
第6讲：ISA & ILP（4）
张献伟

xianweiz.github.io
DCS3013, 10/19/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Techniques to Improve ILP

2



Branch Prediction(§3.3)[分支预测]
• Branches hurt pipeline performance

− Branch hazards and stalls

• Static branch prediction[静态分支预测]
− The default is to assume that branches are not taken
− May have a design which predicts that branches are taken

• Reasonable to assume that[假设]
− Forward branches are often not taken
− Backward branches are often taken

3

add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

add x1, x2, x3
skip:

or x7, x8, x9
beq x12, x0, skip
sub x4, x5, x6

✘

• More predictors based on branch 
directions

− Profiling is the standard technique for 
predicting the probability of branching

− Dynamic predictors rely on the history to 
predict the future branch direction

✓



Dynamic Branch Prediction(§C2.7)[动态]

• Performance depends on the accuracy of prediction and 
the cost of miss-prediction[性能影响]

• The simplest branch prediction scheme: Branch 
Prediction Buffer[分支预测缓存]

− 1-bit table (cache) indexed by some bits of the address of the 
branch instructions (can be accessed in decode stage) ->
hashing[指令地址的低位作为索引]

− Record whether or not the branch was taken last time – may 
have collision[冲突]

− Will cause two miss-predictions in a loop (at start and end of 
loop)

4

Predict taken
1

Not taken

Taken

Predict untaken
0

Taken Not taken



Two-bit Branch Predictors
• Change your prediction only if miss-predict twice[稳定性]

− A branch that strongly favors taken or not taken (many branches 
do), will be miss-predicted less often than with a 1-bit predictor

• In general, n-bit predictors are called Local Predictors[局部
预测器]

− Use a saturated counter (++ on correct prediction, -- on wrong 
prediction) 

− n-bit prediction is not much better than 2-bit prediction (n > 2). 
− A BHT with 4K entries is as good as an infinite size BHT[无限缓冲
区]

5

Predict taken
10

Predict taken
11

Not takenTaken

Predict not taken
00

Predict not taken
01

Taken

Not taken

Taken

Taken

Not taken

Not taken



Correlating Branch Predictors[关联预测]
• Hypothesis[假设]: recent branches are correlated (behavior of 

recently executed branches affects prediction of current branch)
• Example 1:

If B1 is not taken (aa==2) and B2 is not taken (bb==2), then B3 will be 
taken (aa==bb) 
If B1 and B2 are taken (aa!=2, bb!=2), then B3 will probably not be 
taken
• Example 2: 

6

if (aa==2) 
aa=0; 

if (bb==2)
bb=0; 

if (aa!=bb) {

addi x3, x1, -2 
bnez x3, L1 …         //B1 (aa != 2)
add    x1, x0, x0       //aa=0

L1: addi x3, x2, -2 
bnez x3, L2             //B2 (bb != 2) 
add    x2, x0, x0       //bb=0

L2: sub    x3, x1, x2       //x3=aa-bb
beqz x3, L3             //B3 (aa == bb)

if (d == 0)  d = 1 ; 
if (d == 1)  .....



Correlating Branch Predictors (cont.)
• Keep history of the m most recently 

executed branches in an m-bit shift 
register[移位寄存器]

− Record the prediction for each branch 
inst, and each of the 2m combinations

• In general, (m,n) predictor means 
record last m branches to select 
between 2m history tables each with n-
bit predictor

− Simple access scheme (double indexing). 
− A (0,n) predictor is a local n-bit predictor. 

• Size of table is N*n*2m

− N is the number of table entries
− There is a tradeoff between N

(determines collision), n (accuracy of local 
prediction) and m (determines history)

7

Branch address (4 bits)

2-bits per branch 
local predictors

2-bit global 
branch history
(01 = not taken then taken)

Prediction



Tournament Predictor[竞赛预测器]

• Combines a global predictor and a local predictor with a 
strategy for selecting the appropriate predictor (multi-level
predictors)

• The Alpha 21264 selects between 
− A (12,2) global predictor with 4K entries 
− A local predictor which selects a prediction based on the outcome of 

the last 10 executions of any given branch.

8

Use predictor 2Use predictor 1

1/0, 0/0/, 1/1

Use predictor 2Use predictor 1

0/1

1/0

1/0

0/0, 1/1

0/1, 0/0/, 1/1

0/1 0/1 1/0

0/0, 1/1

p1/p2 == predictor 1  is correct/ predictor 2  is correct



Performance[性能]

9

• Miss prediction rate for three different predictors



Branch Target Buffers(§3.9)[目标缓冲区]

• To increase instruction fetch bandwidth
− Store the address of the branch’s target, in addition to the prediction

• Can determine the target address while fetching the branch 
instruction 

− How do you even know that the instruction is a branch? 
− Can’t afford to use wrong branch address due to collision -- why?

10



Branch Prediction & Pipelining
• Assuming that branch condition and target are resolved in ID

stage

• A similar chart may be drawn if branch condition/target are 
resolved in EX

11



Instruction Scheduling[指令调度]

• Scheduling: act of finding independent instructions
− Static: done at compile time by the compiler (sw)
− Dynamic: done at runtime by the processor (hw)

p Scoreboard, Tomasulo’s algorithm, Reorder Buffer (ROB)

12
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf


Compiler Techniques to Expose ILP
• Scheduling[调度]

− To keep a pipeline full, parallelism among insts must be 
exploited by finding sequences of unrelated insts that can be 
overlapped in the pipeline[重叠]

− To avoid a pipeline stall, the execution of a dependent inst must 
be separated from the source insts by a distance in clock cycles 
equal to the pipeline latency of that source inst[分隔]

• A compiler’s ability to perform the scheduling depends on
− Amount of ILP in the program[程序特性]
− Latencies of the functional units in the pipeline[硬件特性]

• Compiler can increase the amount of available of ILP by 
transforming loops[循环转换]

13



Loop Dependences(§3.2) [循环依赖]

• [有]There is a loop carried 
dependence since the 
statement in an iteration 
depends on an earlier iteration

• [无]There is no loop carried 
dependence

14

for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

for (i = 999; i >= 0; i = i-1)
x[i+1] = x[i] + y[i];

• The iterations of a loop can be executed in parallel if 
there is no loop carried dependence



Example: Loop Transformation[循环转换]

• Assume the latencies of FP operations
− 3 cycles if an FP ALU op follows and depends on an FP ALU op
− 2 cycles if an FP store follows and depends on an FP ALU op
− 1 cycle is an FP ALU op follows and depends on an FP load
− 1 cycle if a branch follows and depends on on Integer ALU op

15

for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

Loop: fld f0, 0(x1) //f0=array element
fadd.d f4, f0, f2 //add scalar in f2
fsd f4, 0(x1) //store result
addi x1, x1, -8 //decrement pointer

//8 bytes (per DW)
bne x1, x2, Loop //branch x1 != x2



Basic Scheduling[简单调度]

• Re-order the statements
− Actual work: load, add and store
− loop overhead: addi, bne, two stalls

16

cycle
Loop: fld f0, 0(x1) 1

stall 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 0(x1) 6
addi x1, x1, -8 7
stall 8
bne x1, x2, loop 9

9 clock cycles per iteration

cycle
Loop: fld f0, 0(x1) 1

addi x1, x1, -8 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 8(x1) 6
bne x1, x2, loop 7

7 clock cycles per iteration



Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting 
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and 
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations 
to be scheduled together[消除分支, 共同调度]

17

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1)
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1)
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

A total of 14 clock cycles
(3.5 cycles per iter)



Unrolling Limitations[限制]

• The gains from loop unrolling are 
limited by

− A decrease in the amount of 
overhead amortized with each unroll

p Unrolled 4 times à 8 times: ½ cycle/iter
à ¼ cycle/iter

− Growth in code size caused by 
unrolling

p May increase in the inst cache miss rate
p May bring register pressure (more live 

values)
− Compiler limitations

p Sophisticated transformations increases 
the compiler complexity

18

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop



Paper: Loop Rerolling

19



Compiler Optimization: Example

20

int find_min(const int* array, const int len) {
int min = a[0]; 
for (int i = 1; i < len; i++) {
if (a[i] < min) { min = a[i]; }

}
return min;

}
int find_max(const int* array, const int len) {
int max = a[0]; 
for (int i = 1; i < len; i++) {
if (a[i] > max) { max = a[i]; }

}
return min;

}
void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = find_min(array, len);
max = find_max(array, len);
...

}

void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = a[0]; max = a[0];
for (int i = 0; i < len; i++) {
if (a[i] < min) { min = a[i]; }
if (a[i] > max) { max = a[i]; }

}
...

}

Inline

Loop merge



Dynamically Scheduled Pipelines (§3.4)
• Key idea: allow instructions behind stall to proceed

− Enables out-of-order (OoO, O3) execution
p Can lead to O3 completion

• Hardware rearranges instruction stream to reduce stalls

21

fdiv F0,    F2,    F4
fadd F10,  F0,  F8
fsub F12,  F8,    F14

RAW -> Stall

No dependency

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf


Out-of-order[乱序执行]

• How can O3 achieve performance benefits?
− Hardware rearranges instruction stream to reduce stalls

• Any problems of O3?
− Hazards! Especially for register dependencies

• How does the O3 work?
− Step1: fetch many instructions into instruction window
− Step2: rename regs. to avoid false deps. (WAW and WAR)
− Step3: execute instructions as soon as dependencies (registers 

and memory) are known

22
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf


O3 Pipeline
• Split the ID stage into 

− Dispatch
− Issue

• Instructions wait in a queue and may move to the EX 
stage (issued) out of order

− A new kind of structural hazard : Instruction buffer is full

23
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

DADD  R1, R2, R3

DSUB  R4, R1, R5 REGIM EX DM WB

CC 1 CC 2 CC 3 CC 4 CC 5

REGIM EX DM WB

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf


Scoreboard[记分板]

• Using Scoreboard (§C.7): 
− Dates to the first supercomputer, the CDC 6600 in 1963

• To track the flow of the instrs, register, and function units
− Check which Datapath components are using / can be used
− Find out which instruction could be executed without hazards

24http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://sportspectator.com/fancentral/football/scoreboard.html

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://sportspectator.com/fancentral/football/scoreboard.html


A Scoreboard Architecture

• The scoreboard is responsible for instruction issue and 
execution, including hazard detection. It is also controlling the 
writing of the results
• The “scoreboard” consists of 3 tables to keep track of 

execution progress and the associated intelligence to 
determine when to dispatch instructions
• One entry (buffer) in the “wait queue” is associated with each 

functional unit

25
https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf


Scoreboard Information
• Three main components/tables

− Instruction status
p Which step the instruction is in

− Functional unit status
p Which state the FU is in

− Register result status
p Which FU will write registers

26
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf


Status Tables
• Instruction status[指令状态]: which of 4 steps the inst is in

− D: Issue
− S: Read operands
− X: Execute stage completion
− W: Write result to registers

• Functional Unit (FU) Status[运算单元状态]: indicates the state 
of the FU

− 9 fields for each FU
p B: indicates whether the unit is busy or not
p Op: operation to perform in the unit (e.g., + or -)
p dst/Fi: destination register
p src1,src2/Fj, Fk: source-register numbers
p Qj, Qk: functional units producing source registers src1, src2
p Rj, Rk: flags being set when src1/src2 is ready

• Register Result Status[寄存器结果状态]: indicates which FU 
will write each register, if one exits

− Blank when no pending instructions will write that register

27
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf


Scoreboard Workflow
• Issue: decode insts and check for structural, WAW hazards 

− Wait conditions: (1) the required FU is free; (2) no other inst writes to the 
same register dst. (to avoid WAW)

• Read operands: only if no RAW hazard
− Wait conditions: all source operands are ready

• Execution: operate on operands
− When execution terminates, notify the scoreboard 

• Write result: write reg and update scb
− Wait condition: no other inst/FU is going to read the register dst. of the inst

28

ID EX WB

Issue Rd Ops Execution Write

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf


Scoreboard Example

29

• when “fld F6, 34(R2)” is writing

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf


Scoreboard Example (cont.)
• when “fld F2, 45(R3)” is writing

30
https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf


Scoreboard Example (cont.)
• 3 cycles after “fsub.d” finished writing

31

fadd.d   F6, F8, F2

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf


Summary of Scoreboard
• Basic idea

− Use scoreboard to track data dep. through register

• Main points of design
− Instructions are sent to FU unit if there is no outstanding name 

dependence
− RAW data dependence is tracked and enforced by scoreboard

− Register values are passed through the register file; a child 
instruction starts execution after the last parent finishes 
execution

− Pipeline stalls if any name dependence (WAR or WAW) is 
detected

32
http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

How? Just stall the insts until the RAW hazard can be addressed.

How? Just recognize the false dependencies as a hazard and stall.

http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

