
Advanced Computer Architecture

高级计算机体系结构

第11讲：概述、ISA&ILP (2)
张献伟

xianweiz.github.io
DCS5637, 11/9/2022

https://xianweiz.github.io/

2

Part-III: ISA & ILP

The History
• For more than 50 years, we have enjoyed exponentially

increasing compute power[算力急剧增长]

• The growth is based on a fundamental contract between
HW and SW[得益于软硬件之间的协议]

− HW may change radically “under the hood”
p Old SW can still run on new HW (even faster)

− HW looks the same to SW, always speaking the same language
p The ISA, allows the decoupling of SW development from HW dev

3

What is ISA?
• Instruction Set == A set of instructions
• The HW/SW contract[软硬件协议]

− Compiler correctly translates source code to the ISA[编译器]
− Assembler translates to relocatable binary[汇编器]
− Linker solidifies relocatables into object code[连接器]
− HW promises to do what the object code says[硬件执行]

• Not in the “contract”: non-functional aspects[非协议]
− How operations are implemented
− Which operations are fast and which are slow and when
− Which operations take more power and which take less

4

ISA + µ-arch = Arch
• “Architecture” = ISA + microarchitecture
• ISA[指令集架构]

− Agreed upon interface between sw and hw
p SW/compiler assumes, HW promises

− What the software writer needs to know to write
and debug system/user programs

• Microarchitecture (µ-arch)[微架构]
− Specific implementation of an ISA

p Implementation of the ISA under specific design constraints and goals
− Not visible to the software

5

ISA
µ-arch

https://image.slideserve.com/466455/instruction-set-design-l.jpg

ISA vs. µ-arch (cont.)
• Implementation (µ-arch) can be various as long as it

satisfies the specification (ISA)
− Add instruction vs. Adder implementation

p Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

− x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

• µ-arch usually changes faster than ISA
− Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many µ-archs

6

ISA
µ-arch

What Makes a Good ISA?
• Programmability[可编程性]

− Easy to express programs efficiently?

• Implementability[可实现性]
− Easy to design high-performance implementations?
− More recently

p Easy to design low-power implementations?
p Easy to design high-reliability implementations?
p Easy to design low-cost implementations?

• Compatibility[兼容性]
− Easy to maintain programmability (implementability) as

languages and programs (technology) evolves?
− x86 (IA32) generations: 8086, 286, 386, 486, Pentium,

PentiumII, PentiumIII, Pentium4, Core2…

7

Existing ISAs
• RISC: reduced-instruction set computer[精简指令集]

− Coined by Patterson in early 80’s
− RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
− Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer[复杂指令集]
− Term didn’t exist before “RISC”
− Examples: x86, VAX, Motorola 68000, etc.

8

国产CPU
• x86

−曙光/海光

• ARM
−华为、飞腾

•自主
−龙芯、申威

9

* CPU及指令集演进 (漫画 | 20多年了，为什
么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166

国产GPU

10

https://t.cj.sina.com.cn/articles/view/1874424
022/6fb970d600101asua

https://t.cj.sina.com.cn/articles/view/1874424022/6fb970d600101asua

Performance Argument[性能的争论]

• Performance equation:
− (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC
− Reduce “instructions/program” with “complex” instructions

p But tends to increase CPI or clock period
− Easy for assembly-level programmers, good code density
− Idea: give programmers powerful insts, fewer insts to complete

the work
• RISC

− Improve “cycles/instruction” with many single-cycle instructions
− Increases “instruction/program”, but hopefully not as much

p Help from smart compiler
− Idea: compose simple insts to get complex results

11

CISC vs. RISC
• Instructions[指令]: multi-cycle complex vs. single-cycle

reduced
• Addressing modes[寻址模式]: many vs. few
• Encoding[编码]: many formats and lengths vs. fixed-length

instruction format
• Performance[性能]: hand assemble to get good

performance vs. reliance on compiler optimizations
• Registers[寄存器]: few vs. many (compilers are better at

using them)
• Code size[代码大小]: small vs. large

12

CISC vs. RISC (cont.)
• The war started in mid 1980’s

− CISC won the high-end commercial war (1990s to today)
p Compatibility a stronger force than anyone (but Intel) thought

− RISC won the embedded computing war

• CISC: winner on revenue[赢在收益]
− X86 was the first 16-bit microprocessor

p No competing choices à historical inertia and “financial feedback”
− Moore’s law was the helper

p Most engineering problems can be solved with more transistors

• RISC: winner on volume[赢在数量]
− First ARM chip in mid-1980s à 150 billion chips
− Low-power and embedded devices (e.g., cellphones)

13

x86 à ARM à RISC-V[进行中的变革]

• But now, things are changing …
− Fugaku: ARM-based supercomputer (Top2)
− Apple: ARM-based M1/2 chip
− Amazon: AWS Graviton processor

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement

14

What is RISC-V?
• Fifth generation of RISC design from UC Berkeley[第五代]

• A high-quality, license-free, royalty-free RISC ISA[自由]

• Experiencing rapid uptake in both industry and academia[
快速发展]

• Supported by growing shared software ecosystem[生态]

• Appropriate for all levels of computing system, from
microcontrollers to supercomputers[普适]

− 32-bit, 64-bit, and 128-bit variants

• Standard maintained by
non-profit RISC-V Foundation

15

https://riscv.org/

https://riscv.org/

RISC-V (cont.)
• The free and open RISC instruction set architecture

− Enabling a new era of processor innovation through open
standard collaboration[彻底开放]

− RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

16

The RISC-V Architecture[架构]

• 32, 64-bit general purpose registers (GPRs)
− called x0, … , x31 (x0 is hardwired to the value 0)

• 32, 64-bit floating point registers - FPRs (each can hold a
32-bit single precision or a 64-bit double precision value)

− called f0, f1, … , f31
• A few special purpose registers (example: floating point

status)
• Byte addressable memories with 64-bit addresses
• 32-bit instructions
• Only immediate and displacement addressing modes (12-

bit field)

17

Data transfer operations: ld, lw, lb, lh, flw, sd, sw, sb, sh, fsw, …
Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, …
Control operations: beq, bne, blt, jal, jalr, …
Floating point operations: fadd, fsub, fmult, fsqrt, …

RISC-V Instructions[指令]

• All RISC-V instructions are 32 bits long, have 6 formats
− R-type: instructions using register-register
− I-type: instructions with immediates, loads
− S-type: store instructions
− B-type: branch instructions (beq, bge)
− U-type: instructions with upper immediates
− J-type: jump instructions (jal)

18
https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf

Example

• Fields of R-type
− opcode: partially specifies what instruction it is
− funct7+funct3: combined with opcode, these two fields

describe what operation to perform
− rs1 (source register #1): specifies register of first operand
− rs2: specifies second register operand
− rd (destination register): specifies register which will receive

result of computation
p Each register field holds a 5-bit unsigned integer (0-31) corresponding to

a register number (x0-x31)

• add x18,x19,x10

19
=10 =19 =18

Executing an Instruction[执行指令]

• Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

− Get the instruction[获取指令]
p add x18,x19,x10

− What instruction is it?[操作符]
p add

− Gather data read[操作数]
p R[x19], R[x10]

− Perform operation[操作]
p calc R[x19]+R[x10]

− Store result[结果]
p save into x18

20
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture11.pdf

Executing an Instruction[执行指令]

• Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

− Get the instruction[获取指令]
p add x18,x19,x10

− What instruction is it?[操作符]
p add

− Gather data read[操作数]
p R[x19], R[x10]

− Perform operation[操作]
p calc R[x19]+R[x10]

− Store result[结果]
p save into x18

20
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture11.pdf

Five-Stage Execution(§C.1)[5阶段执行]

• Instruction fetch (IF)[取指令]/(IM: instruction memory)
− Fetch the next instruction from memory (and update PC to the

next sequential instruction)
• Instruction decode (ID)[解码]/(REG: register fetch)

− Decode the inst and read the registers corresponding to register
source specifiers

• Execution/effective address (EX)[执行]/(ALU)
− Operate on the operands prepared in the prior cycle

• Memory access (MEM)[访存]/(DM: data memory)
− Load: read using the effective address
− Store: write to memory

• Write-back (WB)[回写]/(REG)
− Writes the result into the register

21

Examples
• Arithmetic/logic instructions: R-type rd, rs1, rs2

− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: compute result (use ALU)
− WB: write to register rd

• Load instructions: lw rd, c(rs1)
− IF: fetch instruction
− ID: read register rs1
− EX: use ALU to compute memory address = content of rs1 + c
− MEM: read from memory
− WB: write to register rd

• Store instructions: sw rs2, c(rs1)
− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: use ALU to compute memory address = content of rs1 + c
− WB: write value of rs2 to memory at address rs1+c

22

Why Five Stages?
• Could we have a different number of stages?

− Yes, and other architectures do

• So why does RISC-V have five if instructions tend to idle
for at least one stage?

− The five stages are the union of all the operations needed by all
the instructions

− There is one instruction that uses all five stages: load (lw/lb)

23

lw rd, c(rs1)
IF: fetch instruction
ID: read register rs1
EX: use ALU to compute address = rs1 + c
MEM: read from memory
WB: write to register rd

R-type rd, rs1, rs2
IF: fetch instruction
ID: read registers rs1 and rs2
EX: compute result (use ALU)
WB: write to register rd

Pipelining[指令流水]

• Pipelining: an implementation technique whereby
multiple instructions are overlapped in execution

− Just like an assembly line
− Takes advantage of parallelism that exists among the actions

needed to execute an instruction
− Pipelining is the key technique to make fast processors

24

Visualize Pipelining[表示?]

25

Pipelining Effects[效果]

• If stages are perfectly balanced, then the time per inst on
the pipelined processor (assuming ideal conditions)

− !"#$ %$& "'()&*+)",' ,' *'%"%$-"'$. #/+0"'$
1*#2$& ,3 %"%$ ()/4$(

• Speedup from pipelining equals the number of stages
− An assembly pipeline with n stages can ideally produce cars n

times fast
− Instruction exit: every n cycles vs. every single cycle

• Pipelining reduces the avg execution time per inst
− Baseline of multi clock cycles/inst: pipelining reduces CPI
− Baseline of single clock cycle/inst: pipelining decreases the

clock cycle time

26

Pipelining Effects (cont.)
• Pipelining exploits parallelism among the insts[并行]

− Not visible to the programmer

• Pipelining improves instruction throughput rather
instruction latency[提高吞吐]

− Goal is to make programs, not individual insts, go faster
− Single instruction latency

p Doesn’t really matter, billions of insts in a program
p Difficult to reduce anyway

− In fact, pipelining usually slightly increases the execution time
of each inst

27

Performance Issues in Pipelining[问题]

• Impossible to reach the ideal speedup (= n stages)
− Usually, the stages will not be perfectly balanced[并不平衡]

p The clock can run no faster than the time needed for the slowest
pipeline stage

− Furthermore, pipelining does involve some overhead[额外开销]
p Pipeline register delay + clock skew[时钟漂移]

28

Example: one unpipelined processor has 1ns clock cycle and
instructions are ALUs (4 cycles, 40%), branches (4 cycles, 20%),
memory (5 cycles, 40%). Suppose that pipelining the processor
adds 0.2ns overhead to the clock. How much pipelining speedup?
- Unpipelined processor, avg inst exe time = clock cycle x avg CPI = 1 ns x (40%x4 +

20%x4 + 40%x5) = 4.4ns
- Pipelined processor, avg inst exe time = 1 + 0.2 ns = 1.2 ns

Dependences and Hazards[依赖和冒险]
• Dependence[依赖]: relationship between two insts

− Data: two insts use same storage location
− Control: one inst affects whether another executes at all
− Not a bad thing, programs would be boring without them
− Enforced by making older inst go before younger one

p Happens naturally in single-/multi-cycle designs
p But not in a pipeline

• Hazard[冒险]: dependence & possibility of wrong inst
order

− Effects of wrong inst order cannot be externally visible
p Stall: for order by keeping younger inst in same stage

− Hazards are a bad thing: stalls reduce performance

29
https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/04_pipeline.pdf

Pipeline Hazards (§C.2)[流水冒险]

• Hazards prevent next instruction from executing during its
designated clock cycle[妨碍执行]

− Hazards reduce the performance from the ideal speedup gained
by pipelining

• Three classes of hazards
− Structural hazards[结构]: HW cannot support some combination

of instructions
− Data hazards[数据]: An instruction depends on result of prior

instruction still in the pipeline
− Control hazards[控制]: Pipelining of branches & other

instructions stall the pipeline until the hazard bubbles in the
pipeline

30

Instruction-Level Parallelism(§3.1)
• ILP: overlap execution of instructions[指令级并行]

− Overlap among instructions[重叠]
p Pipelining or multiple instruction execution

− Fine-grained parallelism[细粒度]
p In contrast to process-/task/thread-level parallelism (coarse-grained)

• Pipelining: exploits ILP by executing several instructions
“in parallel”

− Overlaps execution of different instructions
− Execute all steps in the execution cycle simultaneously, but on

different instructions

• Pipeline CPI = Ideal pipeline CPI + stalls due to hazards
− Structural stalls + Data hazard stalls + Control stalls

31
https://courses.cs.washington.edu/courses/cse471/09sp/lectures/pipeliningBasics.pdf

Instruction-Level Parallelism(cont.)
• Approaches to exploit ILP[利用方法]

− Rely on hardware to help discover and exploit the parallelism
dynamically

− Rely on software technology to find parallelism, statically at
compile-time

• What determines the degree of ILP?[并行度]
− Dependences: property of the program
− Hazards: property of the pipeline (or the architecture)

• ILP challenge: overcoming data and control dependencies

32

Techniques to Improve ILP

33

Types of Dependences[依赖类型]

• True data dependences: may cause RAW hazards[数据]
− Instruction Q uses data produced by instruction P or by an

instruction which is data dependent on P
− Easy to determine for registers but hard to determine for

memory locations since addresses are computed dynamically
p Example: is 100(R1) the same location as 200(R2)?

• Name dependences: two instructions use the same name
but do not exchange data (no data dependency)[名字]

− Anti-dependence[反依赖]: instruction P reads from a register (or
memory) followed by instruction Q writing to that register (or
memory). May cause WAR hazards

− Output dependence[输出依赖]: instructions P and Q write to the
same location. May cause WAW hazards.

34

Example

35

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Example

35

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Example

35

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Example

35

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Example

35

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Register Renaming[重命名]

• How to remove name
dependences?

− Rename the dependent
uses of f0 and f4

36

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f8, -8(x1)

fadd.d f9, f8, f2

fsd f9, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

Register Renaming[重命名]

• How to remove name
dependences?

− Rename the dependent
uses of f0 and f4

36

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f8, -8(x1)

fadd.d f9, f8, f2

fsd f9, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

Register Renaming[重命名]

• How to remove name
dependences?

− Rename the dependent
uses of f0 and f4

36

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f8, -8(x1)

fadd.d f9, f8, f2

fsd f9, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

✗
✗

✗

✗

Control Dependences[控制依赖]

• Determine the order of instructions with respect to
branches[相对分支的指令顺序]

S1 is control dependent on P1 and
S2 is control dependent on P2 (and P1 ??)

• An instruction that is control dependent on P cannot be
moved to a place where it is no longer control dependent
on P, and visa-versa[不可移动]

37

if P1 then S1 ;
if P2 then S2 ;

Example 1:
add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

Example 2:
add x1, x2, x3
beq x12, x0, skip
sub x4, x5, x6
add x5, x4, x9

skip:
or x7, x8, x9

“or” depends on the execution flow possible to move “sub” before
”beq” (if x4 is not used after skip)

Branch Prediction(§3.3)[分支预测]
• Branches hurt pipeline performance

− Branch hazards and stalls

• Static branch prediction[静态分支预测]
− The default is to assume that branches are not taken
− May have a design which predicts that branches are taken

• Reasonable to assume that[假设]
− Forward branches are often not taken
− Backward branches are often taken

38

add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

add x1, x2, x3
skip:

or x7, x8, x9
beq x12, x0, skip
sub x4, x5, x6

✘

• More predictors based on branch
directions

− Profiling is the standard technique for
predicting the probability of branching

− Dynamic predictors rely on the history to
predict the future branch direction

✓

Dynamic Branch Prediction(§C2.7)[动态]

• Performance depends on the accuracy of prediction and
the cost of miss-prediction[性能影响]

• The simplest branch prediction scheme: Branch
Prediction Buffer[分支预测缓存]

− 1-bit table (cache) indexed by some bits of the address of the
branch instructions (can be accessed in decode stage) ->
hashing[指令地址的低位作为索引]

− Record whether or not the branch was taken last time – may
have collision[冲突]

− Will cause two miss-predictions in a loop (at start and end of
loop)

39

Predict taken
1

Not taken

Taken

Predict untaken
0

Taken Not taken

Performance[性能]

40

• Miss prediction rate for three different predictors

Branch Target Buffers(§3.9)[目标缓冲区]

• To increase instruction fetch bandwidth
− Store the address of the branch’s target, in addition to the prediction

• Can determine the target address while fetching the branch
instruction

− How do you even know that the instruction is a branch?
− Can’t afford to use wrong branch address due to collision -- why?

41

Branch Prediction & Pipelining
• Assuming that branch condition and target are resolved in ID

stage

• A similar chart may be drawn if branch condition/target are
resolved in EX

42

Instruction Scheduling[指令调度]

• Scheduling: act of finding independent instructions
− Static: done at compile time by the compiler (sw)
− Dynamic: done at runtime by the processor (hw)

p Scoreboard, Tomasulo’s algorithm, Reorder Buffer (ROB)

43
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://acg.cis.upenn.edu/milom/mini-course-March-2013/lectures/08_scheduling.pdf

Compiler Techniques to Expose ILP
• Scheduling[调度]

− To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be
overlapped in the pipeline[重叠]

− To avoid a pipeline stall, the execution of a dependent inst must
be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[分隔]

• A compiler’s ability to perform the scheduling depends on
− Amount of ILP in the program[程序特性]
− Latencies of the functional units in the pipeline[硬件特性]

• Compiler can increase the amount of availablility of ILP by
transforming loops[循环转换]

44

Loop Dependences(§3.2) [循环依赖]

• [有]There is a loop carried
dependence since the
statement in an iteration
depends on an earlier iteration

• [无]There is no loop carried
dependence

45

for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

for (i = 999; i >= 0; i = i-1)
x[i+1] = x[i] + y[i];

• The iterations of a loop can be executed in parallel if
there is no loop carried dependence

Example: Loop Transformation[循环转换]

• Assume the latencies of FP operations
− 3 cycles if an FP ALU op follows and depends on an FP ALU op
− 2 cycles if an FP store follows and depends on an FP ALU op
− 1 cycle is an FP ALU op follows and depends on an FP load
− 1 cycle if a branch follows and depends on on Integer ALU op

46

for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

Loop: fld f0, 0(x1) //f0=array element
fadd.d f4, f0, f2 //add scalar in f2
fsd f4, 0(x1) //store result
addi x1, x1, -8 //decrement pointer

//8 bytes (per DW)
bne x1, x2, Loop //branch x1 != x2

Basic Scheduling[简单调度]

• Re-order the statements
− Actual work: load, add and store
− loop overhead: addi, bne, two stalls

47

cycle
Loop: fld f0, 0(x1) 1

stall 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 0(x1) 6
addi x1, x1, -8 7
stall 8
bne x1, x2, loop 9

9 clock cycles per iteration

cycle
Loop: fld f0, 0(x1) 1

addi x1, x1, -8 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 8(x1) 6
bne x1, x2, loop 7

7 clock cycles per iteration

Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations
to be scheduled together[消除分支, 共同调度]

48

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1)
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1)
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

A total of 14 clock cycles
(3.5 cycles per iter)

Unrolling Limitations[限制]

• The gains from loop unrolling are
limited by

− A decrease in the amount of
overhead amortized with each unroll

p Unrolled 4 times à 8 times: ½ cycle/iter
à ¼ cycle/iter

− Growth in code size caused by
unrolling

p May increase in the inst cache miss rate
p May bring register pressure (more live

values)
− Compiler limitations

p Sophisticated transformations increases
the compiler complexity

49

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Paper: Loop Rerolling

50

Dynamically Scheduled Pipelines (§3.4)
• Key idea: allow instructions behind stall to proceed

− Enables out-of-order (OoO, O3) execution
p Can lead to O3 completion

• Hardware rearranges instruction stream to reduce stalls

51

fdiv F0, F2, F4
fadd F10, F0, F8
fsub F12, F8, F14

RAW -> Stall

No dependency

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Out-of-order[乱序执行]

• How can O3 achieve performance benefits?
− Hardware rearranges instruction stream to reduce stalls

• Any problems of O3?
− Hazards! Especially for register dependencies

• How does the O3 work?
− Step1: fetch many instructions into instruction window
− Step2: rename regs. to avoid false deps. (WAW and WAR)
− Step3: execute instructions as soon as dependencies (registers

and memory) are known

52
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

O3 Pipeline
• Split the ID stage into

− Dispatch
− Issue

• Instructions wait in a queue and may move to the EX
stage (issued) out of order

− A new kind of structural hazard : Instruction buffer is full

53
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

CC 1 CC 2 CC 3 CC 4 CC 5

REGIM EX DM WB

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Scoreboard[记分板]

• Using Scoreboard (§C.7):
− Dates to the first supercomputer, the CDC 6600 in 1963

• To track the flow of the instrs, register, and function units
− Check which Datapath components are using / can be used
− Find out which instruction could be executed without hazards

54http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://sportspectator.com/fancentral/football/scoreboard.html

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
https://sportspectator.com/fancentral/football/scoreboard.html

A Scoreboard Architecture

• The scoreboard is responsible for instruction issue and
execution, including hazard detection. It is also controlling the
writing of the results
• The “scoreboard” consists of 3 tables to keep track of

execution progress and the associated intelligence to
determine when to dispatch instructions
• One entry (buffer) in the “wait queue” is associated with each

functional unit

55
https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Scoreboard Information
• Three main components/tables

− Instruction status
p Which step the instruction is in

− Functional unit status
p Which state the FU is in

− Register result status
p Which FU will write registers

56
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Status Tables
• Instruction status[指令状态]: which of 4 steps the inst is in

− D: Issue
− S: Read operands
− X: Execute stage completion
− W: Write result to registers

• Functional Unit (FU) Status[运算单元状态]: indicates the state
of the FU

− 9 fields for each FU
p B: indicates whether the unit is busy or not
p Op: operation to perform in the unit (e.g., + or -)
p dst/Fi: destination register
p src1,src2/Fj, Fk: source-register numbers
p Qj, Qk: functional units producing source registers src1, src2
p Rj, Rk: flags being set when src1/src2 is ready

• Register Result Status[寄存器结果状态]: indicates which FU will
write each register, if one exits

− Blank when no pending instructions will write that register
57

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Scoreboard Workflow
• Issue: decode insts and check for structural, WAW hazards

− Wait conditions: (1) the required FU is free; (2) no other inst writes to the
same register dst. (to avoid WAW)

• Read operands: only if no RAW hazard
− Wait conditions: all source operands are ready

• Execution: operate on operands
− When execution terminates, notify the scoreboard

• Write result: write reg and update scb
− Wait condition: no other inst/FU is going to read the register dst. of the inst

58

ID EX WB

Issue Rd Ops Execution Write

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

Scoreboard Example

59

• when “fld F6, 34(R2)” is writing

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Scoreboard Example (cont.)
• when “fld F2, 45(R3)” is writing

60
https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Scoreboard Example (cont.)
• 3 cycles after “fsub.d” finished writing

61

fadd.d F6, F8, F2

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf

Summary of Scoreboard
• Basic idea

− Use scoreboard to track data dep. through register

• Main points of design
− Instructions are sent to FU unit if there is no outstanding name

dependence
− RAW data dependence is tracked and enforced by scoreboard

− Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

− Pipeline stalls if any name dependence (WAR or WAW) is
detected

62
http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

Summary of Scoreboard
• Basic idea

− Use scoreboard to track data dep. through register

• Main points of design
− Instructions are sent to FU unit if there is no outstanding name

dependence
− RAW data dependence is tracked and enforced by scoreboard

− Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

− Pipeline stalls if any name dependence (WAR or WAW) is
detected

62
http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

How? Just stall the insts until the RAW hazard can be addressed.

http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

Summary of Scoreboard
• Basic idea

− Use scoreboard to track data dep. through register

• Main points of design
− Instructions are sent to FU unit if there is no outstanding name

dependence
− RAW data dependence is tracked and enforced by scoreboard

− Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

− Pipeline stalls if any name dependence (WAR or WAW) is
detected

62
http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

How? Just stall the insts until the RAW hazard can be addressed.

How? Just recognize the false dependencies as a hazard and stall.

http://users.utcluj.ro/~sebestyen/_Word_docs/Cursuri/SSC_course_5_Scoreboard_ex.pdf

Tomasulo Algorithm
• Key idea: remove dependencies with..

− 1) HW register renaming
p What compiler cannot do

− 2) Data forwarding

63
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, fld#1, F2

fdiv.d F10, F0, fld#1

fadd.d F6, F8, F2

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

hw register
renaming

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Tomasulo Algorithm
• Key idea: remove dependencies with..

− 1) HW register renaming
p What compiler cannot do

− 2) Data forwarding

63
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, fld#1, F2

fdiv.d F10, F0, fld#1

fadd.d F6, F8, F2

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

hw register
renaming

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Tomasulo Algorithm
• Key idea: remove dependencies with..

− 1) HW register renaming
p What compiler cannot do

− 2) Data forwarding

63
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, fld#1, F2

fdiv.d F10, F0, fld#1

fadd.d F6, F8, F2

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

hw register
renaming

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Tomasulo Organization
• Control & buffers are distributed with Function Units (FU)

− FU buffers called “Reservation Stations (RS)”; have pending ops
− Registers in instructions replaced by values or pointers to RS

• Load and Store treated as FUs with RSs as well
• Results to FU from RS, not through registers, over

Common Data Bus (CDB) that broadcasts results to all FUs

64
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo
• Stage-1: Issue
• Get an instruction from FP Op Queue

− If the reservation station is free (no structural hazard), the
control issues such instruction and sends corresponding
operands (renames registers)

p Register are renamed in this step, eliminating WAR and WAW hazards

65
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

fmul F0, Load2, F4fsub F8, F6, Load2
fadd F6, F8, Load2

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo (cont.)
• Stage-2: Execute
• Operate on operands (EX)

− When both operands are ready, it executes; otherwise, it checks
up the CDB for results

p Instructions are delayed here until all of their operands are available,
eliminating RAW hazards

66
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

fld F6, 34(R2)
fld F2, 45(R3)

fmul F0, Load2, F4
fdiv F10, F0, F6

fsub F8, F6, Load2
fadd F6, F8, Load2

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Three Stages of Tomasulo (cont.)
• Stage-3: Write result
• Finish execution:

− ALU operations results are written back to registers and store
operations are written back to memory

p If the result is available, write it on the CDB and from there into the
registers and any reservation stations waiting for this result

67
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

fld F6, 34(R2)

fld F2, 45(R3)

fmul.d F0, F2, F4

fsub.d F8, F6, F2

fdiv.d F10, F0, F6

fadd.d F6, F8, F2

fld F6, 34(R2)
fld F2, 45(R3)

fmul F0, Load2, F4
fdiv F10, F0, F6

fsub F8, F6, Load2
fadd F6, F8, Load2

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Simple Tomasulo Data Structures
• Three main components

− Instruction status
− Reservation stations (Load buffer & FU buffer)

p Scheduling: waiting operands
p Register renaming: remove false dep.

− Register result status

68
http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Reorder Buffer[重排序缓存]

• In the Tomasulo architecture, instructions complete in an
out-of-order

− Exceptions are non-trivial to handle
− Branch misprediction is also difficult to recover from

• Reorder Buffer (ROB) enables to finish instructions in the
program order

− And, allows to free RS earlier
− ROB holds the result of inst between completion and commit

• Key idea of ROB: execute the insts in out of program
order, but make outside world can “believe” it’s in-order

− Solution: Re-Order Buffer+ Architected Register File
p ROB: keep the temporal results (executed in out-of-order)
p ARF: keep the final results (illusion of in-order execution)

69
http://camelab.org/uploads/Main/lecture10-rob.pdf

http://camelab.org/uploads/Main/lecture10-rob.pdf

Tomasulo w/ ROB Organization
• Re-Order buffer is based on Tomasulo
• Just renamed FP register to ARF (Architected Register File)
• Add Re-Order buffer for out-of-order results

− Buffer is managed with two pointers (head & tail)

• RAT (Register Alias Table) keeps the register renaming info

70
http://camelab.org/uploads/Main/lecture10-rob.pdf

http://camelab.org/uploads/Main/lecture10-rob.pdf

Reorder Buffer Procedure[过程]

• Issue
− Allocate reservation station(RS) and Reorder Buffer(ROB), read

available operands

• Execute
− Begin execution when operand values are available

• Write Result
− Write result and ROB tag on CDB

• Commit
− When ROB reaches head, update register
− When a mispredicted branch reaches head of ROB, discard all

entries

71

Another ILP

72
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

Multiple Issue[多发射]

• To achieve CPI < 1, need to complete multiple instructions
per clock
• Solutions:

− Statically scheduled superscalar processors
− VLIW (very long instruction word) processors
− Dynamically scheduled superscalar processors

73

Superscalar[超标量]

• Superscalar architectures allow several instructions to be
issued and completed per clock cycle
• A superscalar architecture consists of a number of

pipelines that are working in parallel (N-way Superscalar)
− Can issue up to N instructions per cycle

• Superscalarity is Important
− Ideal case of N-way Super-scalar

p All instructions were independent
p Speedup is “N” (Superscalarity)

− What if all instructions are dependent?
p No speed up, super-scalar brings nothing
p (Just similar to pipelining)

74
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf

