
第9讲：DLP & GPU（3）
张献伟

xianweiz.github.io
DCS3013, 11/2/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

Review Questions
• SIMD?

• SIMD vs. SIMT?

• CPU vs. GPU?

• GPU is of high latency tolerance?

• Explain SM or CU.

• Warp

2

Threads to execute scalar operations.

Massive threads to schedule and work on

The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

A group of 32 threads executing in lockstep.

Single instruction, multiple data

ILP vs. DLP; Few vs. lots of cores; O3 vs. IO; complex vs. simple

TFLOPS[衡量算力]

• A100 Tensor Core GPU
− 108 SMs

p GA100 Full GPU with 128 SMs
− Base clock: 1065 MHz
− Boost clock: 1410 MHz
− Performance

p FP64: 9.7 TFLOPS
p FP32: 19.5 TFLOPS

• Calculate TFLOPS
− FP64: 1410 MHz x (32 x 2)

ops/clock x 108 SMs

3
https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

GPUs in Supercomputer[超算中的GPU]

• Exascale: 50 GFLOPS/Watt (goal) à 51.7 GFLOPS/Watt

4
https://www.hpcwire.com/2021/07/14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-in-2008/

40+ TFLOPS

https://www.hpcwire.com/2021/07/14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-in-2008/

Frontier: 1.5 EFLOPS, How???[E级超算]

• Per node[单节点]
− Custom EPYC HPC-optimized CPU

p ”zen 3” milan w/ 64-core
− Four Instinct GPUs

p CDNA MI200 w/ 256 CUs
• Full-rate FP64 (128 ops/clock/CU)

• 9000+ nodes[整体系统]
− CPU: 9000 x 4 TFLOPS/CPU = 36 PFLOPS
− GPU: 9000 x 4 x 42.2 TFLOPS/GPU = 1519 PFLOPS

p Per GPU: 128 ops/clock x 1.5G x 220 = 42.2 TFLOPS
− GPU provides 97.7% computation power

p 1519/(1519+36)

5

OLCF spock training: AMD hardware and software, 05/2021,
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf

https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/

A100: 9.75 TFLOPS
MI100: 11.54 TFLOPS

https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf
https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/

MI200 GPU

6
https://www.amd.com/en/press-releases/2022-05-26-amd-instinct-mi200-adopted-for-large-scale-ai-training-microsoft-azure

https://www.amd.com/en/press-releases/2022-05-26-amd-instinct-mi200-adopted-for-large-scale-ai-training-microsoft-azure

天河超算
• 2009，天河-1

− CPU + ATI GPU
p 2 * Xeon E5540/E5450, 1 ATI Radeon HD 4870 X2 (TeraScale)

−实测/峰值563.1T/1206.2T FLOPS
− 2009.11 TOP500第五

• 2010，天河-1A
− CPU + Nvidia GPU

p 2 * Intel Xeon X5670, 1 Nvidia Tesla M2050 (Fermi)
p 2048 Galaxy "FT-1000" 1 GHz 8-core processors

−实测/峰值2.566P/4.7P FLOPS
− 2010.11 TOP500第一

7

Tianhe-1, https://www.top500.org/system/176546/
Tianhe-1A, https://top500.org/system/176929/
Tianhe-1A, http://blog.zorinaq.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/

240 GFLOPS

515 GFLOPS

https://www.top500.org/system/176546/
https://top500.org/system/176929/
http://blog.zorinaq.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/

GPU Programming Model[编程模型]

• GPU is viewed as a compute device that[设备]
− Is a coprocessor to CPU (host)[协处理器]
− Has its own main memory called device memory[显存]
− Runs many threads in parallel[线程并发]

• Data-parallel parts of an application are executed on the
device as kernels, which run in parallel on many threads
• CPU thread vs. GPU thread

− GPU threads are very lightweight
− A few vs. thousands for full efficiency

8

Thread Organization[线程组织]

• A kernel is executed as a grid of
thread blocks[网格]
• A thread block is a batch of

threads that can cooperate with
each other by[块]

− Synchronizing their execution
− Efficiently sharing data through

low-latency shared memory

• The grid and its associated
blocks are just organizational
constructs

− The threads are the things that do
the work

9

GPU Programming Choices[编程选择]

• CUDA - Compute Unified Device Architecture
− Developed by Nvidia – proprietary
− First serious GPGPU language/environment

• OpenCL - Open Computing Language
− From makers of OpenGL
− Wide industry support: AMD, Apple, Qualcomm,

Nvidia (begrudgingly), etc

• HIP - Heterogeneous-compute Interface for Portability
− Owned by AMD
− A C++ runtime API and kernel language that allows developers

to create portable applications that can run on AMD’s
accelerators as well as CUDA devices

10

HIP
• Is open-source
• Provides an API for an application to leverage GPU

acceleration for both AMD and Nvidia devices
• Syntactically similar to CUDA. Most CUDA API calls can be

converted in place: cuda --hipify--> hip
• Supports a strong subset of CUDA runtime functionality

11

HIP vs. CUDA
• Kernel declare

− Syntactically the same

• APIs

• Kernel launch

12

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x, x, N*sizeof(double),
cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double),
hipMemcpyHostToDevice);

hipDeviceSynchronize();

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>
(arg0, arg1, ...);

hipLaunchKernelGGL(some_kernel,
gridsize, blocksize,
shared_mem_size, stream,
arg0, arg1, ...);

Kernel Dimensions[维度]

• Built-in variables
− blockDim.x: the size of the block (#threads in the block)
− gridDim.x: the size of the grid (#blocks)
− blockIdx.x: the index of the block within the grid
− threadIdx.x: the index of the thread within the block

• Example: N threads in total, 256 threads per block
− blockDim.x = 256
− #blocks = N / 256 à gridDim.x
− blockIdx.x = [0, 1, …, N/256-1]
− threadIdx.x = [0, 1, …, 255]

13

Example: Kernel Declare[声明]

• A kernel is declared with the __global__ attribute
− Kernels should be declared void
− All pointers passed to kernels must point to device memory

• All threads execute the kernel’s body “simultaneously”
− Each thread uses its unique thread and block IDs to compute a

global ID

14

Example: Kernel Launch[启动]

• Kernels are launched from host

• Analogous to CUDA kernel launch syntax:

15

Example: Memory Allocation[内存分配]

• The host instructs the device to allocate memory and
records a pointer to device memory

16

Example: Memory Copy[数据传输]

• The host queues memory transfers
− hipMemcpyHostToDevice
− hipMemcpyDeviceToHost
− hipMemcpyDeviceToDevice

17

Example: Putting Together

18

Device Management[管理]

• Host can query number of devices visible to system:

• Host tells the runtime to issue instructions to a particular
device:

• Host can query what device is currently selected:

• The host can also query a device’s properties:

19

int numDevices = 0;
hipGetDeviceCount(&numDevices);

int deviceID = 0;
hipSetDevice(deviceID);

hipGetDevice(&deviceID);

hipDeviceProp_t props;
hipGetDeviceProperties(&props, deviceID);

hipDeviceProp_t is a struct that contains useful fields like the device’s name, total
VRAM, clock speed, and GCN architecture.

Specifiers
• __global__
• __device__

20
https://codingbyexample.com/2018/12/14/launching-cuda-functions/

https://codingbyexample.com/2018/12/14/launching-cuda-functions/

Map Kernel to Hardware[映射]

• Blocks are dynamically scheduled onto compute units
(CUs)

− All threads in a block execute on the same CU
− Threads in block share LDS memory and L1 cache

• Blocks are further divided into wavefronts
− A group of 32 or 64 threads
− Wavefronts execute on SIMD units

21

SM for Nvidia

warp for Nvidia

SIMD lane
(streaming processor)

Compute unit

GPU

SMEM for Nvidia

a.k.a., workgroup

CPU-GPU
• CPU communicates kernels to GPUs via PCIe

− Kernel code object is filled into a dispatch packet
− Next, the packet is placed into a queue, which is allocated by

runtime and associated with a GPU
− The GPU is then signaled to process packets from the queue
− When kernel is finished, CPU is notified with an interrupt

22

Co
m

m
an

d
Q

ue
ue

s (
in

 u
se

r-v
isi

bl
e

m
em

) GPU

GPU Driver

CPU

PCIe

stream for Nvidia

TIP:
Task
==

Command
==

Packet
==

Kernel

GPU Structure[内部架构]

• Command processor (CP)
− Forefront hardware component of a GPU to receive kernels

• Shader processor inputs (SPI)
− Receives WGs from the CP

• Compute unit (CU)
− Fundamental compute component

23

SPI
(SE0)

CU0

.

.

.

CU1

CU15

CU0

.

.

.

CU1

CU15

SPI
(SE1)

SPI
(SE3)

CU0

.

.

.

CU1

CU15

CU0

.

.

.

CU1

CU15

SPI
(SE2)

Command Processor
Co

m
m

an
d

Q
ue

ue
s (

in
 u

se
r-v

isi
bl

e
m

em
) GPU

GPU Driver

CPU

PCIe

Blocks/CTAs for Nvidia

SM for Nvidia

Compute Unit
• Scheduler[调度器]

− Manage the wavefronts execution among the SIMDs

• Compute[计算]
− SIMD: for vector processing (a.k.a., vector units, VALUs)[向量单
元]

p Is of 16 lanes in GCN, thus simultaneously executing a single operation
among 16 threads

p Has its own PC and instruction buffer (IB) for 10 WFs
− Scalar unit[标量单元]

p Shared by all threads in each WF, accessed on a per-WF level
p Used for control flow, pointer arithmetic, loading a common value, etc.

24

Compute Unit (cont.)
• GPRs[通用寄存器]

− VGPR: vector general purpose register file
p 4x 64KB (256KB total)
p A maximum of 256 total registers per SIMD lane – each register is 64x 4-

byte entries
− SGPR: scalar general purpose register file

p 12.5KB per CU

• L1 cache: 16KB[一级缓存]

• LDS: local data share (or, shared memory)[片上共享存储]
− Enables data share between threads of a block
− LDS

25

Compute Unit (cont.)
• At each clock, waves on 1 SIMD unit are considered for

execution (Round Robin scheduling among SIMDs)
• Each wave is assigned to one SIMD16, up to 10 waves per

SIMD16 (math: 4 x 10 x 64 = 2560 threads)
• Each SIMD16 issues 1 instruction every 4 cycles
• Vector instructions throughput is 1 every 4 cycles

26

1 every cycle in Nvidia
and AMD next generation

Instruction Execution[指令执行]

• Instruction buffer (IB): each cycle, the 10 wvs of the
selected SIMD compete for instruction fetch (oldest wins)
• Instruction arbiter (IA): arbitrates multi wvs which want

to execute the same type of instructions
• Instruction executor (IE): multiple execution units

running in parallel; only one instruction of each type can
be issued at a time per SIMD

27

Instruction Executor

SALU

SMEM

VALU

VMEM

LDS & GDS

Export

Internal

Instruction Arbiter

So
rt

 In
st

s b
y

Ty
pe

 (1
0

w
vs

)

In
st

 I
ss

ue
 A

rb
ite

r

Re
so

ur
ce

 C
he

ck

SALU

sMEM

vALU

vMEM

lds/gds

export

misc

Instruction Buffer
SIMD-3

SIMD-2
SIMD-1

SIMD-0
PC wv0 inst buffer

PC wv1 inst buffer

PC wv9 inst buffer

.

.

.

In
st

 F
et

ch
 A

rb
ite

r (
10

 w
vs

)

I-$ (shared by 4 CUs)

SQ0 (CU0)

SGPRs

K-$

SIMD0-3

TA/TD

SPI/SX

LDS/GDS

Nvidia SM

28

Level Nvidia AMD

Thread CUDA core Streaming processor / SIMD lane

Warp/wavefront SM sub-partition SIMD unit

Block/workgroup SM Compute unit

All threads GPU device GPU device

Terminology[术语]

29

Nvidia AMD Note

Thread Block (TB) /
Cooperative Thread Array
(CTA)

Workgroup (WG) Basic workload unit assigned to an SM or CU.
Each kernel is split into multiple CTAs, and the
#CTAs is controlled by the application. Typically,
hw limits 1024 threads per block.

Warp Wavefront
(wave/WF/WV)

A group of threads (e.g., 32 for NV, 64 for AMD)
executing in lockstep (i.e., run the same inst,
follow the same control-flow path).
#WFs/WG is chosen by developers.

Thread Work-item(WI)/thread A basic element to be processed.

GPU Processing Cluster (GPC) Shader Engine (SE) A collection of CUs organized into one or two
SHs.

Texture Processing Cluster
(TPC)

Shader Array (SH) A group made up of several SMs or CUs.

Stream Multiprocessor (SM)
/ Multiprocessor

Compute Unit (CU) Fundamental unit of computation, replicated
multiple times on a GPU.

Sub-core/partition SIMD A group of cores to execute one warp/wave.

Stream Processor (SP) /
CUDA Core / FPxx Core

Stream Processor /
SIMD Lane / VALU Lane

A parallel execution lane comprising an SM or
CU.

Software Stack[软件栈]

• Radeon Open Compute platform (ROCm)
− AMD’s open-source software stack

• Multiple layers
− Language runtime: language-specific runtime
− ROCr: user-level language-agnostic runtime
− ROCt: user-space driver talking to the lower-level ROCk
− ROCk: kernel driver to initialize and register with CP the queues

allocated by runtimes

30

CPU Code

GPU Code

Language Runtime API

ROCr: System Runtime API

ROCt: Thunk, User-space Driver

ROCk: Kernel Fusion Driver

AMDGPU Kernel Driver

user
space

kernel
space

Compiler Frontend

Device LLVM
Compiler

GCN Target

Host LLVM
Compiler

CPU Target

ROCm

31
https://rocmdocs.amd.com/en/latest/

https://rocmdocs.amd.com/en/latest/

CUDA

32
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

• During regular execution, a CUDA application process will
be launched by the user
• The application communicates directly with the CUDA

user-mode driver, and potentially with the CUDA runtime
library

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Detailed Kernel Launch[任务启动细节]

• S0: application creates user-mode queues (i.e., streams)
− The queue is associated with a specific GPU

• S1: application places kernel dispatch packets into the queue
− Done with user-level memory writes in ROCm (no kernel drivers)
− Dependencies should be specified

• S2: CPU rings the doorbell to notify the CP of the GPU device
• S3: CP reads the packet, understands the kernel parameters
• S4: CP sends WGs to SPIs, which then launches WFs to CUs
• S5: when final WF is finished, CP sends a completion signal

specified in the kernel dispatch packet
• S6: next, CPU receives an interrupt to pass the completion

signal to runtime, which further completes the kernel in
application code

33

Concurrency[并发]

• GPU is mainly known for its data-level parallelism[数据级
并行]

− Thousands of cores, with thousands of outstanding threads
− Simultaneously computing the same function on lots of data

elements
• Still need task-level parallelism[任务级并行]

− GPU is underutilized by a single application process
− Doing two or more completely different tasks in parallel
− Similar to the task parallelism that is found in multithreaded

CPU applications
• Techniques

− Multi-process service (MPS)
− Streams

34
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

