
第7讲：ISA & ILP（5）
张献伟

xianweiz.github.io
DCS3013, 10/26/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review: Loop Unrolling & Branch
• Loop unrolling[循环展开]

− Re-order instructions to transform
− Loop unrolling to expose scheduling opportunities
− Gains are limited by several factors

• Branch prediction[分支预测]
− Predict how branches will behave to reduce stalls
− Basic static predictor
− Correlating predictors (a.k.a., two-level predictors)

p (m, n): last m branches, n-bit predictor for a single branch
− Tournament predictors

p Adaptively combining local and global predictors

2

Review: Dynamic Scheduling
• Static scheduling: in-order instruction issue and execution

− If an inst is stalled in pipeline, no later insts can proceed
− Loop unrolling: reduce stalls by separating dependent insts

p Static pipeline scheduling by compiler

• Dynamic scheduling: in-order issue, OoO execution
− Reorders the instruction execution to reduce the stalls while

maintaining data dependence
− OoO execution may introduce WAR and WAW hazards

p Both can be avoided by register renaming
− ID stage is split into two

p Issue: decode insts, check for structural hazards
p Read operands: wait until no data hazards, then read operands

− Scoreboard: a technique for allowing insts to execute OoO
when there are sufficient resources and no data dependences

3

Summary of Scoreboard
• Basic idea

− Use scoreboard to track data dep.
through register

• Main points of design
− Instructions are sent to FU unit if there is no outstanding name

dependence
− RAW data dependence is tracked and enforced by scoreboard

− Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

− Pipeline stalls if any name dependence (WAR or WAW) is
detected

4
http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

How? Just stall the insts until the RAW hazard can be addressed.

How? Just recognize the false dependencies as a hazard and stall.

http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

Tomasulo Algorithm
• Key idea: remove dependencies with..

− 1) HW register renaming
p What compiler cannot do

− 2) Data forwarding

5
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, fld#1, F2

fdiv.d F10, F0, fld#1

fadd.d F6, F8, F2

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

hw register
renaming

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Tomasulo Organization
• Control & buffers are distributed with Function Units (FU)

− FU buffers called “Reservation Stations (RS)”; have pending ops
− Registers in instructions replaced by values or pointers to RS

• Load and Store treated as FUs with RSs as well
• Results to FU from RS, not through registers, over

Common Data Bus (CDB) that broadcasts results to all FUs

6
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo
• Stage-1: Issue
• Get an instruction from FP Op Queue

− If the reservation station is free (no structural hazard), the
control issues such instruction and sends corresponding
operands (renames registers)

p Register are renamed in this step, eliminating WAR and WAW hazards

7
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

fmul F0, Load2, F4fsub F8, F6, Load2
fadd F6, F8, Load2

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo (cont.)
• Stage-2: Execute
• Operate on operands (EX)

− When both operands are ready, it executes; otherwise, it checks
up the CDB for results

p Instructions are delayed here until all of their operands are available,
eliminating RAW hazards

8
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

fld F6, 34(R2)
fld F2, 45(R3)

fmul F0, Load2, F4
fdiv F10, F0, F6

fsub F8, F6, Load2
fadd F6, F8, Load2

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo (cont.)
• Stage-3: Write result
• Finish execution:

− ALU operations results are written back to registers and store
operations are written back to memory

p If the result is available, write it on the CDB and from there into the
registers and any reservation stations waiting for this result

9
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

fld F6, 34(R2)
fld F2, 45(R3)

fmul F0, Load2, F4
fdiv F10, F0, F6

fsub F8, F6, Load2
fadd F6, F8, Load2

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Simple Tomasulo Data Structures
• Three main components

− Instruction status
− Reservation stations (Load buffer & FU buffer)

p Scheduling: waiting operands
p Register renaming: remove false dep.

− Register result status

10
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Reorder Buffer[重排序缓存]

• In the Tomasulo architecture, instructions complete in an
out-of-order

− Exceptions are non-trivial to handle
− Branch misprediction is also difficult to recover from

• Reorder Buffer (ROB) enables to finish instructions in the
program order

− And, allows to free RS earlier
− ROB holds the result of inst between completion and commit

• Key idea of ROB: execute the insts in out of program
order, but make outside world can “believe” it’s in-order

− Solution: Re-Order Buffer+ Architected Register File
p ROB: keep the temporal results (executed in out-of-order)
p ARF: keep the final results (illusion of in-order execution)

11
http://camelab.org/uploads/Main/lecture10-rob.pdf

http://camelab.org/uploads/Main/lecture10-rob.pdf

Tomasulo w/ ROB Organization
• Re-Order buffer is based on Tomasulo
• Just renamed FP register to ARF (Architected Register File)
• Add Re-Order buffer for out-of-order results

− Buffer is managed with two pointers (head & tail)

• RAT (Register Alias Table) keeps the register renaming info

12
http://camelab.org/uploads/Main/lecture10-rob.pdf

http://camelab.org/uploads/Main/lecture10-rob.pdf

Reorder Buffer Procedure[过程]

• Issue
− Allocate reservation station(RS) and Reorder Buffer(ROB), read

available operands

• Execute
− Begin execution when operand values are available

• Write Result
− Write result and ROB tag on CDB

• Commit
− When ROB reaches head, update register
− When a mispredicted branch reaches head of ROB, discard all

entries

13

Another ILP

14
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

Multiple Issue[多发射]

• To achieve CPI < 1, need to complete multiple instructions
per clock
• Solutions:

− Statically scheduled superscalar processors
− VLIW (very long instruction word) processors
− Dynamically scheduled superscalar processors

15

Superscalar[超标量]

• Superscalar architectures allow several instructions to be
issued and completed per clock cycle
• A superscalar architecture consists of a number of

pipelines that are working in parallel (N-way Superscalar)
− Can issue up to N instructions per cycle

• Superscalarity is Important
− Ideal case of N-way Super-scalar

p All instructions were independent
p Speedup is “N” (Superscalarity)

− What if all instructions are dependent?
p No speed up, super-scalar brings nothing
p (Just similar to pipelining)

16
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

VLIW Processor[超长指令字]

• Static multiple-issue processors (decision making at
compile time by the compiler)

− Package multiple operations into one instruction

• Key idea: replace a traditional sequential ISA with a new
ISA that enables the compiler to encode ILP directly in the
hw/sw interface

− Sub-instructions within a long instruction must be independent
− Multiple “sub-instructions” packed into one long instruction
− Each “slot” in a VLIW instruction for a specific functional unit

17
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

VLIW Processor (cont.)

• Disadvantages:
− Statically finding parallelism
− Code size
− No hazard detection hardware
− Binary code compatibility

18

Summary: Tomasulo
• To support dynamic scheduling

− Dynamically determining when an inst is ready to execute
− Avoid unnecessary hazards

p RAW hazards: avoided by executing an inst only when its operands are
available

p WAR and WAW hazards: eliminated by register renaming
− Register renaming is provided by reservation stations

• To support speculation
− Speculate the branch outcome and execute as if guesses are

correct
− Allow insts execute OoO but to force them to commit in order
− Reorder buffer: hold the results of insts that have finished

execution but have not committed
p Pass results among insts that may be speculated

19

Summary: Multiple Issue
• Single issue: ideal CPI of one

− Issue only one inst every clock cycle
− Techniques to eliminate data, control stalls

• Multiple issue: ideal CPI less than one
− Issue multiple insts in a clock cycle
− Statically scheduled superscalar processors

p Issue varying number of insts per clock, execute in-order
− VLIW (very long inst word) processors

p Issue a fixed number of insts formatted as one large inst
p Inherently statically scheduled by the compiler

− Dynamically scheduled superscalar processors
p Issue varying number of insts per clock, execute OoO

20

第7讲：DLP & GPU（1）
张献伟

xianweiz.github.io
DCS3013, 10/26/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Serial Computing[串行计算]

• Traditionally, software has been written for serial
computation

− To be run on a single computer having a single CPU
− A problem is broken into a discrete series of instructions
− Instructions are executed one after another
− Only one instruction may execute at any moment

22
https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Parallel Computing[并行计算]

• Simultaneously use multiple compute resources to solve a
computational problem

− Typically in high-performance computing (HPC)

• HPC focuses on performance
− To solve biggest possible problems in the least possible time

23
https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Types of Parallel Computing[并行类型]

• Instruction level parallelism[指令级
并行]

− Classic RISC pipeline (fetch, …, write
back)

• Task parallelism[任务级并行]
− Different operations are performed

concurrently
− Task parallelism is achieved when the

processors execute on the same or
different data

• Data parallelism[数据级并行]
− Distribution of data across different

parallel computing nodes
− Data parallelism is achieved when

each processor performs the same
task on different pieces of the data

24
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

Taxonomy[分类]

• Flynn‘s Taxonomy (1966) is widely used to classify parallel
computers

− Distinguishes multi-processor computer architectures according
to how they can be classified along the two independent
dimensions of Instruction Stream and Data Stream

− Each of these dimensions can have only one of two possible
states: Single or Multiple

• 4 possible classifications according to Flynn

25
https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

Taxonomy (cont.)
• SISD: single instruction, single data

− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW

26

SIMD: vs. superscalar and VLIW[对比]

• SIMD performs the same operation on multiple data
elements with one single instruction

− Data-level parallelism

• Superscalar dynamically issues multi insts per clock[超标量]
− Instruction level parallelism (ILP)

• VLIW receives long instruction words, each comprising a
field (or opcode) for each execution unit[超长指令字]

− Instruction level parallelism (ILP)

27

SIMD: Vector Processors[向量处理器]

• Vector processor (or array processor)[处理器]
− CPU that implements an instruction set containing instructions

that operate on one-dimensional arrays (vectors)

• People use vector processing in many areas[应用]
− Scientific computing
− Multimedia processing (compression, graphics, image

processing, …)

• Instruction sets[指令集]
− MMX
− SSE
− AVX
− NEON
− …

28
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: MMX
• MMX is officially a meaningless initialism trademarked by

Intel; unofficially,
− MultiMedia eXtension
− Multiple Math eXtension
− Matrix Math eXtension

• Introduced on the “Pentium with MMX Technology” in
1998
• SIMD computation processes multiple data in parallel

with a single instruction
− MMX gives 2 x 32-bit computations at once
− MMX defined 8 “new” 64-bit integer registers (mm0 ~ mm7)
− 3DNow! was the AMD extension of MMX

29
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: SSE
• Streaming SIMD Extensions

− SSE defines 8 new 128-bit registers (xmm0 ~ xmm7) for FP32
computations

p Since each register is 128-bit long, we can store total 4 FP32 numbers
− 4 simultaneous 32-bit computations

30
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: AVX
• Advanced Vector Extensions (AVX)

− A new-256 bit instruction set extension to SSE
p 16-registers available in x86-64
p Registers renamed from XMMi to YMMi

− Yet a proposed extension is AVX-512
p A 512-bit extension to the 256-bit XMM
p Supported in from Intel's Xeon Phi x200 (Knights Landing) and Skylake-

SP, and onwards

31
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: NEON
• ARM Advanced SIMD Extensions

− Introduced by ARM in 2004 to accelerate media and signal
processing

p NEON can for example execute MP3 decoding on CPUs running at 10
MHz

− 128-bit SIMD Extension for the ARMv7 & ARMv8
p Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit or 64-bit

32
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

Data Parallelism: SIMD
• Single Instruction Multiple Data

− Split identical, independent work over multiple execution units
(lanes)

− More efficient: eliminate redundant fetch/decode
− One Thread + Data Parallel Ops à Single PC, single register file

33
https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

Data Parallelism: SIMT
• Single Instruction Multiple Thread

− Split identical, independent work over multiple threads
− Multiple Threads + Scalar Ops à One PC, multiple register files
− ≈ SIMD + multithreading
− Each thread has its own registers

34
https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

Execution Model[执行模型]

35

MIMD

Multiple
independent threads

SIMD

One thread with wide
execution datapath

SIMT

Multiple lockstep
threads

Multicore CPUs x86 SSE/AVX GPUs

• SI(MD/MT)
− Broadcasting the same instruction to multiple execution units
− Replicate the execution units, but they all share the same

fetch/decode hardware

SIMD and SIMT are used interchangeably

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

SIMD: GPU vs. CPU/Traditional
• Traditional SIMD contains a single thread

− Programming model is SIMD (no threads)
− SW needs to know vector length
− ISA contains vector/SIMD instructions

• GPU SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all
threads)

− Each thread can be treated individually (i.e., placed in a
different warp) à programming model not SIMD

p SW does not need to know vector length
p Enables memory and branch latency tolerance

− ISA is scalar à vector instructions formed dynamically

• Essentially, it is SPMD programming model implemented
on SIMD hardware

36
https://course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.1.3-simd-and-gpus-part3-vliw-dae-systolic.pdf

https://course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.1.3-simd-and-gpus-part3-vliw-dae-systolic.pdf

Example: add two vectors

37

C:
for(i=0;i<n;++i) a[i]=b[i]+c[i];

Matlab:
a=b+c;

SIMD:
void add(uint32_t *a, uint32_t *b, uint32_t *c, int n) {

for(int i=0; i<n; i+=4) {
//compute c[i], c[i+1], c[i+2], c[i+3]
uint32x4_t a4 = vld1q_u32(a+i);
uint32x4_t b4 = vld1q_u32(b+i);
uint32x4_t c4 = vaddq_u32(a4,b4);
vst1q_u32(c+i,c4);

}
}

SIMT:
__global__ void add(float *a, float *b, float *c) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
a[i]=b[i]+c[i]; //no loop!

}

