“ﬁ

Paper: Loop Rerolling

pre
.Ltmp32364: ‘ ik

movss (%rdx,%rcx,4), %xmm2

[‘movss @xa(%rdx,%rcx,4), %xmm3 | .Ltmp32364: i

gt ss2sc ey o2 movss (%rdx,%rcx,4),

movl (%rax,%rcx,4), %esi cvtss2sd %Exmm2, e

CELH L A e G |00p rerolling movl (%rax,%srcx,4), %esi

movl 0x4(%rax,%rcx,4) , %esi i (%rbx’%rsi 8)

cvtss2sd %xmm3, Sexmm3 bed & 2' 222

mulsd (%rbx,%rsi,8), S%xmm3 subs XMMZ,

subsd %xmm2, Sexmm1 addq $ox1,

subsd %Xmm3, Ssxmml | gmpq %rcx,

addq $0x2, %rex jne .Ltmp32364

cmpq %rcx, %rbp l

ne R 2 exit backedge

exit backedge
LLVM & BOLT
Di bf RollBin
isassembly

eaef 2020 Loop-locator -
P[00 CFG Section
: ﬁ construction Iter-prober readjustment l BIN
- [Profile data] etassianer Binary
H - § = | iti
: 2 analysis - g rewriting
; Code-transformer

optioﬁéi Profiler|

Fux 2

SUN YAT-SEN UNIVERSITY

19

RollBin: Reducing Code-Size via Loop Rerolling at
Binary Level

Tianao Ge
Sun Yat-Sen University
China
getao3@mail2sysu.edu.cn
Xianwei Zhang
Sun Yat-Sen University
China
zhangxw79@mail.sysu.edu.cn

Abstract

Zewei Mo
Sun Yat-Sen University
China
mozw5@mail2.sysu.edu.cn

Kan Wu
Sun Yat-Sen University
China
wukan3@mail2.sysu.edu.cn
Yutong Lu
Sun Yat-Sen University
China
luyutong@mail. sysu.edu.cn

Keywords: Code-Size Reduction, Loop Rerolling, Binary Op-

Code size is an i g concern on d

systems, ranging from embedded devices to cloud servers.
To address the issue, lowering memory occupancy has be-
come a pnonly in developing and deploymg applications,
and gl iler-based op have been
proposed to reduce program footp However, prior arts
are generally dealing with source codes or intermediate rep-
resentations, and thus are very limited in scope in real sce-
narios where only binary files are commonly provndcd. To
fill the gap, this paper p d

anovel .
tion Rol1Bin to reroll loops at binary level. Rolle first
locates the unrolled loops in binary files, and then probes
to decide the unrolling factor by identifying regular mem-
ory address patterns. To reconstruct the iterations, we pro-
pose a customized data dependency analysis that tackles the

ACM Reference Format:

Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu.
2022. RollBin: Reducing Code-Size via Loop Rerolling at Binary
Level. In Proceedings of the 23rd ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES "22), June 14, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 12 pages. https=//doi.org/10,1145/3519941.3535072

1 Introduction

In the past decades, comp g have been conti
ously gaining new features and growing in size and complex-
ity, which together drive the non-stop need for higher com-
puting horsepower and larger memory capam(y [2,14]. As

challenges brought by shuffled instructions and loop-carry such, for hl g programs and ly utiliz-

dencies. Next, the g ions are rolled up mg the pleclous resources, especially the memory space and
lhmugh instruction removal and update, which are g lly MR e Ioolpnnl lon
reverting the normal unrolling procedure. The all g from servers to embedded

on standard SPEC2006/2017 and MiBench demonstrate that
Rol1Bin effectively shrinks code size by 1.7% and 2.2% on
average (up to 7.8%), which respectively outperforms the
state-of-the-arts by 31% and 38%. In addition, the use cases

realistic applicati ifest thatRo11Bin

f:
can be applicable in practices.

CCS Concepts: « Soft
pilers.

¢ and its engineering — Com-

syslcms For embedded and Inltmd—of ~Things (IoT) devices,
code volume is an overwhelming concern, as it directly im-
pacts the chip area and cost, and further influences the overall
performance and power [29, 42]. On larger machines, such
as desktops, servers and whereas memory
capacity is typically much less llmllcd, code size is nonethe-
less critical for instruction cache (I-cache) performance [43].
Recently, there has been an increasing trend toward um'fying
libraries, tools, and fi ks to support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

[6, 20], including servers and edge devices, which
thus further emphasizes the compacted code across plat-
forms. TensorFIow Lite [40] and BLASFEO [13] are such
actively ding the

this notice and the full citation on the first page. C chts f
of this work owned by others than ACM must be honored. with

1 ing and high-perfa puting territories from

credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm org

LCTES 22, June 14, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9266-2/22/06... $15.00
https://doi.org/10.1145/3519941.3535072

powerful servers to constrained devices.

Classical techniques, including variable-length instruc-
tion ding [16, 30], code comp (25, 44), and ISA
modification [45), are designed to reduce the size of code.
Program footprint can also be lessened by compiler-based
similar code merging [34] and dead-code eliminating [21, 26].

)

g

Compiler Optimization: Example

int find_min(const int* array, const int len) {
int min = a[0];
for(inti=1;i<len;i++){
if (ali] < min) { min = alil; }
}
return min;
}
int find_max(const int* array, const int len) {
int max = al0];
for(inti=1;i<len;i++){
if (ali] > max) { max =alil; }
}
return min;
}
void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = find_min(array, len);
max = find_max(array, len);

Inline

Loop merge

20

void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = a[0]; max = a[0];
for (inti=0;i<len;i++) {
if (ali] < min) { min =alil; }
if (ali] > max) { max = alil; }

}

D

Dynamically Scheduled Pipelines (§3.4)

* Key idea: allow instructions behind stall to proceed

fdiv FO, F2, F4
fadd F10, FO, F8 > RAW -> Stall

fsub F12, F8, F14 __, No dependency

— Enables out-of-order (000, O3) execution
o Can lead to O3 completion

* Hardware rearranges instruction stream to reduce stalls

Instruction streams 1-wide 2-wide 1-wide 2-wide

A . ioen |6[R2] In-Order In-Order Out-of-Order Out-of-Order
= Loa
B:R3 =R D)+ R4 : @ @ @ ® ©
C:R6 = Load 8[R9] : 3 § g
| 5 & ee
E:R7 = Load 20[R5) | Execute E 1 < = @
D= R4 | ‘ &
G: BEQRA)#0 7 : ® © ® ®
.: ’. 3 é C 5
¢ Dependency graph cycles
' ® 6 ©
@ ® © 7 cycles
C 8 cycles

10 cycles

el
s
http://camelab. org/uploads/Ma|n/IectureO8 scoreboard.pdf U“

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Out-of-order[ELFHAT)

* How can O3 achieve performance benefits?
- Hardware rearranges instruction stream to reduce stalls

* Any problems of 037

— Hazards! Especially for register dependencies

e How does the O3 work?

— Step1l: fetch many instructions into instruction window
- Step2: rename regs. to avoid false deps. (WAW and WAR)

— Step3: execute instructions as soon as dependencies (registers
and memorv) are known

Dynamic Renamed Dynamically
Instruction Instruction Scheduled
Stream Stream Instructions

Static e
Program

)-b-b

— Out-of-order = “E LZ
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf U“

|
|
|

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

O3 Pipeline

* Split the ID stage into L R

- Dispatch B

DSUB R4, R1, RS I h I I
- Issue

* Instructions wait in a queue and may move to the EX
stage (issued) out of order

— A new kind of structural hazard : Instruction buffer is full

Dispatch: Accumulate
decoded instrs in buffer

Issue: Buffer sends instrs

JO-EEED regfile down rest of pipeline out-
R of-order
» IS -
| B :]J
1, |
> |

‘Eﬂ» Decode 4 Execute 4 Mem

23 NS
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf 4

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Scoreboard[id 4 #R)

e Using Scoreboard (§C.7):
— Dates to the first supercomputer, the CDC 6600 in 1963

* To track the flow of the instrs, register, and function units
— Check which Datapath components are using / can be used
- Find out which instruction could be executed without hazards

HOM.E I GUES T

™™ QUARTER | e o

‘DOWN i :YDS.TOGO BALLON - :

' v
http://cameIab.org/uploads/%/ﬂin/IectureOS—scoreboard.pdf wg EE{Z

https://sportspectator.com/fancentral/football/scoreboard.html

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://sportspectator.com/fancentral/football/scoreboard.html

A Scoreboard Architecture

[1]] [

[F | D ||Waitqueue [*

Int unit Mem :

I

_ > FP mult. '

Register \
file FP mult. ~—x|Write result
; FPadd
......... >
....... ~ D|v- “““”‘
x> 0l e e

* The scoreboard is responsible for instruction issue and
execution, including hazard detection. It is also controlling the

writing of the results

* The “scoreboard” consists of 3 tables to keep track of
execution progress and the associated intelligence to
determine when to dispatch instructions

* One entry (buffer) in the “wait queue” is associated with each

functional unit

25 S
https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf 4

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Scoreboard Information

* Three main components/tables

— Instruction status
o Which step the instruction is in

— Functional unit status
o Which state the FU is in

— Register result status
o Which FU will write registers

Scoreboard

Insn Status Reg Status

dst srcl src2 S | X B | Op| dst|srcl|src2| Q1] Q2| R1| R2
F6é 34+ R2
F2 45+ R3

MULTD FO F2 F4
SUBD F8 F6 F2
DIVD F10 FO Fé6 >
ADDD F6 F8 F2

26 IR
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf y

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Status Tables

* Instruction status[#g4Ik#&]: which of 4 steps the inst is in
- D: Issue
— S: Read operands
— X: Execute stage completion
— W: Write result to registers

* Functional Unit (FU) Status[iz & 5.0 IR #5]: indicates the state
of the FU
— 9 fields for each FU
o B:indicates whether the unit is busy or not
Op: operation to perform in the unit (e.g., + or -)
dst/Fi: destination register
srcl,src2/Fj, Fk: source-register numbers
Qj, Qk: functional units producing source registers srcl, src2
o Rj, Rk: flags being set when src1/src2 is ready

. R(_e%ister Result Status[& 7 4% 45 R IR 45]: indicates which FU
will write each register, if one exits
- Blank when no pending instructions will write that register

O
O
O
O

\ ’pﬂuL
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf 4

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Scoreboard Workflow

Issue: decode insts and check for structural, WAW hazards

— Wait conditions: (1) the required FU is free; (2) no other inst writes to the
same register dst. (to avoid WAW)

Read operands: only if no RAW hazard
— Wait conditions: all source operands are ready

Execution: operate on operands
- When execution terminates, notify the scoreboard

Write result: write reg and update scb
— Wait condition: no other inst/FU is going to read the register dst. of the inst

MEMORY
1 Registers
Inst S
I I Write Back
Inst Buffer

http://c Struct [| WAW

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Scoreboard Example
 when “fld F6, 34(R2)” is writing

Instruction Issue Read op. Exec. Completed Write result
fid F6, 34(R2) X X X X gdone
Instructiong fid F2, 45(R3) X X X
status i fmuld FO, F2, F4 X
: fsub,d F8, F6, F2 X
fdivd F10, FO, F12 X
 fadd.d F6, F8, F2 : Not
: Unit Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Func. unité Mult1 Yes Mult FO F2 F4 Int. No Yes
status i mul2 No
:Add Yes Sub F8 F6 F2 Int. Yes No
divide Yes Div F10 FO F12 Mult1 No Yes
Register§ FO F2 F4 F6 F8 F10 F12 F30
status “Fync U Mult! Int Add Div
29 IR

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Score

board Example (cont.)

 when “fld F2, 45(R3)” is writing

Instruction Issue Readop. Exec. Completed Write result ¢
£ fld F6, 34(R2) X X X X : done
_ifid 5(R3) X X X X '
Instruction
status § fmuld Pa(F2)F4 X
fsub,d F8, F8 @ X
: fdivd F10, FO, F12 X
i-- =mpspE= : Not
: fadd.d F6, F8, F2 tin
: Unit Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Func.uniti Mult! ~ Yes Mult FO F2 F4 Yes Yes
status imult2 No
Add Yes Sub F8 F6 52 Yes Yes
divide Yes Div F10 FO F12 Mult1 No Yes
Register FO 2 F4 F6 F8 F10 F12 F30
stalus :Fync.U Multt!) Add Div
30

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Dhge

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Scoreboard Example (cont.)

* 3 cycles after “fsub.d” finished writing

Instruction Issue Readop. Exec. Completed Write result
tfid F6,34(R2) X X X X
Instruction ; 19 F2, 45(R3) X X X X
status fmul.d FO, F2, F4 X X X
: fsub,d F8, F6, F2 X X X X
f fdivd F10, FO, F12 X
! fadd.d F6, F8, F2 X X X
iUnit Busy Op Fi Fj Fk Qj Qk Rj Rk
i Integer No
Func.unit{ Mult! ~ Yes Mult FO F2 F4 Yes Yes
Status i mMuitz No
i Add Yes add F4 F8 F2 Yes Yes
divide Yes Div F10 FO F12 Mult1 No Yes
Register : FO F2 F4 F6 F8 F10 F12 F30 i
stalus TR0 Muitt Add 3 Div :

31 Dl
https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf y

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Summary of Scoreboard

* Basic idea
— Use scoreboard to track data dep. through register

* Main points of design
— Instructions are sent to FU unit if there is no outstanding name
dependence

- RAW data dependence is tracked and enforced by scoreboard

How? Just stall the insts until the RAW hazard can be addressed.

— Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

— Pipeline stalls if any name dependence (WAR or WAW) is
detected

How? Just recognize the false dependencies as a hazard and stall.

32 Dhide
http://users.utcluj.ro/~sebestyen/ Word docs/Cursuri/SSC course 5 Scoreboard ex.pdf ;

http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

