T 5 AL AR

R 4

A

HT7UF: ISA &
FRIR T

ILP (5)

|—a

Xlanwelz.git

5

hub.io

DCS3013, 10/26/2022

Dhge


https://xianweiz.github.io/

Review: Loop Unrolling & Branch

3

* Loop unrolling[#&¥F & ]
— Re-order instructions to transform
— Loop unrolling to expose scheduling opportunities
— Gains are limited by several factors

* Branch prediction[433Z Tl
— Predict how branches will behave to reduce stalls
— Basic static predictor

— Correlating predictors (a.k.a., two-level predictors)
o (m, n): last m branches, n-bit predictor for a single branch

— Tournament predictors
o Adaptively combining local and global predictors

u‘.i’ﬁ“ﬁ



Review: Dynamic Scheduling

e Static scheduling: in-order instruction issue and execution
- If aninst is stalled in pipeline, no later insts can proceed

— Loop unrolling: reduce stalls by separating dependent insts
o Static pipeline scheduling by compiler

* Dynamic scheduling: in-order issue, Oo0 execution

— Reorders the instruction execution to reduce the stalls while
maintaining data dependence
— 000 execution may introduce WAR and WAW hazards
o Both can be avoided by register renaming
— ID stage is split into two
o Issue: decode insts, check for structural hazards
o Read operands: wait until no data hazards, then read operands

— Scoreboard: a technique for allowing insts to execute 000
when there are sufficient resources and no data dependences

: ; )
‘\J‘ ivﬂnl\‘ﬁnﬁ }' ‘_E LZ




Summary of Scoreboard

| MEMORY

e Basic idea | S E T e
— Use scoreboard to track data dep. S B e} 0\
through register i st Butter 7" — n
* Main points of design s —
— Instructions are sent to FU unit if there is no outstanding name
dependence

- RAW data dependence is tracked and enforced by scoreboard

How? Just stall the insts until the RAW hazard can be addressed.

— Register values are passed through the register file; a child

instruction starts execution after the last parent finishes
execution

— Pipeline stalls if any name dependence (WAR or WAW) is
detected

How? Just recognize the false dependencies as a hazard and stall.

4 i@
http://users.utcluj.ro/~sebestyen/ Word docs/Cursuri/SSC course 5 Scoreboard ex.pdf u;



http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

Tomasulo Algorithm

* Key idea: remove dependencies with..

- 1) HW register renaming
o What compiler cannot do

- 2) Data forwarding

fd F6, 34(R2)

\
hw register  fld FZ):4\5(R3)
renaming fmul.d  FO, RZ\ F4

fsub.d  FS, fld#l\ F2
fdiv.d F1p/ Fo, fld#l
fadd.d F6 F8 F2

5 Dhge

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Tomasulo Organization

e Control & buffers are distributed with Function Units (FU)
- FU buffers called “Reservation Stations (RS)”; have pending ops
— Registers in instructions replaced by values or pointers to RS

 Load and Store treated as FUs with RSs as well

e Results to FU from RS, not through registers, over
Common Data Bus (CDB) that broadcasts results to all FUs

MEMORY

FP Op Queue FP Registers «¢ [
v
Load Buffers Store Buffers
Storel
Load1 Add1 Multl
Load2 Add2 Store2
Mult2
Load3 Add3 Store3
FP adders I [ FP multipliers | I
# ‘ Common Dafa Bus (CDB) I ’pm
Rl i

Nntp://Camelap.org/uplioads/iviain/iecturevy-1o0masulo.par



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo

* Stage-1: Issue

* Get an instruction from FP Op Queue

— If the reservation station is free (no structural hazard), the
control issues such instruction and sends corresponding
operands (renames registers)

o Register are renamed in this step, eliminating WAR and WAW hazards

[MEMORY |

ﬂd F6; 34( RZ) FP Op Queue FP Registers ¢ L
fld F2, 45(R3)
fmul.d FO, F2, F4 L
fsub.d F8, F6, F2 Load Buffers I Store Buffers

. Load1 ALl fsub  F8, F6, Load2 Y Uli¥8 fmul FO, Load2, F4 z:orei
fdiv.d F 10’ FO’ F6 Load2 LULPR fadd  F6, F8, Load2 SN ore

Load3 Add3 Store3
fadd.d F6, F8, F2
Common Daja Bus (CDB)

7 Dhge

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo (cont.)

* Stage-2: Execute

* Operate on operands (EX)
— When both operands are ready, it executes; otherwise, it checks
up the CDB for results

o Instructions are delayed here until all of their operands are available,
eliminating RAW hazards

[MEMORY

fld F6, 34(R2) P Op Queue P Registers x

fld F2, 45(R3)

fmul.d  FO, F2, F4 |

fsub.d  F8,F6, F2 Load Buffers ! s

Loadl | fld F6, 34(R2) J.\.[:kM fsub F8, F6, Load2

fdiv.d F10, FO, F6 Gad)fld_F2,45(R3) | Add2 [CLERNAZALITE

Load3 Add3

fadd.d F6, F8, F2 l

\Y[Uli«M® fmul FO, Load2 F4
Y li#A fdiv  F10, FO, F6

Store2
Store3

FP adders FP multipliers

Common DaL Bus (CDB)

8 Dhge

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo (cont.)

e Stage-3: Write result

* Finish execution:
— ALU operations results are written back to registers and store
operations are written back to memory

o If the result is available, write it on the CDB and from there into the
registers and any reservation stations waiting for this result

[MEMORY

fld F6, 34(R2) P Op Queue P Registers x

fld F2, 45(R3)

fmul.d  FO, F2, F4 |

fsub.d  F8,F6, F2 Load Buffers ! s

Loadl [ fld F6,34(R2) | Addl RSV AAEELP]

fdiv.d F10, FO, F6 Gad)fld_F2,45(R3) | Add2 [CLERNAZALITE

Load3 Add3

fadd.d F6, F8, F2 l

\Y[Uli«M® fmul FO, Load2 F4
Y li#A fdiv  F10, FO, F6

Store2
Store3

FP adders FP multipliers

Common DaL Bus (CDB)

9 Dhge

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Simple Tomasulo Data Structures

* Three main components

— Instruction status

— Reservation stations (Load buffer & FU buffer)
o Scheduling: waiting operands
o Register renaming: remove false dep.

— Register result status

Scoreboard

Reg Status

FU Status
Op | dst|srcl|src2| Q1| Q2| R1 | R2

Tomasulo Reg Status

Insn Status
dst srcl src2 [DEESN
F6 34+ R2
F2 45+ R3

RS (Load buffer)
3 adl

MULTD FO F2
SUBD F8 F6
DIVD F10 FO
ADDD F6 F8

Dhge

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Ll

Reorder Buffer[&EH: 72247

* In the Tomasulo architecture, instructions complete in an
out-of-order
— Exceptions are non-trivial to handle
— Branch misprediction is also difficult to recover from

* Reorder Buffer (ROB) enables to finish instructions in the
program order
— And, allows to free RS earlier
— ROB holds the result of inst between completion and commit

* Key idea of ROB: execute the insts in out of program
order, but make outside world can “believe” it’s in-order

- Solution: Re-Order Buffer+ Architected Register File
o ROB: keep the temporal results (executed in out-of-order)
o ARF: keep the final results (illusion of in-order execution)

| EuL
http://camelab.org/uploads/Main/lecture10-rob.pdf 4



http://camelab.org/uploads/Main/lecture10-rob.pdf

Tomasulo w/ ROB Organization

e Re-Order

ouffer is based on Tomasulo

 Just renamed FP register to ARF (Architected Register File)

e Add Re-Order buffer for out-of-order results
— Buffer is managed with two pointers (head & tail)

* RAT (Register Alias Table) keeps the register renaming info

ARF RAT Reorder Buffer
FP Op Queue <€ Head

\ < Tail

\

y

Multl

Mult2

v v
| FP adders |1 [ FP multipliers |
X

Common Data Bus (CDB)

»
I X | m’ﬁ“ﬁ
MNuLp.//cdirneidp OI2/Uplodus /1vidInl /lecuureiLv -TOD.PUI



http://camelab.org/uploads/Main/lecture10-rob.pdf

Reorder Buffer Procedure[id#4]

* [ssue

— Allocate reservation station(RS) and Reorder Buffer(ROB), read
available operands

* Execute
- Begin execution when operand values are available

* Write Result
— Write result and ROB tag on CDB

* Commit
— When ROB reaches head, update register

- When a mispredicted branch reaches head of ROB, discard all
entries

“‘ : k )
‘\/‘ ivﬂnl\‘ﬁnﬁ }' "E LZ




Another ILP

Internal of operation principle of
ILP-processors

Pipelined Parallel
operation operation

Instr —
EX, EX, EX,

! |

Pipelined Orthogonal Superscalar /
ﬁ
processors Design VLIW
14 i

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf



http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

Multiple Issue[£ %k &t

* To achieve CPI < 1, need to complete multiple instructions
per clock

* Solutions:
— Statically scheduled superscalar processors
- VLIW (very long instruction word) processors
— Dynamically scheduled superscalar processors

Common Issue Hazard Distinguishing
name structure  detection Scheduling characteristic Examples
Superscalar Dynamic Hardware  Static In-order execution Mostly in the embedded
(static) space: MIPS and ARM,
including the Cortex-AS3
Superscalar Dynamic Hardware  Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware  Dynamic with  Out-of-order execution Intel Core 13, 15, 17: AMD
(speculative) speculaton with speculation Phenom: IBM Power 7
VLIWAIW  Static Primanly  Static All hazards determined Most examples are in signal
software and indicated by compiler  processing, such as the Tl
(often implicidy) Céx
EPIC Pnmanly  Primanly  Mostly static All hazards determined Itanium
static software and indicated explicitly

F b K %

U SUN YAT-SEN UNIVERSITY

by the compiler

15



Superscalarjitr&]

e Superscalar architectures allow several instructions to be
issued and completed per clock cycle

* A superscalar architecture consists of a number of
pipelines that are working in parallel (N-way Superscalar)
— Can issue up to N instructions per cycle

e Superscalarity is Important

— |ldeal case of N-way Super-scalar Fetch | Decode | Inst
o All instructions were independent Fetch | Decode | Inst
o Speedup is “N” (Superscalarity) Eetehis D esadeN|Binst
- What if all instructions are dependent?
o No speed up, super-scalar brings nothmg

o (Just similar to pipelining) Feteh PDecode et
Fetch | Decode Inst
Fetch | Decode Inst

e E. o - B

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf



http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

VLIW Processor[j#E-1s 4

e Static multiple-issue processors (decision making at
compile time by the compiler)

— Package multiple operations into one instruction

* Key idea: replace a traditional sequential ISA with a new
ISA that enables the compiler to encode ILP directly in the
hw/sw interface

— Sub-instructions within a long instruction must be independent
— Multiple “sub-instructions” packed into one long instruction
— Each “slot” in a VLIW instruction for a specific functional unit

VLIW Compiler VLIW Processor
(" ) 4 R
C Program SAITRTER
for (i=0;i<kn;i++) E:l_’
dest[i]= o =P |
src[i] *coeff; -
in
independent Schedule . .
\_operations operations / \_ Direct execution )

L7 Dhig:

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf



http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

VLIW Processor (cont.)

Memory Memory Integer
reference 1 reference 2 FP operation 1 FP operation 2 operation/branch
fld f0,0(x1) fld f6,-8(x1)
fl1d f10,-16(x1) fldf14,-24(x1)
fld f18,-32(x1) fldf22,-40(x1) fadd.d f4,f0,f2 fadd.d f8, f6,f2
fld f26,-48(x1) fadd.d f12,f0,f2 fadd.d f16,f14,f2
fadd.d f20,f18,f2 fadd.d f24,f22,f2
fsd f4,0(x1) fsd f8, -8(x1) fadd.d f28,f26,f24
fsdfl12,-16(x1) fsdfl6,-24(x1) addi x1,x1,-56
fsd f20,24(x1) fsd f24,16(x1)
fsd 28,8(x1) bne x1,x2,Loop

* Disad ges:
Isa Va nta eS . Op. 1 Regl,Reg2,Regq Op. 2 Reg4,Reg5,Reg6| Op. 3 Reg7,Reg8,Reg9

— Statically finding parallelism l ¢ l
— Code size

- No hazard detection hardware
- Binary code compatibility ¢ ¢ ¢

Registers , Cache and Memory

FU1 FU 2 FU3

S Tux 2 18 Dige



Summary: Tomasulo

* To support dynamic scheduling
- Dynamically determining when an inst is ready to execute

— Avoid unnecessary hazards

o RAW hazards: avoided by executing an inst only when its operands are
available

o WAR and WAW hazards: eliminated by register renaming
— Register renaming is provided by reservation stations

 To support speculation

— Speculate the branch outcome and execute as if guesses are
correct

— Allow insts execute 000 but to force them to commit in order

— Reorder buffer: hold the results of insts that have finished
execution but have not committed

o Pass results among insts that may be speculated

@ tuxs 19 IR




Summary: Multiple Issue

* Single issue: ideal CPIl of one
— Issue only one inst every clock cycle
— Techniques to eliminate data, control stalls

* Multiple issue: ideal CPI less than one
— Issue multiple insts in a clock cycle
— Statically scheduled superscalar processors
o Issue varying number of insts per clock, execute in-order

— VLIW (very long inst word) processors
o Issue a fixed number of insts formatted as one large inst
o Inherently statically scheduled by the compiler

— Dynamically scheduled superscalar processors
o Issue varying number of insts per clock, execute OoO

,‘

(@) Fw*k # 20
\f‘

\ SN 74 SUN YAT-SEN UNIVERSITY

ME“K



T 5 AL AR

R 4

$7iF: DLP & GPU (1)
EINCINGE
xianweiz.github.io

DCS3013, 10/26/2022

Dhge


https://xianweiz.github.io/

Serial Computir

gl AT it 511

* Traditionally, software
computation

nas been written for serial

— To be run on a single computer having a single CPU

— A problem is broken into a discrete series of instructions
— Instructions are executed one after another

— Only one instruction may execute at any moment

instructions

IIIIIIIIII -

22 CE
https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf w&



https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Parallel Computing[3f47it 4]

e Simultaneously use multiple compute resources to solve a
computational problem

— Typically in high-performance computing (HPC)

* HPC focuses on performance
— To solve biggest possible problems in the least possible time

problem instructions

~ il | 1-2=
~ il | 1-2=
~ il | 1-E=1
-l | 1-2=

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf ﬂ;



https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Types of Parallel Computing[#473$%]

* Instruction level parallelism[f5& 2% o omez omes coes omes  omes

AT {3
— Classic RISC pipeline (fetch, ..., write EH-EH e
back)

e Task parallelism[{F %22 3471
— Different operations are performed
concurrently

— Task parallelism is achieved when the
processors execute on the same or
different data

e Data parallelism[## 27 F17] MapReduce
— Distribution of qlata across different *E;
parallel computing nodes . W——
— Data parallelism is achieved when ) :%E T
each processor performs the same 3::1@:4
task on different pieces of the data S

24 WE
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf s H LZ



https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

Taxonomy[43-2%]

* Flynn‘s Taxonomy (1966) is widely used to classify parallel
computers

— Distinguishes multi-processor computer architectures according
to how they can be classified along the two independent
dimensions of Instruction Stream and Data Stream

— Each of these dimensions can have only one of two possible
states: Single or Multiple

* 4 possible classifications according to Flynn

SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

eJd H HELZ
https://hpc.linl.gov/training/tutorials/introduction-parallel-computing-tutorial PN



https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

Taxonomy (cont.)

 SISD: single instruction, single data
- A serial (non-parallel) computer

* SIMD: single instruction, multiple data

— Best suited for specialized problems characterized by a high
degree of regularity, such as graphics/image processing

* MISD: multiple instruction, single data
- Few (if any) actual examples of this class have ever existed

* MIMD: multiple instruction, multiple data
- Examples: supercomputers, multi-core PCs, VLIW

SISD | Instruction Pool | SIMD I Instruction Pool | MISD | Instruction Pool I MIMD | Instruction Pool

PU| —|PU|
g ———|PU| 8 —|PU|
—.[pu PU PU

—|PU |

Data Pool
Data Pool
Data Pool
Data Pool

————|PU|—

Si=ieis

PU|«

PU|«

PU [«

PU|«



SIMD: vs. superscalar and VLIW 5+ Ek)

e SIMD performs the same operation on multiple data
elements with one single instruction

— Data-level parallelism

 Superscalar dynamically issues multi insts per clock[j#fr=]
- Instruction level parallelism (ILP)

* VLIW receives long instruction words, each comprising a
field (or opcode) for each execution unit[#E 54 F]

- Instruction level parallelism (ILP) ]
——

Decode
Op. 1 Regl,Reg2,Regq Op. 2 Reg4,Reg5,Regb| Op. 3 Reg7,Reg8,Reg9 I |

I I I I I I II Dispatch buffer
| ¢ | I Dispatch I
sservation station

FU1 FU2 FU3 ' g I:_I D D I—:’ D :
HTFEFT
[ $ 3 S
Registers , Cache and Memory \ I ‘omplot I

Complete
» 0
A X *

A A\

() F b X % 27

i%@f? I Rotire

iv$/  SUN YAT-SEN UNIVERSITY




SIMD: Vector Processors||a) & AbH 2%

 \Vector processor (or array processor)[Z- ¥ 23]

— CPU that implements an instruction set containing instructions
that operate on one-dimensional arrays (vectors)

* People use vector processing in many areas[ H]
— Scientific computing
- Multimedia processing (compression, graphics, image
processing, ...)

* Instruction sets[{g 4 %E] B e
- MMX
— SSE
- AVX
— NEON

Ay

By

Cy

Dy

Single Instruction Single Data: Single Instruction Multiple Data:

g‘**, \ J‘ K "; 28 D‘EE%
ivﬂ-s“mw" https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf ;



https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: MMX

« MMX is officia
Intel; unofficia

— MultiMedia eXtension
— Multiple Math eXtension
— Matrix Math eXtension

ly a meaningless initialism trademarked by
ly,

* Introduced on the “Pentium with MMX Technology” in

1998

* SIMD computation processes multiple data in parallel
with a single instruction
- MMX gives 2 x 32-bit computations at once
- MMX defined 8 “new” 64-bit integer registers (mmO0 ~ mm?7)
— 3DNow! was the AMD extension of MMX

29 e
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf Py



https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: SSE

* Streaming SIMD Extensions

— SSE defines 8 new 128-bit registers (xmmO ~ xmm?7) for FP32
computations
o Since each register is 128-bit long, we can store total 4 FP32 numbers

— 4 simultaneous 32-bit computations

127 95 63 31 0
XMM# data3 data2 datal data0

mulss xmml, xXmmO mulps xmml, xmmO
31 0 127

=
—
(&)
o
(&)
o
(&)
o
(&)
IIH
&)
Yo
w
-t
o
[*)]
w
-t
o
w
[ERY
&)
o

30 e
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf Py



https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: AVX

* Advanced Vector Extensions (AVX)

— A new-256 bit instruction set extension to SSE
o 16-registers available in x86-64
o Registers renamed from XMMi to YMMi

— Yet a proposed extension is AVX-512

o A 512-bit extension to the 256-bit XMM

o Supported in from Intel's Xeon Phi x200 (Knights Landing) and Skylake-
SP, and onwards

SSE, 128-bit (1999)

64-bit double N >
32-bitfloat [} T 134
xmmO

AVX, 256-bit (2011)
4
L | | | | | | 1 | 8

ymmO

AVX-512 (KNL, 2016; prototyped by KNC, 2013)

8

T s s = e el e ] 16

zmm0 S EE({
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf w&



https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

SIMD: NEON

e ARM Advanced SIMD Extensions

— Introduced by ARM in 2004 to accelerate media and signal
processing

o NEON can for example execute MP3 decoding on CPUs running at 10
MHz

- 128-bit SIMD Extension for the ARMv7 & ARMv8
o Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit or 64-bit

Elements : .
ﬁ. ! ¥+ Source
O Tle Tle TTe ] o Registers
N EO N Operation

v v
Lane

32 CE
https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf U&



https://www.uio.no/studier/emner/matnat/ifi/IN5050/v20/undervisningsmaterialet/in5050-simd.pdf

Data Parallelism: SIMD

* Single Instruction Multiple Data

— Split identical, independent work over multiple execution units

(lanes)
— More efficient: eliminate redundant fetch/decode

— One Thread + Data Parallel Ops =2 Single PC, single register file

Writeback
Writeback
r}/ Writeback
J/4 Writeback

Execute

Execute

Execute

Wy

v T
—

Register File

33

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf



https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

Data Parallelism: SIMT

* Single Instruction Multiple Thread

- Split identical, independent work over multiple threads

— Multiple Threads + Scalar Ops = One PC, multiple register files
— = SIMD + multithreading
— Each thread has its own registers

0,7
WFO0

107
' Writeback

2,7

et Detodh



https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

Execution Model[#f7# )

MIMD SIMD SIMT
Multiple One thread with wide Multiple lockstep
independent threads execution datapath threads
Multicore CPUs x86 SSE/AVX GPUs
* SI(MD/MT)

— Broadcasting the same instruction to multiple execution units

- Replicate the execution units, but they all share the same
fetch/decode hardware 0

SIMD and SIMT are used interchangeably *

35 i
\& N U / iYﬂENﬁEﬁ “' : LZ

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf



https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

SIMD: GPU vs. CPU/Traditional

* Traditional SIMD contains a single thread
— Programming model is SIMD (no threads)
- SW needs to know vector length
— ISA contains vector/SIMD instructions

* GPU SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all

threads)
— Each thread can be treated individually (i.e., placed in a
different warp) =2 programming model not SIMD
o SW does not need to know vector length
o Enables memory and branch latency tolerance

— ISAis scalar = vector instructions formed dynamically

* Essentially, it is SPMD programming model implemented
’n SIMD hardware

s

Eﬁ%‘cps 'J/course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.1.3-simd-and-gpus-part3-vliw-dae-systolic. p&J‘



https://course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.1.3-simd-and-gpus-part3-vliw-dae-systolic.pdf

Example: add two vectors

C: Matlab:
for(i=0;i<n;++i) a[i]=b[i]+c[i]; a=b+c;
SIMD:

void add(uint32_t *a, uint32_t *b, uint32_t *c, int n) {
for(int i=0; i<n; i+=4) {
//compute c[i], c[i+1], c[i+2], c[i+3]
uint32x4_t a4 =vld1lq_u32(a+i);
uint32x4_t b4 = vidlg_u32(b+i);
uint32x4 t c4 = vaddq_u32(a4,b4);
vstlg u32(c+i,c4);
}
}

SIMT:

__global__ void add(float *a, float *b, float *c) {
int i = blockldx.x * blockDim.x + threadldx.x;

ali]=b[i]+c]i]; //no loop!

37 Dig:




