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Review Questions

* SIMD?

Single instruction, multiple data

* SIMD vs. SIMT?

Threads to execute scalar operations.

e CPU vs. GPU?

ILP vs. DLP; Few vs. lots of cores; O3 vs. |O; complex vs. simple

* GPU is of high latency tolerance?
Massive threads to schedule and work on

* Explain SM or CU.
The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

* Warp
A group of 32 threads executing in lockstep.
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TFLOPS[ i & 5

* A100 Tensor Core GPU

- 108 SMs
o GA100 Full GPU with 128 SMs

— Base clock: 1065 MHz
— Boost clock: 1410 MHz

— Performance

o FP64:9.7 TFLOPS
o FP32:19.5 TFLOPS

e Calculate TFLOPS

- FP64: 1410 MHz x (32 x 2)
ops/clock x 108 SMs
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GPUs in Supercomputer#E& F riGru]

* Exascale: 50 GFLOPS/Watt (goal) = 51.7 GFLOPS/Watt

W Titan (2012) Summit (2017) Frontier (2021)

Peak 27 PF 200 PF >15EF
# nodes 18,688 4,608 > 9,000
Nod 1 AMD Opteron CPU 2 IBM POWER9™ CPUs 1AMD EPYC CPU
e 1 NVIDIA Kepler GPU 6 NVIDIA Volta GPUs 4 AMD Radeon Instinct GPUs‘ 40+ TFLOPS
M 2.4 PB DDR4 + 0.4 HBM + 4.6 PB DDR4 + 4.6 PB HBM2e +
. 7.4 PB On-node storage 36 PB On-node storage, 75 TB/s Read 38 Write
On-node PCI Gen2 NVIDIA NVLINK AMD Infinity Fabric
interconnect No coherence Coherent memory Coherent memory
across the node across the node across the node
System Cray Gemini network  Mellanox Dual-port EDR 1B Four-port Slingshot network
Interconnect 6.4 GB/s 25 GB/s 100 GB/s
Topology 3D Torus Non-blocking Fat Tree Dragonfly
32 PB, 1 TB/s, 250 PB, 2.5 TB/s, IBM Spectrum 695 PB HDD+11 PB Flash Performance Tier,
Storage Lustre Filesystem Scale™ with GPFS™ 9.4 TB/s and 10 PB Metadata Flash. Lustre
Power 9 MW 13 MW 29 MW
gg:‘}o!\(alll{z{(lza?}? Egi%%{gf FACILITY

https://www.hpcwire.com/2021/07/14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-in-2008/
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https://www.hpcwire.com/2021/07/14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-in-2008/

Frontier: 1.5 EFLOPS, How?? ?[EZ#E & ]

* Per node[sE 5 ]
— Custom EPYC HPC-optimized CPU

o “zen 3” milan w/ 64-core

— Four Instinct GPUs

o CDNA MI200 w/ 256 CUs
* Full-rate FP64 (128 ops/clock/CU)

* 9000+ nodes[#ik R 4]
— CPU: 9000 x 4 TFLOPS/CPU = 36 PFLOPS

- GPU: 9000 x 4 x 42.2 TFLOPS/GPU = 1519 PFLOPS
o Per GPU: 128 ops/clock x 1.5G x 220 =42.2 TFLOPS\

— GPU provides 97.7% computation power A100: 9.75 TFLOPS
o 1519/(1519+36) MI100: 11.54 TFLOPS

OLCF spock training: AMD hardware and software, 05/2021,
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf

https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/
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https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf
https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/

MI200 GPU

FP64 Vector
47.9

FP64 Tensor FP64 Matrix
95.7
19.5

BYADT,

ANSTINCTY
FP32 Vector
FP16
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https://www.amd.com/en/press-releases/2022-05-26-amd-instinct-mi200-adopted-for-large-scale-ai-training-microsoft-azure



https://www.amd.com/en/press-releases/2022-05-26-amd-instinct-mi200-adopted-for-large-scale-ai-training-microsoft-azure
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« 2009, Ki[-1
- CPU + ATI GPU 240 GFLOPS
o 2 * Xeon E5540/E5450, 1 ATl Radeon HD 4870 X2 (TeraScale)
— S /8 {E 563.1T/1206.2T FLOPS
- 2009.11 TOP500% 11

¢ 2010, KJF[-1A
— CPU + Nvidia GPU 515 GFLOPS

o 2 * Intel Xeon X5670, 1 Nvidia Tesla M2050 (Fermi)
o 2048 Galaxy "FT-1000" 1 GHz 8-core processors

— SN /I {E 2.566P/4.7P FLOPS
- 2010.11 TOP500%5 —

Tianhe-1, https://www.top500.0org/system/176546/
Tianhe-1A, https://top500.org/system/176929/
Tianhe-1A, http://blog.zorinag.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/
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https://top500.org/system/176929/
http://blog.zorinaq.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/

GPU Programming Model[#m &R

* GPU is viewed as a compute device that[1x% #]
— Is a coprocessor to CPU (host)[#hrabEE 28]

— Has its own main memory called device memory[Z17]

— Runs many threads in parallel[ZF2 7 k]

* Data-parallel parts of an application are executed on the
device as kernels, which run in parallel on many threads

e CPU thread vs. GPU thread

— GPU threads are very lightweight
— A few vs. thousands for full efficiency

CPU
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Thread Organization[ZfE 4147

* A kernel is executed as a grid of
thread blocks[#%]

* A thread block is a batch of
threads that can cooperate with
each other by[tk]

— Synchronizing their execution ——
— Efficiently sharing data through <°?f>" .1 | @
low-latency shared memory o H

Host Device
Grid 1

Block Block Block
Kemel =™ 00 1,0 (20

’
’ ,’
’
v ’
’
~ Grid-2
’
’ ’
’

Ke;nel —; ,
 The grid and its associated (Biockt,
blocks are just organizational
constructs
— The threads are the things that do
the work
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GPU Programming Choices[4#f& ik #]

* CUDA - Compute Unified Device Architecture R\VIDIA.

- Developed by Nvidia — proprietary CUDA
— First serious GPGPU language/environment
* OpenCL - Open Computing Language ST
& |
— From makers of OpenGL s /‘
— Wide industry support: AMD, Apple, Qualcomm, OpenCL

Nvidia (begrudgingly), etc

* HIP - Heterogeneous-compute Interface for Portability

- Owned by AMD

— A C++ runtime APl and kernel language that allows developers
to create portable applications that can run on AMD’s

accelerators as well as CUDA devices

l! 1ol
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HIP

* |s open-source

* Provides an API for an application to leverage GPU
acceleration for both AMD and Nvidia devices

 Syntactically similar to CUDA. Most CUDA API calls can be
converted in place: cuda --hipify--> hip

e Supports a strong subset of CUDA runtime functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h” #include “hcc.h”

hipcc

Nvidia GPU AMD GPU
i




HIP vs. CUDA

* Kernel declare
- Syntactically the same

* APIs

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x, x, N*sizeof(double),
cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

 Kernel launch

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>
(arg0, argl, ...);

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double),
hipMemcpyHostToDevice);

hipDeviceSynchronize();

hipLaunchKernelGGL(some_kernel,
gridsize, blocksize,
shared_mem_size, stream,
arg0, argl, ...);

».‘:ﬂ%



Kernel Dimensions|[Z: /]

* Built-in variables
— blockDim.x: the size of the block (#threads in the block)
— gridDim.x: the size of the grid (#blocks)
— blockldx.x: the index of the block within the grid
- threadldx.x: the index of the thread within the block

* Example: N threads in total, 256 threads per block
- blockDim.x = 256
— #tblocks = N / 256 = gridDim.x
- blockldx.x =[O, 1, ..., N/256-1]
— threadldx.x = [0, 1, ..., 255]

threadldx.x threadldx.x
o | 1| 2| . |2s5| 0 |2 | 2| . |2s5| 0 | 2 | 2 | . [2s5 o | 1| 2| .. |25
| Y J L Y J
blockldx.x = 2 blockldx.x = == —
256

idDi =N
gridDim.x = See

13 Dig:




Example: Kernel Declare[#i]

* A kernel is declared with the  global  attribute
— Kernels should be declared void
— All pointers passed to kernels must point to device memory

* All threads execute the kernel’s body “simultaneously”

— Each thread uses its unique thread and block IDs to compute a
global ID
for (int i=0;i<N;i++) {
h_a[i] *= 2.0;
}

__global _ void myKernel(int N, double *d_a) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<N) {

dial i *=2.0;

(33 \ 1ol
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Example: Kernel Launch(Jash

 Kernels are launched from host

dim3 threads(256,1,1); //3D dimensions of a block of threads
dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks
hipLaunchKernelGGL(myKernel, //Kernel name (__global void function)
blocks, //Grid dimensions
threads, //Block dimensions
9, //Bytes of dynamic LDS space (see extra slides)
9, //Stream (@=NULL stream)
N, a); //Kernel arguments

* Analogous to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);

15 Dhge




Example: Memory Allocation[ X 74

* The host instructs the device to allocate memory and
records a pointer to device memory

int main() {
int N = 1000;
size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //Host memory

double *d_a = NULL;

hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device
free(h_a); //free host memory
hipFree(d_a); //free device memory

(&) 16 18
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Example: Memory Copy[#udF %4

* The host queues memory transfers
- hipMemcpyHostToDevice
- hipMemcpyDeviceToHost
— hipMemcpyDeviceToDevice

//copy data from host to device
hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host
hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);

(2 ) 17 "‘ rﬂ
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Example: Putting Together

#include “hip/hip_runtime.h”
int main() {

int N = 1000;

(double*) malloc(Nbytes);

//host memory

size_t Nbytes = N*sizeof(double);
double *h_a =
double *d_a = NULL;

HIP_CHECK(hiEMallocS&d a, Nbytes));

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice));

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<N) {
d_a[i] *= 2.0;

//copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), @, @, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost))

free(h_a);
HIP_CHECK(hipFree(d_a));

%gﬁ% ¥ X 2

SUN YAT-SEN UNIVERSITY

//free host memory

//free device memory

#define HIP_CHECK(command) {

hipError_t status = command;

std::cerr << “Error: HIP reports ”
<< hipGetErrorString(status)
<< std::endl;

std::abort(); } }

X

\

if (status!=hipSuccess) { \
\

\

\
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Device Management [ #]

* Host can query number of devices visible to system:

int numDevices = 0;
hipGetDeviceCount(&numDevices);

* Host tells the runtime to issue instructions to a particular

device:
int devicelD = 0;

hipSetDevice(devicelD);
* Host can query what device is currently selected:

hipGetDevice(&devicelD);

* The host can also query a device’s properties:

hipDeviceProp t props;
hipGetDeviceProperties(&props, devicelD);

»‘vi’@“ﬁ




Specifiers

e global

__device__ GPUFunction(){
printf(

e device

__global__ kernelAQ{
GPUFunction();

__host__ __device__ versatileFunction(){
printf(

__global__ kernelB(O{
versatileFunction();
int main(Q)

cudaSetDevice(0);

printf(
kernelA<<<1,1>>>(0);

cudaDeviceSynchronize();

printf(
versatileFunction();

printf(
kernelB<<<1,1>>>();

cudaDeviceSynchronize();

Ty
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https://codingbyexample.com/2018/12/14/launching-cuda-functions/

Map Kernel to Hardware[wg

* Blocks are dynamically scheduled onto compute units
(CUs)
— All threads in a block execute on the same CU
— Threads in block share LDS memory and L1 cache

e Blocks are further divided into wavefronts
— A group of 32 or 64 threads
— Wavefronts execute on SIMD units

CUDA thread CUDA core
CUDA streaming

CUDA thread block Multiprocessor(SM)

CUDA-capable GPU

1
11
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CPU-GPU

* CPU communicates kernels to GPUs via PCle
- Kernel code object is filled into a dispatch packet

- Next, the packet is placed into a queue, which is allocated by
runtime and associated with a GPU

- The GPU is then signaled to process packets from the queue
— When kernel is finished, CPU is notified with an interrupt

VR
TIP: gl . GPU
() »
Task b
Q
— CPU %
Command &
o | c
== | GPUDriver |+—PCle | £
o
Packet 2
—_— (@]
- ©
=
Kernel £
e
(@]
(@]
N

22 Dhge




GPU Structure[py#2e#)

* Command processor (CP)
— Forefront hardware component of a GPU to receive kernels

* Shader processor inputs (SPI)
— Receives WGs from the CP

 Compute unit (CU)
- Fundamental compute component

() GPU
E > Command Processor )
= CUo CU0
2 cu1l cul
CPU z . SPI SPI .
2 : (SEO) (SE1) :
9 C : :
% .
E cuUo cuo
2 9o SPI SPI cul
£ : (SE3) (SE2) :
= . .
S CU15 CU15
_/

23 Dhig:




Compute Unit

e Scheduler[ifE 28]

- Manage the wavefronts execution among the SIMDs

* Compute[itH]
— SIMD: for vector processing (a.k.a., vector units, VALUS)[ 7] &=
yn
o Is of 16 lanes in GCN, thus simultaneously executing a single operation
among 16 threads

o Has its own PC and instruction buffer (IB) for 10 WFs

— Scalar unit[#r=#.Jt]
o Shared by all threads in each WF, accessed on a per-WF level
o Used for control flow, pointer arithmetic, loading a common value, etc.

T Scheduler T)
L1 Cache LDS
SIMDO SIVMD1 SIMD2 SIMD3

(e | | | ] i)

24 INCE



Compute Unit (cont.)

* GPRs[i H] % 17 4]
— VGPR: vector general purpose register file

o 4x 64KB (256KB total)

o A maximum of 256 total registers per SIMD lane — each register is 64x 4-
byte entries

— SGPR: scalar general purpose register file
o 12.5KB per CU

* L1 cache: 16KB[—ZZZ17]

* LDS: local data share (or, shared memory)[ i FIL =147 #]
— Enables data share between threads of a block

T Scheduler T)
([ | ] ] | 1)

25 Dide



Compute Unit (cont.)

e At each clock, waves on 1 SIMD unit are considered for
execution (Round Robin scheduling among SIMDs)

* Each wave is assigned to one SIMD16, up to 10 waves per
SIMD16 (math: 4 x 10 x 64 = 2560 threads)

e Each SIMD16 issues 1 instruction every 4 cycles

* Vector instructions throughput is 1 every 4 cycles

1 every cycle in Nvidia
salu @ sivpice § simpie @ sivpie | SIMD16 i
and AMD next generation

Cycle 0 1 2 3 4 5 6

X & 26 Dhge
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Instruction Execut

ION[#54 AT

* Instruction buffer (IB): eac

n cycle, the 10 wvs of the

selected SIMD compete for instruction fetch (oldest wins)

* Instruction arbiter (IA): arbitrates multi wvs which want
to execute the same type of instructions

* Instruction executor (IE): multiple execution units

running in parallel; only on

e instruction of each type can

be issued at a time per SIMD

| PC | wv1 inst buffer

nst Fetch Arbiter (10 wvs
| |

[

$QO (Cuo)
/ Instruction Buffer \ / Instruction Arbiter \ /Iﬁstruction Executo
| SIMD-3
| SIMD-2 ()
| SIMD-1 —— SALU (V] saw
n
—— sMEM

SIMD-0 D
| pc | wvo inst buffer H-HHLITT]
[
|

| PC | wv9 inst buffer I _:ﬂ}_

—— VALU

g
ELH © SIMDO-3
<<

—— VMEM

—— Ids/gds

LDS & GDS LDS/GDS

Sort Insts by Type (10 wv.

—— export SPI/SX

——  misc

CC
\
-

I-$ (shared by 4 CUs)
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Nvidia SM

Thread CUDA core Streaming processor / SIMD lane
Warp/wavefront SM sub-partition SIMD unit

Block/workgroup SM Compute unit

All threads GPU device GPU device

MIO Datapath MIO Scheduler

(648/clk) (1 warp Inst / 2 clk)

e

Scheduler

L1 Cache

LDS

L2s
\
| | | f 1,

Q SGPR |




Terminology[AiE]

Thread Block (TB) /
Cooperative Thread Array
(CTA)

Warp

Thread
GPU Processing Cluster (GPC)

Texture Processing Cluster
(TPC)

Stream Multiprocessor (SM)
/ Multiprocessor

Sub-core/partition

Stream Processor (SP) /
CUDA Core / FPxx Core

(P
)T LK B
%“h’mj SUN YAT-SEN UNIVERSITY

Workgroup (WG)

Wavefront
(wave/WF/WV)

Worlk-item(WI)/thread
Shader Engine (SE)

Shader Array (SH)

Compute Unit (CU)

SIMD

Stream Processor /
SIMD Lane / VALU Lane

29

Basic workload unit assigned to an SM or CU.
Each kernel is split into multiple CTAs, and the
#CTAs is controlled by the application. Typically,
hw limits 1024 threads per block.

A group of threads (e.g., 32 for NV, 64 for AMD)
executing in lockstep (i.e., run the same inst,
follow the same control-flow path).

#WFs/WG is chosen by developers.

A basic element to be processed.

A collection of CUs organized into one or two
SHs.

A group made up of several SMs or CUs.

Fundamental unit of computation, replicated
multiple times on a GPU.

A group of cores to execute one warp/wave.

A parallel execution lane comprising an SM or

CU.
IS



Software Stack[ %]

 Radeon Open Compute platform (ROCm)
— AMD’s open-source software stack

* Multiple layers
— Language runtime: language-specific runtime
— ROCr: user-level language-agnostic runtime
— ROCt: user-space driver talking to the lower-level ROCK

— ROCk: kernel driver to initialize and register with CP the queues
allocated by runtimes

Compiler Frontend
Device LLVM HostLLVM |
Compiler Compiler :
¢ ¢ —P Language Runtime API

GCN Target CPU Target ' user | ROCr: System Runtime API
space !
i ROCt: Thunk, User-space Driver i
CPU COde ::____::__:____::__::::::__::__::::::__::__:::_‘
ikernel ROCk: Kernel Fusion Driver |
GPU Code R T d

AMDGPU Kernel Driver | ’jﬂ
L g




ROCm

2020: AMD ROCm 4.0

Complete Exascale Solution for ML/HPC

— - | —
J— =E N =3
-
—— - -1
s =N 3 N
v s KN 1 KN
s =
-

https://rocmdocs.amd.com/en/latest/
31
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https://rocmdocs.amd.com/en/latest/

CUDA

* During regular execution, a CUDA application process will
be launched by the user

* The application communicates directly with the CUDA
user-mode driver, and potentially with the CUDA runtime
library

Host
Application
User ‘
CUDA Libraries
D ST N —v
{ : E CUDA Runtime ;
EE——— |
| I
1 Application . ' ¥ B
| PP Driver [
| CUDA Driver
|
| 1
\\ _____________________ , v
Application Process pevice

2 T
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html o



https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Detailed Kernel Launch[{E% & zh48 )

* SO: application creates user-mode queues (i.e., streams)
— The queue is associated with a specific GPU

* S1: application places kernel dispatch packets into the queue
— Done with user-level memory writes in ROCm (no kernel drivers)
— Dependencies should be specified

e S2: rings the doorbell to notify the CP of the GPU device

e S3: CP reads the packet, understands the kernel parameters
e S4: CP sends WGs to SPIs, which then launches WFs to CUs

e S5: when final WF is finished, CP sends a completion signal
specified in the kernel dispatch packet

* S6: next, receives an interrupt to pass the completion
signal to runtime, which further completes the kernel in
application code
D




Concurrency[3 k]

. %PU is mainly known for its data-level parallelism[%#& 2%
F17]
— Thousands of cores, with thousands of outstanding threads

- Simultaneously computing the same function on lots of data
elements

e Still need task-level parallelism[4{F4% %% 3471
— GPU is underutilized by a single application process

- Doing two or more completely different tasks in parallel
- Similar to the task parallelism that is found in multithreaded

CPU applications - o
* Techniques e W W W
— Multi-process service (MPS) L

— Streams e

2 ) ¥
" Block (1, 1)

34 .
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf
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