
Advanced Computer Architecture

高级计算机体系结构

第10讲：概述、ISA&ILP
张献伟

xianweiz.github.io
DCS5637, 11/2/2022

https://xianweiz.github.io/

2

Part-I: About

Who am I?
博士，2011 – 2017，University of Pittsburgh
学士，2007 – 2011，西北工业大学

副教授，2020.10 –今
工程师/研究员，2017.08 – 2020.09
实习研究员，2016.05 – 2016.08

计算机体系结构

高性能及智能计算

编程及编译优化

本：编译原理/实验(21s/22s)、体系结构(22f)
研：高级计算机体系结构(21f/22f)

3
学院个人主页：http://sdcs.sysu.edu.cn/content/5592

http://sdcs.sysu.edu.cn/content/5592

Example: MS Course Requirements
• The 30 credits must

include one course
from each of the
following foundation
areas.

− 30: 24 credits + MS
thesis, or 27 credits +
MS project

• Foundation area
courses must be
completed with a
grade of "B" or better.

4

https://www.cs.pitt.edu/current-students/ms-computer-
science/degree-requirements

https://www.cs.pitt.edu/current-students/ms-computer-science/degree-requirements

Textbook[课程教材]

•主要教材
− John L. Hennessy and David A. Patterson，计算
机体系结构：量化研究方法（英文版·原书第6
版）

p 非必须购买

•参考资料
− ECE 447, Onur Mutlu (Carnegie Mellon U.)
− CIS 501, Milo Martin (U Penn)
− Computer Organization and Design RISC-V

Edition: The Hardware Software Interface (2nd
Edition), Hennessy and Patterson

− Computer Systems: A Programmer’s Perspective
(CSAPP), Bryant and O’Hallaron

− Introduction to Computing Systems: From Bits
and Gates to C and Beyond, Patt and Patel

5

Textbook[课程教材] (cont.)

6
https://www.acm.org/media-center/2018/march/turing-award-2017

https://www.acm.org/media-center/2018/march/turing-award-2017

Outline[内容安排]

• Overview and Fundamentals[概览与基础]

• Instruction Set Architecture[指令集架构]
− Quick intro/review

• Instruction Level Parallelism[指令级并行]
− Pipelining, Branch Prediction, Instruction Scheduling

• Memory Hierarchy[存储层级]
− Memory, Cache, Virtual Memory

• Data/Thread-Level Parallelism[数据/线程级并行]
− SIMD, GPU

• Domain-specific Architectures[领域专用架构]

• And more …

7

Examples

8

Architect[架构和架构师]

• Computer architect[计算机架构师]
− To make design trade-offs across the hw/sw interface to meet

functional, performance and cost requirements
• Being an architect is not easy[并不容易]

− You need to consider many things in designing a new system +
have good intuition/insight into ideas/tradeoffs

• But, it is fun and can be very technically rewarding[会很有
意思]
• And, enables a great future[影响未来]

− Advancement of computer architecture is vital to all other areas
of computing

p E.g., IoT, Embedded, Mobile, Data centers, HPC

9
https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture1-intro-afterlecture.pdf

Role of [Computer] Architect[职责]

• Look backward (to the past)
− Understand tradeoffs and designs, upsides/downsides, past

workloads. Analyze and evaluate the past.
• Look forward (to the future)

− Be the dreamer and create new designs. Listen to dreamers.
− Push the state of the art. Evaluate new design choices.

• Look up (towards problems in the computing stack)
− Understand important problems and their nature.
− Develop architectures and ideas to solve important problems.

• Look down (towards device/circuit technology)
− Understand the capabilities of the underlying technology.
− Predict and adapt to the future of technology (you are

designing for N years ahead). Enable the future technology.

10 From Onur Mutlu’s slides
https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture1-intro-afterlecture.pdf

Why Study CA?[为什么学习体系结构]

• Understand why computers work the way they do
− Source code --> instructions --> executions
− Processors --> cache/memory --> storage

• Understand where computers are going
− Future capabilities drive the (computing) world
− Real-world impact: no computer architecture -> no computers!

• Understand high-level design concepts and performance
− The best architects understand all the levels (hw, OS, apps, alg)
− Need to understand hardware to write fast software

• Job?
− Your MS/PhD research may involve CA
− Your job positions (design or research, hw or sw) may need CA
− You may manage a team working on systems

11
https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture1-intro-afterlecture.pdf

Positions???[工作职位]

12

Golden Age for CA[黄金时代]

• Today is a very exciting time to study architecture
− Many new demands from the top
− Fast changing demands and personalities of users
− Many new issues at the bottom

• Computing landscape is very different from 10-20 years
ago (Recall: Intel = 25*Nvidia à 0.34*Nvidia)

− Every component and its interfaces, as well as entire system
designs are being re-examined

− You can revolutionize the way computers are built, if you
understand both the hardware and the software (and change
each accordingly)

• No clear, definitive answers to these problems[有问题，
缺方案]

13

Industry[工业界]

• Nvidia/AMD, 08/2022: US bans Nvidia and AMD GPU chips to China
• Intel, 08/2022: Kills Optane Memory[2]
• Apple, 11/2020: M1, ARM-based SoC[3]

• AMD, 10/2020: Acquire Xilinx[4]
• Intel, 09/2020: Xe GPU[5]

• Samsung, 11/2019: Cease CPU development[6]

• Amazon, 11/2018: AWS Graviton[7]

• Intel/IBM/ARM, 01/2018: Meltdown and Spectre[8]

• Micron, 03/2021: Cease 3D-XPoint, invest CXL[9]
• AI Chips: Graphcore, Habana Labs, Cerebras, Cambricon…

14

[1] https://www.sec.gov/ix?doc=/Archives/edgar/data/1045810/000104581022000146/nvda-20220826.htm
[2] https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
[3] https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
[4] https://www.amd.com/en/corporate/xilinx-acquisition
[5] https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
[6] https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
[7] https://aws.amazon.com/ec2/graviton/
[8] https://people.redhat.com/pladd/Meltdown-Spectre-NYRHUG-2018-01.pdf
[9] https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

https://www.sec.gov/ix?doc=/Archives/edgar/data/1045810/000104581022000146/nvda-20220826.htm
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
https://www.amd.com/en/corporate/xilinx-acquisition
https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
https://aws.amazon.com/ec2/graviton/
https://people.redhat.com/pladd/Meltdown-Spectre-NYRHUG-2018-01.pdf
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

Academia[学术界]

15

[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

• Current challenges[问题]
− End of Moore's Law and

Dennard Scaling
− Overlooked security

• Future opportunities in
computer architecture[机
遇]

− Domain-specific
architectures

− Domain-specific
languages

− Open architectures
− Agile hardware

development

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson

https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Top-tier Conferences[顶级会议]

• ISCA
− The International Symposium on Computer Architecture (ISCA)
− 2021: 48th, 76/407 papers (18.6% acceptance rate)

• MICRO
− The IEEE/ACM International Symposium on Microarchitecture
− 2021: 54th, 94/430 papers (21.8% acceptance rate)

• HPCA
− IEEE International Symposium on High-Performance Computer

Architecture
− 2021: 27th, 63/258 papers (24.4% acceptance rate)

• ASPLOS
− ACM International Conference on Architectural Support for

Programming Languages and Operating Systems
− 2021: 26th, 75/398 (18.8% acceptance rate)

16

Arch vs. AI

17

AAAI

HPCA’2022 (High-Performance Computer Architecture)

• Sessions
− Accelerators (4)
− Security (3)
− Quantum (3)
− At Scale
− Storage, Scheduling, Interfaces
− Simulation
− Cache Hierarchy
− Synthesis
− Traditional Architecture

18
[1] https://hpca-conf.org/2022/program

https://hpca-conf.org/2022/program

ISCA’2022 (Computer Architecture)

• Sessions
− Security (4)
− Graph Applications
− Processing in Memory
− Industry Session
− Persistent Memory
− Quantum
− Microarchitecture and Parallelism
− Novel Architectures (3)
− Learning (2)

19
[1] https://www.iscaconf.org/isca2022/program/

https://www.iscaconf.org/isca2022/program/

20

Part-II: Introduction

Technology Improvement[技术提升]
• Computer technology has greatly improved

− A $500 cellphone today outperforms the fastest supercomputer
in 1993 ($50 million)

− Improvement from both advances in the tech used to build
computers and from innovations in computer design

21

Trends in Technology (§1.4)[技术趋势]

• Integrated circuit (IC) logic[集成电路]
− Transistor density: +35%/year (feature size decreases)
− Die size: +10-20%/year
− Integration overall: +40-55%/year (Moore’s Law)

• DRAM capacity: +25-40%/year (growth is slowing)[内存]
− Memory usage quadruples every three years

• Flash capacity: +50-60%/year[闪存]
− 8-10X cheaper/bit than DRAM

• Magnetic disk: +40%/year[磁盘]
− 8-10X cheaper/bit then Flash and 200-300X cheaper/bit than

DRAM
• Network[网络]

22

Performance Trends[性能趋势]

• Bandwidth or throughput[带宽/吞吐]
− Total work done in a given time
− 32,000 - 40,000X improvement for processors
− 400 - 2400X improvement for memory and disks

• Latency or response time[时延/响应时间]
− Time between start and completion of an event
− 50 - 90X improvement for processors
− 8 - 9X improvement for memory and disks

p Memory wall[内存墙]

• Latency lags bandwidth (in the last 30 years)

23

Transistors and Wire[晶体管/线路]

• IC processes are characterized by feature size[特征尺寸]

• Feature size: minimum size of transistor or wire
− 10um in 1971 to 22nm in 2012 to 7nm in 2017 to 5nm in 2020

(3nm is being developed)

• Moore’s Law: aka “technology scaling”[缩放]
− Literally: density (transistors/area) doubles every 18 months
− Public interpretation: performance doubles every 18 months
− Continued miniaturization (esp. reduction in channel length)

+ Improves switching speed, power/transistor, area(cost)/transistor
– Reduces transistor reliability

24

Intel 7: 10nm

Intel 4: 7nm

Intel: 7+

Intel 20A: 5nm

Power and Energy (§1.5)[功耗/能耗]

• Energy is a biggest challenge facing computer design
− Bring power in with 100s of pins
− Power is dissipated as heat and must be removed

• Power/energy are increasingly important
− Battery life for mobile devices[电池续航]

p Laptops, phones, cameras
− Tolerable temperature for devices without active cooling[温度]

p Power means temperature, active cooling means cost
p No room for a fan in a cell phone, no market for a hot cell phone

− Electric bill for compute/data centers[电费]
p Pay for power twice: once in, once out (to cool)

− Environmental concerns[环保]
p “Computers” account for growing fraction of energy consumption

25

Methodology: Design/Evaluation[方法]

26

实现下一代

分析当前

设计及评估

Design Goals[设计目标]

• Functional[功能性]
− What functions should it support？
− Needs to be correct

p Unlike software, difficult to update once deployed

• High performance[高性能]
− “Fast” is only meaningful in the context of a set of important

tasks
− Not just “Gigahertz”
− Impossible goal: fastest possible design for all programs

• Reliable[可靠性]
− Does it continue to perform correctly?
− Hard fault vs. transient fault

p Example：memory errors and sun spots
− Space satellites vs. desktop vs. server reliability

27

Design Goals (cont.)
• Low cost[低成本]

− Design cost (huge design teams, why?)[设计]
− Cost of making first chip after design (mask cost)[流片]
− Per unit manufacturing cost (wafer cost)[量产]

• Low power/energy[低能耗]
− Energy in (battery life, cost of electricity)
− Energy out (cooling and related costs)
− Cyclic problem, very much a problem today

• Challenge: balancing the relative importance of these
goals

− And the balance is constantly changing
− No goal is absolutely important at expense of all others
− Our focus: performance, only touch on cost, power, reliability

28

Performance (§1.8)[性能]

29

Application

Programming
Language

Compiler

ISA

Datapath
Control

Function Units

Transistors Wires Pins

Answers per month
Operations per second

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Megabytes per second

Cycles per second (clock rate)

• The performance metric may mean different things

Measuring Performance[评估性能]

• Time to run the task (latency)
− Execution time, response time, CPU time, …

• Tasks per day, hour, week, sec, ns, …
− Throughput, bandwidth

• Performance measurement[测试]
− Hardware prototypes : Cost, delay, area, power estimation
− Simulation (many levels, ISA, RT, Gate, Circuit, …)
− Benchmarks (Kernels, toy programs, synthetic), Traces, Mixes
− Analytical modeling and Queuing Theory

30

Simulator[模拟器]

• What is an architecture (or architectural) simulator?
− A tool that reproduces the behavior of a computing device

• Why use a simulator?
− Leverage faster, more flexible software development cycle
− Permits more design space exploration
− Facilitates validation before hardware becomes available
− Possible to increase/improve system instrumentation

31

Benchmarks[基准测试集]

• SPEC: Standard Performance Evaluation Corporation

• PARSEC: Princeton Application Repository for Shared Memory
Computers

• Rodinia: GPGPU applications

• HPL: a High-Performance Linpack benchmark implementation

• MLPerf: a suite of performance benchmarks that cover a range of
leading AI workloads widely in use

• MediaBench: Multimedia and embedded applications
• Transaction processing: TPC-C, SPECjbb
• EEMBC: embedded microprocessor benchmark

consortium

32

Benchmarks (cont.)

33
https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf

• Example: performance of Intel’s newest CPU (2021)

Benchmarks (cont.)

34

• MLPerf
− A broad ML

benchmark suite
for measuring
performance of
ML software
frameworks, ML
hardware
accelerators, and
ML cloud
platforms

Simulation Goals Vary[不同目标]

• Explore the design space quickly and see what you want to
− potentially implement in a next-generation platform
− propose as the next big idea to advance the state of the art
− the goal is mainly to see relative effects of design decisions

• Match the behavior of an existing system so that you can
− debug and verify it at cycle-level accuracy
− propose small tweaks to the design that can make a difference in

performance or energy
− the goal is very high accuracy

• Other goals in-between:
− Refine the explored design space without going into a full detailed,

cycle-accurate design
− Gain confidence in your design decisions made by higher-level design

space exploration

35
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Tradeoffs in Simulation[平衡]

• Three metrics to evaluate a simulator
− Speed, Flexibility, Accuracy

• Speed[速度]: How fast the simulator runs (xIPS, xCPS,
slowdown)
• Flexibility[灵活性]: How quickly one can modify the

simulator to evaluate different algorithms and design
choices?
• Accuracy[准确度]: How accurate the performance (energy)

numbers the simulator generates are vs. a real design
(Simulation error)
• The relative importance of these metrics varies

depending on where you are in the design process (what
your goal is)

36
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Tradeoffs in Simulation (cont.)
• Speed & flexibility affect:

− How quickly you can make design tradeoffs

• Accuracy affects:
− How good your design tradeoffs may end up being
− How fast you can build your simulator (simulator design time)

• Flexibility also affects:
− How much human effort you need to spend modifying the

simulator

• You can trade off between the three to achieve design
exploration and decision goals

37
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

High-level Simulation[高层级模拟]

• Key Idea: Raise the abstraction level of modeling to give
up some accuracy to enable speed & flexibility (and quick
simulator design)

− Get first-hand insights

• Advantages
− Can still make the right tradeoffs, and can do it quickly
− All you need is modeling the key high-level factors, you can omit

corner case conditions
− All you need is to get the “relative trends” accurately, not exact

performance numbers

• Disadvantages
− Opens up the possibility of potentially wrong decisions
− How do you ensure you get the “relative trends” accurately?

38
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Example Simulator: gem5
• gem5 = Wisconsin GEMS + Michigan m5

− The gem5 simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture
as well as processor microarchitecture.

− Widely used in academia and industry

• Why gem5?
− Runs real workloads
− Comprehensive model library (memory, IO, Full OS, Web, …)
− Rapid early prototyping (quickly test system-level ideas)
− Can be wired to custom models (add detail where it matters,

when it matters)

39
https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

https://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2020/handouts/lecture/archSim.pdf

Aspects of CPU Performance
• 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = !"#$%&'

()$*)+, = -%'.)/#.0$%'
()$*)+, ∗ 12#3"'

-%'.)/#.0$%' ∗
!"#$%&'
12#3"'

40

Inst Count CPI Clock Rate

Program ❍
Compiler ❍ ❍
Inst. Set ❍ ❍
Organization ❍ ❍
Technology ❍

Quantitative Principles (§1.8)[量化原则]

• Guidelines and principles that are useful in the design and
analysis of computers
• Take advantage of parallelism[并行]

− System level: multiple processors, multiple disks
− Individual processor: instruction parallelism, e.g., pipelining
− Detailed digital design: cache, memory

• Principle of locality[局部性]
− Programs tend to reuse data and insts they have used recently

p A program spends 90% of its execution time in only 10% of the code

• Focus on the common case[一般情况]
− To make a trade-off, favor the frequent case over infrequent

41

Amdahl‘s Law[阿姆达尔定律]

• The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used
•系统中对某一部件采用更快执行方式所能获得的系统
性能改进程度，取决于这种执行方式被使用的频率，
或所占总执行时间的比例

• Amdahl's law defines the speedup that can be gained by
using a particular feature

− Speedup due to some enhancement E:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝$4")+33 =
𝐸𝑥𝑇𝑖𝑚𝑒50.6$/.7
𝐸𝑥𝑇𝑖𝑚𝑒50.67

=
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒7

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒50.68/.7

42

Amdahl‘s Law (cont.)
• Suppose that enhancement E accelerates a fraction of the

task by a factor S, and the remainder of the task is
unaffected

𝐸𝑥𝑇𝑖𝑚𝑒50.67
= 𝐸𝑥𝑇𝑖𝑚𝑒50.6$/.7 ∗ [1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛"%6+%#"& +

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛"%6+%#"&
𝑆]

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑇𝑖𝑚𝑒50.6$/.7
𝐸𝑥𝑇𝑖𝑚𝑒50.67

=
1

1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛"%6+%#"& + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛"%6+%#"&𝑆

43

Amdahl's Law (cont.)
• A program’s speedup is limited by its serial part

− For example, if 95% of the program can be parallelized, the
theoretical maximum speedup using parallel computing would
be

44

20x

👉Make the fast case common！

45

Part-III: ISA & ILP

The History
• For more than 50 years, we have enjoyed exponentially

increasing compute power[算力急剧增长]

• The growth is based on a fundamental contract between
HW and SW[得益于软硬件之间的协议]

− HW may change radically “under the hood”
p Old SW can still run on new HW (even faster)

− HW looks the same to SW, always speaking the same language
p The ISA, allows the decoupling of SW development from HW dev

46

What is ISA?
• Instruction Set == A set of instructions
• The HW/SW contract[软硬件协议]

− Compiler correctly translates source code to the ISA[编译器]
− Assembler translates to relocatable binary[汇编器]
− Linker solidifies relocatables into object code[连接器]
− HW promises to do what the object code says[硬件执行]

• Not in the “contract”: non-functional aspects[非协议]
− How operations are implemented
− Which operations are fast and which are slow and when
− Which operations take more power and which take less

47

ISA + µ-arch = Arch
• “Architecture” = ISA + microarchitecture
• ISA[指令集架构]

− Agreed upon interface between sw and hw
p SW/compiler assumes, HW promises

− What the software writer needs to know to write
and debug system/user programs

• Microarchitecture (µ-arch)[微架构]
− Specific implementation of an ISA

p Implementation of the ISA under specific design constraints and goals
− Not visible to the software

48

ISA
µ-arch

https://image.slideserve.com/466455/instruction-set-design-l.jpg

