[NN

%9 DLP & GPU (3)
i NGE

xianweiz.github.io
DCS3013, 11/2/2022

Dhge

https://xianweiz.github.io/

Review Questions

* SIMD?

Single instruction, multiple data

* SIMD vs. SIMT?

Threads to execute scalar operations.

e CPU vs. GPU?

ILP vs. DLP; Few vs. lots of cores; O3 vs. |O; complex vs. simple

* GPU is of high latency tolerance?
Massive threads to schedule and work on

* Explain SM or CU.
The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

* Warp
A group of 32 threads executing in lockstep.

u‘.lﬂ“ﬁ

TFLOPS[i & 5

* A100 Tensor Core GPU

- 108 SMs
o GA100 Full GPU with 128 SMs

— Base clock: 1065 MHz
— Boost clock: 1410 MHz

— Performance

o FP64:9.7 TFLOPS
o FP32:19.5 TFLOPS

e Calculate TFLOPS

- FP64: 1410 MHz x (32 x 2)
ops/clock x 108 SMs

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

w Lo/
ST sT

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

L/ LoV
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP84
FP32 FP32 FP64
FP32 FP32 FP84
FP32 FP32 FP84
TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FP84

FP32 FP32 FP64

FP32 FP32 FP84

Lo/ LDF LD/ DY LY LDV
sT ST ST ST ST ST SFU

Lonstruction Cache
Warp Scheduler (32 thread/cik)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32 FP84
TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/
ST 8T ST 8T SFU

Tex

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP84
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FPS4

TENSOR CORE
INT3ZINT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64

W/ W W/ LDV LDV LDV LDV LDV SFU
ST sT sT sT sT ST sT ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INTS2INT32 FP32 FP32 FP64
INTS2INT32 FP32 FP32 FP64

TENSOR CORE
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP84

INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP&4

L/ Lo/ LD/ Lo/ LV LWV
sT sT sT sT ST sT

192KB L1 Data Cache / Shared Memory

Tex

sov wrsevonversy Wt ps - / /images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf u;

g

https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

GPUs in Supercomputer#E& F riGru]

* Exascale: 50 GFLOPS/Watt (goal) = 51.7 GFLOPS/Watt

W Titan (2012) Summit (2017) Frontier (2021)

Peak 27 PF 200 PF >15EF
nodes 18,688 4,608 > 9,000
Nod 1 AMD Opteron CPU 2 IBM POWER9™ CPUs 1AMD EPYC CPU
e 1 NVIDIA Kepler GPU 6 NVIDIA Volta GPUs 4 AMD Radeon Instinct GPUs‘ 40+ TFLOPS
M 2.4 PB DDR4 + 0.4 HBM + 4.6 PB DDR4 + 4.6 PB HBM2e +
. 7.4 PB On-node storage 36 PB On-node storage, 75 TB/s Read 38 Write
On-node PCI Gen2 NVIDIA NVLINK AMD Infinity Fabric
interconnect No coherence Coherent memory Coherent memory
across the node across the node across the node
System Cray Gemini network Mellanox Dual-port EDR 1B Four-port Slingshot network
Interconnect 6.4 GB/s 25 GB/s 100 GB/s
Topology 3D Torus Non-blocking Fat Tree Dragonfly
32 PB, 1 TB/s, 250 PB, 2.5 TB/s, IBM Spectrum 695 PB HDD+11 PB Flash Performance Tier,
Storage Lustre Filesystem Scale™ with GPFS™ 9.4 TB/s and 10 PB Metadata Flash. Lustre
Power 9 MW 13 MW 29 MW
gg:‘}o!\(alll{z{(lza?}? Egi%%{gf FACILITY

https://www.hpcwire.com/2021/07/14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-in-2008/

@) FTuxs 4 Dige

SUN YAT-SEN UNIVERSITY

https://www.hpcwire.com/2021/07/14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-in-2008/

Frontier: 1.5 EFLOPS, How?? ?[EZ#E &]

* Per node[sE 5]
— Custom EPYC HPC-optimized CPU

o “zen 3” milan w/ 64-core

— Four Instinct GPUs

o CDNA MI200 w/ 256 CUs
* Full-rate FP64 (128 ops/clock/CU)

* 9000+ nodes[#ik R 4]
— CPU: 9000 x 4 TFLOPS/CPU = 36 PFLOPS

- GPU: 9000 x 4 x 42.2 TFLOPS/GPU = 1519 PFLOPS
o Per GPU: 128 ops/clock x 1.5G x 220 =42.2 TFLOPS\

— GPU provides 97.7% computation power A100: 9.75 TFLOPS
o 1519/(1519+36) MI100: 11.54 TFLOPS

OLCF spock training: AMD hardware and software, 05/2021,
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf

https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/

é’ﬁ S) 5 I rﬂ
\ "0— N U / iYﬁENﬁEﬁ v' : LZ

https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf
https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/

MI200 GPU

FP64 Vector
47.9

FP64 Tensor FP64 Matrix
95.7
19.5

BYADT,

ANSTINCTY
FP32 Vector
FP16

383
312

https://www.amd.com/en/press-releases/2022-05-26-amd-instinct-mi200-adopted-for-large-scale-ai-training-microsoft-azure

https://www.amd.com/en/press-releases/2022-05-26-amd-instinct-mi200-adopted-for-large-scale-ai-training-microsoft-azure

R

« 2009, Ki[-1
- CPU + ATI GPU 240 GFLOPS
o 2 * Xeon E5540/E5450, 1 ATl Radeon HD 4870 X2 (TeraScale)
— S /8 {E 563.1T/1206.2T FLOPS
- 2009.11 TOP500% 11

¢ 2010, KJF[-1A
— CPU + Nvidia GPU 515 GFLOPS

o 2 * Intel Xeon X5670, 1 Nvidia Tesla M2050 (Fermi)
o 2048 Galaxy "FT-1000" 1 GHz 8-core processors

— SN /I {E 2.566P/4.7P FLOPS
- 2010.11 TOP500%5 —

Tianhe-1, https://www.top500.0org/system/176546/
Tianhe-1A, https://top500.org/system/176929/
Tianhe-1A, http://blog.zorinag.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/

2&»*’ | ']

https://www.top500.org/system/176546/
https://top500.org/system/176929/
http://blog.zorinaq.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/

GPU Programming Model[#m &R

* GPU is viewed as a compute device that[1x% #]
— Is a coprocessor to CPU (host)[#hrabEE 28]

— Has its own main memory called device memory[Z17]

— Runs many threads in parallel[ZF2 7 k]

* Data-parallel parts of an application are executed on the
device as kernels, which run in parallel on many threads

e CPU thread vs. GPU thread

— GPU threads are very lightweight
— A few vs. thousands for full efficiency

CPU
- HENR
L 1
L 1
HIGH BANDWIDTH

RRRRRRRRRRRRRR

M
BANDWID RGE
MMMMMMMMMMMM 8

C—

Sequential
CPU Code

B

Application Code

Compute

Functions

Q
)
(=)

Thread Organization[ZfE 4147

* A kernel is executed as a grid of
thread blocks[#%]

* A thread block is a batch of
threads that can cooperate with
each other by[tk]

— Synchronizing their execution ——
— Efficiently sharing data through <°?f>" .1 | @
low-latency shared memory o H

Host Device
Grid 1

Block Block Block
Kemel =™ 00 1,0 (20

’
’ ,’
’
v ’
’
~ Grid-2
’
’ ’
’

Ke;nel —; ,
 The grid and its associated (Biockt,
blocks are just organizational
constructs
— The threads are the things that do
the work

.a" 1
‘ iv&mﬁnﬁ 9 v. :ELZ

GPU Programming Choices[4#f& ik #]

* CUDA - Compute Unified Device Architecture R\VIDIA.

- Developed by Nvidia — proprietary CUDA
— First serious GPGPU language/environment
* OpenCL - Open Computing Language ST
& |
— From makers of OpenGL s /‘
— Wide industry support: AMD, Apple, Qualcomm, OpenCL

Nvidia (begrudgingly), etc

* HIP - Heterogeneous-compute Interface for Portability

- Owned by AMD

— A C++ runtime APl and kernel language that allows developers
to create portable applications that can run on AMD’s

accelerators as well as CUDA devices

l! 1ol
(@) FTux % 10 M’Eb‘

HIP

* |s open-source

* Provides an API for an application to leverage GPU
acceleration for both AMD and Nvidia devices

 Syntactically similar to CUDA. Most CUDA API calls can be
converted in place: cuda --hipify--> hip

e Supports a strong subset of CUDA runtime functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h” #include “hcc.h”

hipcc

Nvidia GPU AMD GPU
i

HIP vs. CUDA

* Kernel declare
- Syntactically the same

* APIs

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x, x, N*sizeof(double),
cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

 Kernel launch

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>
(arg0, argl, ...);

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double),
hipMemcpyHostToDevice);

hipDeviceSynchronize();

hipLaunchKernelGGL(some_kernel,
gridsize, blocksize,
shared_mem_size, stream,
arg0, argl, ...);

».‘:ﬂ%

Kernel Dimensions|[Z: /]

* Built-in variables
— blockDim.x: the size of the block (#threads in the block)
— gridDim.x: the size of the grid (#blocks)
— blockldx.x: the index of the block within the grid
- threadldx.x: the index of the thread within the block

* Example: N threads in total, 256 threads per block
- blockDim.x = 256
— #tblocks = N / 256 = gridDim.x
- blockldx.x =[O, 1, ..., N/256-1]
— threadldx.x = [0, 1, ..., 255]

threadldx.x threadldx.x
o | 1| 2| . |2s5| 0 |2 | 2| . |2s5| 0 | 2 | 2 | . [2s5 o | 1| 2| .. |25
| Y J L Y J
blockldx.x = 2 blockldx.x = == —
256

idDi =N
gridDim.x = See

13 Dig:

Example: Kernel Declare[#i]

* A kernel is declared with the global attribute
— Kernels should be declared void
— All pointers passed to kernels must point to device memory

* All threads execute the kernel’s body “simultaneously”

— Each thread uses its unique thread and block IDs to compute a
global ID
for (int i=0;i<N;i++) {
h_a[i] *= 2.0;
}

__global _ void myKernel(int N, double *d_a) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<N) {

dial i *=2.0;

(33 \ 1ol
@) tuxs } Dade

Example: Kernel Launch(Jash

 Kernels are launched from host

dim3 threads(256,1,1); //3D dimensions of a block of threads
dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks
hipLaunchKernelGGL(myKernel, //Kernel name (__global void function)
blocks, //Grid dimensions
threads, //Block dimensions
9, //Bytes of dynamic LDS space (see extra slides)
9, //Stream (@=NULL stream)
N, a); //Kernel arguments

* Analogous to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);

15 Dhge

Example: Memory Allocation[X 74

* The host instructs the device to allocate memory and
records a pointer to device memory

int main() {
int N = 1000;
size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //Host memory

double *d_a = NULL;

hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device
free(h_a); //free host memory
hipFree(d_a); //free device memory

(&) 16 18
/ s;tm:!s‘wﬁnﬁ u. q LZ

Example: Memory Copy[#udF %4

* The host queues memory transfers
- hipMemcpyHostToDevice
- hipMemcpyDeviceToHost
— hipMemcpyDeviceToDevice

//copy data from host to device
hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host
hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);

(2) 17 "‘ rﬂ
@ tuxs .k

Example: Putting Together

#include “hip/hip_runtime.h”
int main() {

int N = 1000;

(double*) malloc(Nbytes);

//host memory

size_t Nbytes = N*sizeof(double);
double *h_a =
double *d_a = NULL;

HIP_CHECK(hiEMallocS&d a, Nbytes));

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice));

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<N) {
d_a[i] *= 2.0;

//copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), @, @, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost))

free(h_a);
HIP_CHECK(hipFree(d_a));

%gﬁ% ¥ X 2

SUN YAT-SEN UNIVERSITY

//free host memory

//free device memory

#define HIP_CHECK(command) {

hipError_t status = command;

std::cerr << “Error: HIP reports ”
<< hipGetErrorString(status)
<< std::endl;

std::abort(); } }

X

\

if (status!=hipSuccess) { \
\

\

\

18

Device Management [#]

* Host can query number of devices visible to system:

int numDevices = 0;
hipGetDeviceCount(&numDevices);

* Host tells the runtime to issue instructions to a particular

device:
int devicelD = 0;

hipSetDevice(devicelD);
* Host can query what device is currently selected:

hipGetDevice(&devicelD);

* The host can also query a device’s properties:

hipDeviceProp t props;
hipGetDeviceProperties(&props, devicelD);

»‘vi’@“ﬁ

Specifiers

e global

__device__ GPUFunction(){
printf(

e device

__global__ kernelAQ{
GPUFunction();

__host__ __device__ versatileFunction(){
printf(

__global__ kernelB(O{
versatileFunction();
int main(Q)

cudaSetDevice(0);

printf(
kernelA<<<1,1>>>(0);

cudaDeviceSynchronize();

printf(
versatileFunction();

printf(
kernelB<<<1,1>>>();

cudaDeviceSynchronize();

Ty

SUN YAT-SEN UNIVERSITY

https://codingbyexample.com/2018/12/14/launching-cuda-functions/

Map Kernel to Hardware[wg

* Blocks are dynamically scheduled onto compute units
(CUs)
— All threads in a block execute on the same CU
— Threads in block share LDS memory and L1 cache

e Blocks are further divided into wavefronts
— A group of 32 or 64 threads
— Wavefronts execute on SIMD units

CUDA thread CUDA core
CUDA streaming

CUDA thread block Multiprocessor(SM)

CUDA-capable GPU

1
11

’ == hbdabbbbaaid ‘l » m
|

ME“K

CPU-GPU

* CPU communicates kernels to GPUs via PCle
- Kernel code object is filled into a dispatch packet

- Next, the packet is placed into a queue, which is allocated by
runtime and associated with a GPU

- The GPU is then signaled to process packets from the queue
— When kernel is finished, CPU is notified with an interrupt

VR
TIP: gl . GPU
() »
Task b
Q
— CPU %
Command &
o | c
== | GPUDriver |+—PCle | £
o
Packet 2
—_— (@]
- ©
=
Kernel £
e
(@]
(@]
N

22 Dhge

GPU Structure[py#2e#)

* Command processor (CP)
— Forefront hardware component of a GPU to receive kernels

* Shader processor inputs (SPI)
— Receives WGs from the CP

 Compute unit (CU)
- Fundamental compute component

() GPU
E > Command Processor)
= CUo CU0
2 cu1l cul
CPU z . SPI SPI .
2 : (SEO) (SE1) :
9 C : :
% .
E cuUo cuo
2 9o SPI SPI cul
£ : (SE3) (SE2) :
= . .
S CU15 CU15
_/

23 Dhig:

Compute Unit

e Scheduler[ifE 28]

- Manage the wavefronts execution among the SIMDs

* Compute[itH]
— SIMD: for vector processing (a.k.a., vector units, VALUS)[7] &=
yn
o Is of 16 lanes in GCN, thus simultaneously executing a single operation
among 16 threads

o Has its own PC and instruction buffer (IB) for 10 WFs

— Scalar unit[#r=#.Jt]
o Shared by all threads in each WF, accessed on a per-WF level
o Used for control flow, pointer arithmetic, loading a common value, etc.

T Scheduler T)
L1 Cache LDS
SIMDO SIVMD1 SIMD2 SIMD3

(e | | |] i)

24 INCE

Compute Unit (cont.)

* GPRs[i H] % 17 4]
— VGPR: vector general purpose register file

o 4x 64KB (256KB total)

o A maximum of 256 total registers per SIMD lane — each register is 64x 4-
byte entries

— SGPR: scalar general purpose register file
o 12.5KB per CU

* L1 cache: 16KB[—ZZZ17]

* LDS: local data share (or, shared memory)[i FIL =147 #]
— Enables data share between threads of a block

T Scheduler T)
([|]] | 1)

25 Dide

Compute Unit (cont.)

e At each clock, waves on 1 SIMD unit are considered for
execution (Round Robin scheduling among SIMDs)

* Each wave is assigned to one SIMD16, up to 10 waves per
SIMD16 (math: 4 x 10 x 64 = 2560 threads)

e Each SIMD16 issues 1 instruction every 4 cycles

* Vector instructions throughput is 1 every 4 cycles

1 every cycle in Nvidia
salu @ sivpice § simpie @ sivpie | SIMD16 i
and AMD next generation

Cycle 0 1 2 3 4 5 6

X & 26 Dhge

7

Instruction Execut

ION[#54 AT

* Instruction buffer (IB): eac

n cycle, the 10 wvs of the

selected SIMD compete for instruction fetch (oldest wins)

* Instruction arbiter (IA): arbitrates multi wvs which want
to execute the same type of instructions

* Instruction executor (IE): multiple execution units

running in parallel; only on

e instruction of each type can

be issued at a time per SIMD

| PC | wv1 inst buffer

nst Fetch Arbiter (10 wvs
| |

[

$QO (Cuo)
/ Instruction Buffer \ / Instruction Arbiter \ /Iﬁstruction Executo
| SIMD-3
| SIMD-2 ()
| SIMD-1 —— SALU (V] saw
n
—— sMEM

SIMD-0 D
| pc | wvo inst buffer H-HHLITT]
[
|

| PC | wv9 inst buffer I _:ﬂ}_

—— VALU

g
ELH © SIMDO-3
<<

—— VMEM

—— Ids/gds

LDS & GDS LDS/GDS

Sort Insts by Type (10 wv.

—— export SPI/SX

—— misc

CC
\
-

I-$ (shared by 4 CUs)

27 Dhge

Nvidia SM

Thread CUDA core Streaming processor / SIMD lane
Warp/wavefront SM sub-partition SIMD unit

Block/workgroup SM Compute unit

All threads GPU device GPU device

MIO Datapath MIO Scheduler

(648/clk) (1 warp Inst / 2 clk)

e

Scheduler

L1 Cache

LDS

L2s
\
| | | f 1,

Q SGPR |

Terminology[AiE]

Thread Block (TB) /
Cooperative Thread Array
(CTA)

Warp

Thread
GPU Processing Cluster (GPC)

Texture Processing Cluster
(TPC)

Stream Multiprocessor (SM)
/ Multiprocessor

Sub-core/partition

Stream Processor (SP) /
CUDA Core / FPxx Core

(P
)T LK B
%“h’mj SUN YAT-SEN UNIVERSITY

Workgroup (WG)

Wavefront
(wave/WF/WV)

Worlk-item(WI)/thread
Shader Engine (SE)

Shader Array (SH)

Compute Unit (CU)

SIMD

Stream Processor /
SIMD Lane / VALU Lane

29

Basic workload unit assigned to an SM or CU.
Each kernel is split into multiple CTAs, and the
#CTAs is controlled by the application. Typically,
hw limits 1024 threads per block.

A group of threads (e.g., 32 for NV, 64 for AMD)
executing in lockstep (i.e., run the same inst,
follow the same control-flow path).

#WFs/WG is chosen by developers.

A basic element to be processed.

A collection of CUs organized into one or two
SHs.

A group made up of several SMs or CUs.

Fundamental unit of computation, replicated
multiple times on a GPU.

A group of cores to execute one warp/wave.

A parallel execution lane comprising an SM or

CU.
IS

Software Stack[%]

 Radeon Open Compute platform (ROCm)
— AMD’s open-source software stack

* Multiple layers
— Language runtime: language-specific runtime
— ROCr: user-level language-agnostic runtime
— ROCt: user-space driver talking to the lower-level ROCK

— ROCk: kernel driver to initialize and register with CP the queues
allocated by runtimes

Compiler Frontend
Device LLVM HostLLVM |
Compiler Compiler :
¢ ¢ —P Language Runtime API

GCN Target CPU Target ' user | ROCr: System Runtime API
space !
i ROCt: Thunk, User-space Driver i
CPU COde ::____::__:____::__::::::__::__::::::__::__:::_‘
ikernel ROCk: Kernel Fusion Driver |
GPU Code R T d

AMDGPU Kernel Driver | ’jﬂ
L g

ROCm

2020: AMD ROCm 4.0

Complete Exascale Solution for ML/HPC

— - | —
J— =E N =3
-
—— - -1
s =N 3 N
v s KN 1 KN
s =
-

https://rocmdocs.amd.com/en/latest/
31

b

https://rocmdocs.amd.com/en/latest/

CUDA

* During regular execution, a CUDA application process will
be launched by the user

* The application communicates directly with the CUDA
user-mode driver, and potentially with the CUDA runtime
library

Host
Application
User ‘
CUDA Libraries
D ST N —v
{ : E CUDA Runtime ;
EE——— |
| I
1 Application . ' ¥ B
| PP Driver [
| CUDA Driver
|
| 1
\\ _____________________ , v
Application Process pevice

2 T
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html o

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Detailed Kernel Launch[{E% & zh48)

* SO: application creates user-mode queues (i.e., streams)
— The queue is associated with a specific GPU

* S1: application places kernel dispatch packets into the queue
— Done with user-level memory writes in ROCm (no kernel drivers)
— Dependencies should be specified

e S2: rings the doorbell to notify the CP of the GPU device

e S3: CP reads the packet, understands the kernel parameters
e S4: CP sends WGs to SPIs, which then launches WFs to CUs

e S5: when final WF is finished, CP sends a completion signal
specified in the kernel dispatch packet

* S6: next, receives an interrupt to pass the completion
signal to runtime, which further completes the kernel in
application code
D

Concurrency[3 k]

. %PU is mainly known for its data-level parallelism[%#& 2%
F17]
— Thousands of cores, with thousands of outstanding threads

- Simultaneously computing the same function on lots of data
elements

e Still need task-level parallelism[4{F4% %% 3471
— GPU is underutilized by a single application process

- Doing two or more completely different tasks in parallel
- Similar to the task parallelism that is found in multithreaded

CPU applications - o
* Techniques e W W W
— Multi-process service (MPS) L

— Streams e

2) ¥
" Block (1, 1)

34 .
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

