

Computer Architecture

第8讲: DLP & GPU (2)

张献伟

<u>xianweiz.github.io</u>

DCS3013, 10/31/2022

Quiz Questions

Plz email to zhangxw79@mail.sysu.edu.cn (no later than 14:35)

- Q1: which is anti-dependence? (1)/(2)/(3)/None
 (2): read f0, then write → WAR, the reverse of RAW
- Q2: side effect of loop unrolling? Code size, compiler complexity.
- Q3: differences between Scoreboard and Tomasulo? Tomasulo relies on hardware to enforce and resolve deps.
- Q4: what is VLIW?

Very Long Instruction Word. Packing multi-insts into one.

 Q5: for a 5-way superscalar machine, what's the ideal CPI?

0.2. Issue 5 instructions per cycle, and finish in one cycle.

Taxonomy[分类]

- Flynn's Taxonomy (1966) is widely used to classify parallel computers
 - Distinguishes multi-processor computer architectures according to how they can be classified along the two independent dimensions of *Instruction Stream* and *Data Stream*
 - Each of these dimensions can have only one of two possible states: Single or Multiple
- 4 possible classifications according to Flynn

Execution Model [执行模型]

- SI(MD/MT)
 - Broadcasting the same instruction to multiple execution units
 - Replicate the execution units, but they all share the same fetch/decode hardware

SIMD and SIMT are used interchangeably

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

SMT[多线程]

- SMT: simultaneous multithreading
 - Instructions from multiple threads issued on the same cycle
 - Use register renaming and dynamic scheduling facility of multi-issue architecture
 - Needs more hardware support
 - Register files, PC's for each thread
 - Support to sort out which threads to get results from which instructions
 - Thread scheduling, context switching
 - Maximize utilization of execution units

SMT vs. SIMT[比较]

- SMT: maximize the chances of an instruction to be issued without having to switch to another thread
 - superscalar execution
 - out-of-order execution
 - register renaming
 - branch prediction
 - speculative execution
 - cache hierarchy
 - speculative prefetching
- SIMT: keep massive threads to achieve high throughput
 - Hardware becomes simpler and cheaper
 - No OoO, no prefetching, ...

CPU vs. GPU[比较]

- CPU
 - Low compute density
 - Complex control logic
 - Fewer cores optimized for serial operations
 - Fewer execution units (ALUs)
 - Higher clock speeds
 - Low latency tolerance

- GPU
 - High compute density
 - Simple control logic
 - 1000s cores optimized for parallel operations
 - Many parallel execution units (ALUs)
 - Lower clock speeds
 - High latency tolerance

GPU Overview

GPU Overview(cont.)

- A GPU contains several largely independent processors called "Streaming Multiprocessors" (SMs)
 - Each SM hosts multiple "cores", and each "core" runs a thread
 - For instance, Fermi(2010) has up to 16 SMs w/ 32 cores per SM
 So up to 512 threads can run in parallel
 A100: 128 SMs w/ 64 cores per SM
 H100: 144 SMs w/ 128 cores per SM
- Some SIMT threads are grouped to execute in lockstep
 - One warp contains 32 threads
- Multiple 'groups' can be executed simultaneously
 - For Fermi, up to 48 warps per SM

GPU Evolution[演进]

- Arcade boards and display adapters (1951 1995)
 - ATI: founded in 1985
 - Nvidia: founded in 1993
- 3D revolution (1995 2006)
 - Term "graphics processing unit": 1999
 Nvidia GeForce 256
 - Rivalry between ATI and Nvidia

- AI, data analytics, scientific computing, graphics rendering, etc.

Fragments

with colors

Fragment

processing

Triangles ir

screen space

Rasterization

Fragments

Raste

Operations

Texture filtering

3D mest

Vertex

processing

Image

Output

GPGPU History[简史]

Year	AMD	Nvidia	Note	
2006	AMD acquired ATI	Tesla (CUDA Launch)	Unified shader model	
2007	TeraScale		Unified shader uarch	
2009	TeraScale 2			
2010	TeraScale 3	Fermi / GTX580	First compute GPU	
2011	GCN 1.0 / gfx6		VLIW → SIMD	
2012		Kepler / GTX680	CUDA cores: 512 → 1536	
2013	GCN 2.0 / gfx7			
2014	GCN 3.0 / gfx8	Maxwell / GTX980	Energy efficiency	
2016	GCN 4.0 / gfx8	Pascal / GTX1080		
2017	GCN 5.0 / gfx9	Volta / GV100	First chip with Tensor cores	
2018	GCN 5.1 / gfx9	Turing / RTX2080		
2019	RDNA 1.0 / gfx10			
2020	RDNA 2.0 / gfx10 CDNA 1.0 / gfx9	Ampere / RTX3090	First chip with Matrix cores	
ФЦХ SUN YAT-SEN UNIVE	學 RSITY	11		NSCC &

TFLOPS[衡量算力]

- A100 Tensor Core GPU
 - 108 SMs
 - GA100 Full GPU with 128 SMs
 - Base clock: 1065 MHz
 - Boost clock: 1410 MHz
 - Performance
 - FP64: 9.7 TFLOPSFP32: 19.5 TFLOPS
- Calculate TFLOPS
 - FP64: 1410 MHz x (32 x 2) ops/clock x 108 SMs

	LOI	nstruction C	ache	L0 Instruction Cache			
Warp Scheduler (32 thread/clk)				Warp Scheduler (32 thread/clk)			
Dispatch Unit (32 thread/clk)				Dispatch Unit (32 thread/clk)			
	Register	File (16,38	4 x 32-bit)	Re	gister File (16,38	4 x 32-bit)	
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64	TENDOD CODE	
INT32 INT32	FP32 FP32	FP64	TENSOR CORE	INT32 INT32 FP3	2 FP32 FP64	TENSOR CORE	
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
LD/ LD/ ST ST	LD/ LD/ ST ST	LD/ LD/ ST ST	LD/ LD/ SFU	LD/ LD/ LD/ ST ST ST	LD/ LD/ LD/ ST ST ST	LD/ LD/ SFU	
	Dispate	h Unit (32 th	read/clk)		Dispatch Unit (32 th	hread/clk)	
	Register	File (16,38	4 x 52-0it)	Re	gister File (16,38		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64	TENSOR CORE	INT32 INT32 FP3	2 FP32 FP64	TENSOR CORE	
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
INT32 INT32	FP32 FP32	FP64		INT32 INT32 FP3	2 FP32 FP64		
	LD/ LD/ ST ST	LD/ LD/ ST ST	LD/ LD/ ST ST SFU	LD/ LD/ LD/ ST ST ST	LD/ LD/ LD/ ST ST ST	ST ST SFU	

「ム大學 MAT-SEN UNIVERSITY https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf