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Example: MS Course Requirements

 The 30 credits must
include one course
from each of the
following foundation
areas.
— 30: 24 credits + MS
thesis, or 27 credits +
MS project
* Foundation area
courses must be
completed with a
grade of "B" or better.

https://www.cs.pitt.edu/current-students/ms-computer-

science/degree-requirements

Theory and Algorithms

CS 2150 - DESIGN & ANALYSIS OF ALGORITHMS or

CS 2110 - THEORY OF COMPUTATION or

CS 2012 - ALGORITHM DESIGN or

CS 1511 - INTRODUCTION TO THEORY OF COMPUTATION

Architecture and Compilers

CS 2410 - COMPUTER ARCHITECTURE or
CS 2210 - COMPILER DESIGN

Operating Systems and Networks

CS 2510 - COMPUTER OPERATING SYSTEMS or
CS 2520 - WIDE AREA NETWORKS

Artificial Intelligence and Database Systems

CS 2710 -FOUNDATIONS OF ARTIFICIAL INTELLIGENCE or
CS 2550 - PRINCIPLES OF DATABASE SYSTEMS

‘ IRCE
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TextbooKk[RFE##1]

o FEEHM AR - - -
- John L. Hennessy and David A. Patterson, iI5 @ R
ﬁ%f}dﬁ%*@: =TT (TR 2R6 [
o A I
« BHYH T
— ECE 447, Onur Mutlu (Carnegie Mellon U.)
- CIS 501, Milo Martin (U Penn)

— Computer Organization and Design RISC-V
Edition: The Hardware Software Interface (2nd
Edition), Hennessy and Patterson

— Computer Systems: A Programmer’s Perspective
(CSAPP), Brya nt and O’Hallaron 4

compufing systems
— Introduction to Computing Systems: From Bits e
and Gates to C and Beyond, Patt and Patel




Textbook[i#fE##1] (cont.)

Pioneers of Modern Computer Architecture Receive ACM
A.M. Turing Award

Hennessy and Patterson’s Foundational Contributions to Today’s
Microprocessors Helped Usher in Mobile and loT Revolutions

John Hennessy and David Patterson circa 1991, upon publication of their gr king book on

architecture. (Shane Harvey photo)

Groundbreaking Textbook

Hennessy and Patterson presented new scientifically-based methodologies in their 1990 textbook
Computer Architecture: a Quantitative Approach. The book has influenced generations of engineers and,
through its dissemination of key ideas to the computer architecture community, is credited with
significantly increasing the pace of advances in microprocessor design. In Computer Architecture,
Hennessy and Patterson encouraged architects to carefully optimize their systems to allow for the
differing costs of memory and computation. Their work also enabled a shift from seeking raw performance
to designing architectures that take into account issues such as energy usage, heat dissipation, and off-
chip communication. The book was groundbreaking in that it was the first text of its kind to provide an
analytical and scientific framework, as well as methodologies and evaluation tools for engineers and
designers to evaluate the net value of microprocessor design.

6 I\ IE ,
https://www.acm.org/media-center/2018/march/turing-award-2017 UH 1



https://www.acm.org/media-center/2018/march/turing-award-2017

Outline[ 2 % Hk

* Overview and Fundamentals[## ' 5 3L A

* Instruction Set Architecture[+5 4 2222/
— Quick intro/review

* Instruction Level Parallelism[#5 425 347
— Pipelining, Branch Prediction, Instruction Scheduling

* Memory Hierarchy[1£i# )2 2%

- Memory, Cache, Virtual Memory

* Data/Thread-Level Parallelism[## /£ F£ 2% 3:47]
- SIMD, GPU

* Domain-specific Architectures[475 % FH 22 4]
* And more ...

h;‘ﬂi



Examples

| Memory Controller
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Core Core E Core Core
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CPU GPU
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Archite Ct[ 42 Fi L i)

* Computer architect[i1 5 ALZE4) ]
— To make design trade-offs across the hw/sw interface to meet
functional, performance and cost requirements
* Being an architect is not easy[FH A& %]

— You need to consider many things in designing a new system +
have good intuition/insight into ideas/tradeoffs

e But, it is fun and can be very technically rewarding[&1R &

=)

* And, enables a great future[5 i K K]

— Advancement of computer architecture is vital to all other areas
of computing

o E.g., loT, Embedded, Mobile, Data centers, HPC

J Dhig:

https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecturel-intro-afterlecture.pdf



Role of [Computer] Architect[ER 5]

* Look backward (to the past)
— Understand tradeoffs and designs, upsides/downsides, past
workloads. Analyze and evaluate the past.
* Look forward (to the future)

— Be the dreamer and create new designs. Listen to dreamers.
— Push the state of the art. Evaluate new design choices.

* Look up (towards problems in the computing stack)
— Understand important problems and their nature.
— Develop architectures and ideas to solve important problems.

* Look down (towards device/circuit technology)
- Understand the capabilities of the underlying technology.

- Predict and adapt to the future of technology (you are
designing for N years ahead). Enable the future technology.

From Onur Mutlu’s slides U ‘.Ei
Y https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecturel-intro-afterlecture.pdf PN




Why Study CA?CAA4 2 5k R 45 4]

* Understand why computers work the way they do
— Source code --> instructions --> executions
— Processors --> cache/memory --> storage

* Understand where computers are going
— Future capabilities drive the (computing) world
— Real-world impact: no computer architecture -> no computers!

* Understand high-level design concepts and performance
- The best architects understand all the levels (hw, OS, apps, alg)
- Need to understand hardware to write fast software

* Job?

— Your MS/PhD research may involve CA

— Your job positions (design or research, hw or sw) may need CA
= You may manage a team working on systems

https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecturel-intro-afterlecture.pdf




Positions???[T

TEERAL]

CAREERS AT NVIDIA

ARERR- TS A M RESRARIT- bR

Deep Learning Architect — New College Grad

US, CA, Santa Clara

NVIDIA is seeking computer architects to help design processor and system architectures that will en-
able compelling Deep Learning performance, architecture and efficiency improvements. This role offers
the opportunity to directly impact the future hardware roadmap in a fast-growing technology company
that leads the Al revolution. If you are obsessed with improving deep learning performance beyond any-
thing possible with today’s hardware and software, this is the place to be.

What you'll be doing:

Understand, analyze, profile, and optimize deep learning training workloads on state-of-the-
art hardware and software platforms.

Guide development of future generations of deep learning processors and computing
platforms.

Develop detailed performance models and simulators for computing systems accelerating
DL training.

Collaborate across the company to guide the direction of machine learning at NVIDIA; span-
ning teams from hardware to software and research to production.

Drive HW/SW co-design of NVIDIA's full deep learning platform stack, from silicon to DL
frameworks.

What we'd like to see:

You are pursuing a PhD or MS or have equivalent in CS, EE or CSEE (or equivalent
experience).

Strong background in computer architecture, preferably with focus on high-performance
parallel processors.

Background in machine learning and neural networks, in particular training.

Experience analyzing and tuning application performance.

Experience with processor and system-level performance modelling.

Programming skills in C++ and Python.

Familiarity with GPU computing (CUDA, OpenCL).
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Golden Age for CA[# 44X

* Today is a very exciting time to study architecture
- Many new demands from the top
— Fast changing demands and personalities of users
- Many new issues at the bottom

 Computing landscape is very different from 10-20 years
ago (Recall: Intel = 25*Nvidia = 0.34*Nvidia)
- Every component and its interfaces, as well as entire system
designs are being re-examined

— You can revolutionize the way computers are built, if you
understand both the hardware and the software (and change
each accordingly)

* No clear, definitive answers to these problems[f [a] &,

13 Dhage



Industry[ Tk 5

Intel, 08/2022: Kills Optane Memory!2]

Apple, 11/2020: M1, ARM-based SoCE3!

AMD, 10/2020: Acquire Xilinx4]

Intel, 09/2020: Xe GPU!S)

Samsung, 11/2019: Cease CPU development!®!

Amazon, 11/2018: AWS Graviton!”]

Intel/IBM/ARM, 01/2018: Meltdown and Spectre!8
Micron, 03/2021: Cease 3D-XPoint, invest CXL®!

Al Chips: Graphcore, Habana Labs, Cerebras, Cambricon...

[1] https://www.sec.gov/ix?doc=/Archives/edgar/data/1045810/000104581022000146/nvda-20220826.htm
[2] https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good

[3] https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html

[4] https://www.amd.com/en/corporate/xilinx-acquisition

[5] https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html

[6] https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development

[7] https://aws.amazon.com/ec2/graviton/
[8] https://people.redhat.com/pladd/Meltdown-Spectre-NYRHUG-2018-01.pdf

[9] https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

N v ~r

Nvidia/AMD, 08/2022: US bans Nvidia and AMD GPU chips to China

~


https://www.sec.gov/ix?doc=/Archives/edgar/data/1045810/000104581022000146/nvda-20220826.htm
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
https://www.amd.com/en/corporate/xilinx-acquisition
https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
https://aws.amazon.com/ec2/graviton/
https://people.redhat.com/pladd/Meltdown-Spectre-NYRHUG-2018-01.pdf
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

Academia[z AR

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson
> o Current challenges[in] ]
2020 2025 2030
D TR — End of Moore's Law and
T e : Dennard Scaling
— Overlooked security
Cloud as architecture
Q‘"“"”"’""”"‘“"“‘““ ‘ ’ * Future opportunities in
. computer architecture[#l
integration . . 18]
— Domain-specific
o e ‘ ‘ architectures
- Domain-specific
4’ e by ¢ . languages
Sl s — Open architectures
— Agile hardware
[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016) development

[2] A New Golden Age for Computer Architecture (2019)

15 D



https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Top-tier Conferences[Iiig£=iX]

* ISCA

— The International Symposium on Computer Architecture (ISCA)
- 2021: 48, 76/407 papers (18.6% acceptance rate)
* MICRO

— The IEEE/ACM International Symposium on Microarchitecture
— 2021: 54t 94/430 papers (21.8% acceptance rate)

* HPCA

— |EEE International Symposium on High-Performance Computer
Architecture

- 2021: 27t, 63/258 papers (24.4% acceptance rate)
* ASPLOS

— ACM International Conference on Architectural Support for
Programming Languages and Operating Systems

- 2021: 26th, 75/398 (18.8% acceptance rate)

[ ~‘y * | ¥
(&) T b {L ki
() 7
/  SUN YAT-SEN UNIVERSITY ’ (A




Arch vs. Al

ISCA 17

ISCA 13

ISCA '12

ISCA '11

ISCA 10

@1t

b KB
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Submitted

365
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288
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208

245

# of Papers
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62
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H PCA’ 2022 (High-Performance Computer Architecture)

e Sessions

— Accelerators (4)
— Security (3) High
— Quantum (3) Performance

— At Scale Computer
Architecture

— Storage, Scheduling, Interfaces
— Simulation

— Cache Hierarchy

- Synthesis

— Traditional Architecture

1] https://hpca-conf.org/2022/program ﬁ,
@) FTuxt 18 bl



https://hpca-conf.org/2022/program

|SCA’ 20272 (Computer Architecture)

* Sessions
— Security (4)
— Graph Applications

-P ing in M

ndustry Session ISCA 2022
— Persistent Memory |
— Quantum

. . . *
— Microarchitecture and Parallelism &%

i -otun'e l8-22‘2l22

— Novel Architectures (3) e e 2 ﬁ
- Learning (2) =Z:New York Clty, USA

1] https://www.iscaconf.org/isca2022/program/ ,
@ tuxs 19 IR
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Technology Improvement# R T}

* Computer technology has greatly improved

— A S500 cellphone today outperforms the fastest supercomputer
in 1993 (S50 million)

- Improvement from both advances in the tech used to build
computers and from innovations in computer design

Intel Core i7 4 cores 4.2 GHz (Boost 10 4.5 GHz)

Inted Core i7 4 cores 4.0 GHz (Boost 10 4.2 GHz)
intel Core 7 4 cores 4.0 GHz (Boost 10 4.2 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4,1 GHz)

100,000 Inted Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0 GHz)
Intet Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intet Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
imel Core I7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
intol Core Duo Extrome 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz 8
*
-1 AMD Athio 28GH T aweatslo o ET N aaaa
- 10,000 e ‘mgn’}%dc?:?;_i‘/,-.;'u.ser 19.484
o intol Xoon EE 3.2 GHz ger @t 103855
lci) Intet DESOEMVR motherboard (3.08 GHz, Pentium 4 processor with Hyper-Threading Technology) 6043 " 3
= IBM Powerd, 1.3 GHz @y~ 4195
e : ‘3016
v~ Intol VCE20 motherboired, 1.0 GHz Pentium |l processor X
! Professional Workstation XP1000, 667 MHz 212644 ‘ 79
x 1000 +-- i . . . e ___Digmal AiphaServor 8400 6/575, 575 MHz 21284 3207 S |
< P : e
> AlphaServer 4000 5600, 600 MH: 21164 2
. Digital Aiphastation 5500, 500 MHz .‘-8' el
L2 L2781
> Digital Alphastation 5300, 300 MHz ol
= ¢ gt w280 23%lyear 12%l/year 3.5%fyear
o) Digital Alphastation 4266, 266 MHz 48
o 100 IBM POWERSstation 100, 150 MHz 87,717
% Digital 3000 AXP/S00, 150 MHz "é';
& HP B000/750. 66 MHz g/”
[ 51
O
+© IBM RSE000/540, 30 MHz_4f 74 52%/lyear
o) MIPS M2000, 25 MHz
o MIPS M/120, 16.7 MHz g7
10 - 212
Sun-4/260, 16.7 MHz 2§
VAX 8700, 22 MHz gf/F
AX-11/780, § MM2
25%/year
J' K ’g 1 T T T T T T T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

SUN YAT-SEN UNIVERSITY




Trends in Technology (81.4)# AR # %4

* Integrated circuit (IC) logic[£E il HL#§]
— Transistor density: +35%/year (feature size decreases)
— Die size: +10-20%/year
— Integration overall: +40-55%/year (Moore’s Law)

 DRAM capacity: +25-40%/year (growth is slowing)[ 7]
- Memory usage quadruples every three years

* Flash capacity: +50-60%/year[ [N %]
— 8-10X cheaper/bit than DRAM

* Magnetic disk: +40%/year[fi; %]

— 8-10X cheaper/bit then Flash and 200-300X cheaper/bit than
DRAM

« Network[M %]

h;’@i



Performance Trends[#:gg#a 3

e Bandwidth or throughput[7 5% /4 1]
— Total work done in a given time .
- 32,000 - 40,000X improvement for processors Processor
— 400 - 2400X improvement for memory and disks ™

Relative

* Latency or response time[f SE/MI NS [E]]  ow o [
— Time between start and completion of an event ™
- 50 - 90X improvement for processors

- 8 - 9X improvement for memory and disks 1 | |
o Memory wall[ A 7 55] 1 © 1o

Relative Latency improvement

10 -

(Late/7cy improvement
fBandwidth improvement)

* Latency lags bandwidth (in the last 30 years)

23 Dhig:




Transistors and Wire[ sk /£ 4%

* |C processes are characterized by feature size[4#1E X ]

* Feature size: minimum size of transistor or wire

—10umin 1971 to 22nmin 2012 to 7nmin 2017 to 5nm in 2020
(3nm is being developed)

* Moore’s Law: aka “technology scaling” [4&7]

— Literally: density (transistors/area) doubles every 18 months
— Public interpretation: performance doubles every 18 months

— Continued miniaturization (esp. reduction in channel length)

+ Improves switching speed, power/transistor, area(cost)/transistor
— Reduces transistor reliability

Intel 7: 10nm
Intel 4: 7nm
Intel: 7+

Intel 20A: 5nm




Power and Energy (§1.5)(Zh#E/6E#E]

* Energy is a biggest challenge facing computer design
— Bring power in with 100s of pins
— Power is dissipated as heat and must be removed

* Power/energy are increasingly important
— Battery life for mobile devices[H b 4EH]
o Laptops, phones, cameras
— Tolerable temperature for devices without active cooling[#7 F]

o Power means temperature, active cooling means cost
o No room for a fan in a cell phone, no market for a hot cell phone

— Electric bill for compute/data centers[H %]
o Pay for power twice: once in, once out (to cool)

— Environmental concerns[# /1]
o “Computers” account for growing fraction of energy consumption

[ ~‘y * | ¥

(&) T b {L ki
() 7
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Methodology: Design/Evaluation[77)

e Evaluate Existing
P 4 e Systems for
I \ Bottlenecks
z JAN Nz 2L
©  Technology : 7~ UL
Implement :==_ trends ____.f
Next Y £
Generation = > 3
System ~ j Simulate New
IR AL Designs and
R Organizations
it S
G)THxE

2 Dhige



Design Goals[#it H#7]

* Functional[ZhfEME]
— What functions should it support?

- Needs to be correct
o Unlike software, difficult to update once deployed

* High performance[&E 1 fE]
- “Fast” is only meaningful in the context of a set of important
tasks
- Not just “Gigahertz”
— Impossible goal: fastest possible design for all programs

 Reliable[m ] g 14]
- Does it continue to perform correctly?

— Hard fault vs. transient fault
o Example: memory errors and sun spots
— Space satellites vs. desktop vs. server reliability

U&7 ]! v
“‘ SUN YAT-SEN UNIVERSITY w ' ‘ =




Design Goals (cont.)

 Low cost[{kaiAN]
— Design cost (huge design teams, why?)[1% 1]
— Cost of making first chip after design (mask cost)[#i H]
— Per unit manufacturing cost (wafer cost)[= "]

* Low power/energy[{kfE#E]
- Energy in (battery life, cost of electricity)
— Energy out (cooling and related costs)
— Cyclic problem, very much a problem today

* Challenge: balancing the relative importance of these
goals
— And the balance is constantly changing
- No goal is absolutely important at expense of all others
— Our focus: performance, only touch on cost, power, reliability

(3R ¢
(B) 7 WL
\% ) L
avus/  SUN YAT-SEN UNIVERSITY ‘ (A




Performance (§1.8)[1%:f¢

* The performance metric may mean different things

Answers per month
Operations per second

—

Application

Programming
Language

Compiler o _
(millions) of Instructions per second: MIPS

ISA | ——» (millions) of (FP) operations per second: MFLOP/s

Datapath

Control Megabytes per second

Function Units

> Cycles per second (clock rate)

Transistors Wires Pins

J iv&mﬁ]sﬁ 29 ﬂ’ ‘IE i




Measuring Performance[3¥4d ¥ fE]

e Time to run the task (latency)
— Execution time, response time, CPU time, ...

* Tasks per day, hour, week, sec, ns, ...
— Throughput, bandwidth

* Performance measurement[J]i]
- Hardware prototypes : Cost, delay, area, power estimation
- Simulation (many levels, ISA, RT, Gate, Circuit, ...)
- Benchmarks (Kernels, toy programs, synthetic), Traces, Mixes
— Analytical modeling and Queuing Theory

[ ~‘y * | ¥

(&) T b {L ki
() 7
/  SUN YAT-SEN UNIVERSITY ’ (A




Simulator#i 2L

 What is an architecture (or architectural) simulator?
— A tool that reproduces the behavior of a computing device

* Why use a simulator?
— Leverage faster, more flexible software development cycle
— Permits more design space exploration
- Facilitates validation before hardware becomes available
— Possible to increase/improve system instrumentation

T
| I
S Simulation Output
Input Set Microarchitecture I:>
\
| 1 |
\ /
~

s

Binary Operating System Simulation Statistics
J (- -7

= IR




Benchmarks[3& i 4)

* SPEC: Standard Performance Evaluation Corporation

* PARSEC: Princeton Application Repository for Shared Memory
Computers

e Rodinia: GPGPU applications

* HPL: a High-Performance Linpack benchmark implementation

* MLPerf: a suite of performance benchmarks that cover a range of
leading Al workloads widely in use

* MediaBench: Multimedia and embedded applications
* Transaction processing: TPC-C, SPECjbb

* EEMBC: embedded microprocessor benchmark
consortium

- MLP(erf
spec’ PARSEC "Ei
240




Benchmarks (cont.)

* Example: performance of Intel’s newest CPU (2021)

General-Purpose Performance Vs. 11t Gen Intel® Core™

19%

Performance Improvement at
ISO Frequency! |
il

SPEC CPU 2017, SYSmark 25, Crossmark, PCMark 10, WebXPRT3, Geekbench 5.4.1 e | Geomean of Performance core (ADL) vs. Cypress Cove (RKL) Core @ISO 33GHz Frequency

o
o
O
0
>
3
O
a
o
a
>
O
@
>
®
0
¢
©
E
2
3
o
o)
c
]
%
o
o
[
O
%)

For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf




Benchmarks (cont.)

 MLPerf

- A broad ML
benchmark suite
for measuring
performance of
ML software
frameworks, ML
hardware
accelerators, and
ML cloud
platforms

4
MLPerf

Training time speedup

Comparison of MLPerf 1.0 Top Line Results

Taller bars are better; results are normalized to fastest Nvidia submission

3 s 3 Nvidia A100 Google TPU v4
-, Speedup over fastest Nvidia submission (Available) ‘ (Preview)

20 (1.74x )
(1.85x )
((1.41x
15
( j1.10x
(o.8ax)  (0.49x)
1.0
0.5
0.0
BERT ResNet DLRM SSD Mask R-CNN Unet3D



Simulation Goals Vary[ A& H#x]

* Explore the design space quickly and see what you want to
— potentially implement in a next-generation platform
— propose as the next big idea to advance the state of the art
- the goal is mainly to see relative effects of design decisions

* Match the behavior of an existing system so that you can
— debug and verify it at cycle-level accuracy

— propose small tweaks to the design that can make a difference in
performance or energy

— the goal is very high accuracy

e Other goals in-between:

- Refine the explored design space without going into a full detailed,
cycle-accurate design

— Gain confidence in your design decisions made by higher-level design
space exploration
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Tradeoffs in Simulation[~F#i)

e Three metrics to evaluate a simulator
- Speed, Flexibility, Accuracy

* Speed[i#Z]: How fast the simulator runs (xIPS, xCPS,
slowdown)

* Flexibility[ R /5 1]: How quickly one can modify the
simulator to evaluate different algorithms and design
choices?

e Accuracy[## % ]: How accurate the performance (energy)
numbers the simulator generates are vs. a real design
(Simulation error)

* The relative importance of these metrics varies
depending on where you are in the design process (what
your goal is)
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Tradeoffs in Simulation (cont.)

e Speed & flexibility affect:

- How quickly you can make design tradeoffs

* Accuracy affects:

- How good your design tradeoffs may end up being

- How fast you can build your simulator (simulator design time)
* Flexibility also affects:

- How much human effort you need to spend modifying the
simulator

* You can trade off between the three to achieve design
exploration and decision goals
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High-level Simulation[& 2]

* Key Idea: Raise the abstraction level of modeling to give
up some accuracy to enable speed & flexibility (and quick
simulator design)

- Get first-hand insights

* Advantages
— Can still make the right tradeoffs, and can do it quickly

— All you need is modeling the key high-level factors, you can omit
corner case conditions

— All you need is to get the “relative trends” accurately, not exact
performance numbers

* Disadvantages
— Opens up the possibility of potentially wrong decisions
— How do you ensure you get the “relative trends” accurately?
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Example Simulator: gem5

* gem5 = Wisconsin GEMS + Michigan m5

— The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

— Widely used in academia and industry

* Why gem5?
— Runs real workloads
— Comprehensive model library (memory, 10, Full OS, Web, ...)
— Rapid early prototyping (quickly test system-level ideas)

— Can be wired to custom models (add detail where it matters,
when it matters)

system.cpu = 000 CPU() .
Core Core ,"".'Z‘.'h“.’.".,';i'l.b:i‘i".". = 8 —> > ./gemS script.py
system.ll = Cache()
VA
7’ —>» | system.ll.mem side = 11 g
) IS P hello world! 1l.misses 2836
systen orkload = cpu.ipc
N
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Aspects of CPU Performance

e CPU time = Seconds _ Instructlons Cycles Seconds
program program Instructlons Cycles
Inst Count CPI Clock Rate
Program O
Compiler O O
Inst. Set O O
Organization O O
Technology O
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Quantitative Principles (§1.8) &4k J5 ]

* Guidelines and principles that are useful in the design and
analysis of computers

* Take advantage of parallelism[F17]
- System level: multiple processors, multiple disks
- Individual processor: instruction parallelism, e.g., pipelining
— Detailed digital design: cache, memory

* Principle of locality[ /&1

- Programs tend to reuse data and insts they have used recently
o A program spends 90% of its execution time in only 10% of the code

* Focus on the common case[— & ]
- To make a trade-off, favor the frequent case over infrequent
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Amdahl’s Law[Bi ik /K & &)

* The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used
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 Amdahl's law defines the speedup that can be gained by
using a particular feature

- Speedup due to some enhancement E:

ExTimeyithoute Performanceg

Speedu = - -
p Poverall EXTlmewi thE Per f ormanceé,ithoutE
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Amdahl‘s Law (cont.)

e Suppose that enhancement E accelerates a fraction of the
task by a factor S, and the remainder of the task is

unaffected
N — e

ExTimeyitng

fractionennanced

= ExTimeyithoute * [(1 — fraCtionenhanced) + S ]

ExTime,,;
Spee dup _ withoutE

ExTime,,;thE

1

. raction
(1- f racaonenhanced) + ! Senhanced
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Amdahl's Law (cont.)

* A program’s speedup is limited by its serial part

- For example, if 95% of the program can be parallelized, the
theoretical maximum speedup using parallel computing would

Speedup

be 20x
Amdahl's Law
AT 1T TT1
7~
// Parallel portion
50%
// ......... 7:%
i — 90%
// —— 95%
//
v ORI o e M e Y
il <~ Make the fast case common!
/
//_/./
4
3 ,4,»/ .............
// """
Number of pi sors -0 ®
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Part-I11: ISA & ILP
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The History

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 2UaHE K]

* The growth is based on a fundamental contract between
HW and SW[1E & T FAE A4 22 1] 5 ]
- HW may change radically “under the hood”
o Old SW can still run on new HW (even faster)

- HW looks the same to SW, always speaking the same language
o The ISA, allows the decoupling of SW development from HW dev

# of hardware ,
2 a mobile
devices in
operation

growth

\V

w;‘gi



What is [SA?

e Instruction Set == A set of instructions
e The HW/SW contract[Z A F i3]

— Compiler correctly translates source code to the ISA[%% 1% 28]
— Assembler translates to relocatable binary[JC %25 ]

— Linker solidifies relocatables into object code[i%#: %]

— HW promises to do what the object code says[figif4$47]

* Not in the “contract”: non-functional aspects[dE7}1¥]
- How operations are implemented
— Which operations are fast and which are slow and when
- Which operations take more power and which take less
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ISA + p-arch = Arch

 “Architecture” = ISA + microarchitecture Problem
Algorithm
° |S AH:E /&.\%;ﬂg*@] Program/Language
. Runtime System
— Agreed upon interface between sw and hw ‘f"”'es'“”’—ISAr(A B
rchitecture
o SW/compiler assumes, HW promises Microarchitecture
— What the software writer needs to know to write *c‘i’i:"s
and debug system/user programs Electrons

* Microarchitecture (p-arch)[#¥2E#4]

— Specific implementation of an ISA
o Implementation of the ISA under specific design constraints and goals
— Not visible to the software

e

U-arch
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