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The History

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 2UaHE K]

* The growth is based on a fundamental contract between
HW and SWI15 2 T~ 4 hE A 2 [8] B B ]
- HW may change radically “under the hood”
o Old SW can still run on new HW (even faster)
- HW looks the same to SW, always speaking the same language
o The ISA, allows the decoupling of SW development from HW dev
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What is ISA?

e Instruction Set == A set of instructions
e The HW/SW contract[Z A F i3]

— Compiler correctly translates source code to the ISA[%% 1% 28]
— Assembler translates to relocatable binary[JC %25 ]

— Linker solidifies relocatables into object code[i%##%]

— HW promises to do what the object code says[figif4$47]

* Not in the “contract”: non-functional aspects[dE7}1¥]
- How operations are implemented
— Which operations are fast and which are slow and when
- Which operations take more power and which take less
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ISA + p-arch = Arch

 “Architecture” = ISA + microarchitecture Problem
Algorithm
° |S AH:E /&.\%;ﬂg*@] Program/Language
. Runtime System
— Agreed upon interface between sw and hw WSA'(A B
rchitecture
o SW/compiler assumes, HW promises Microarchitecture
— What the software writer needs to know to write ';‘i’f'c:"s
and debug system/user programs Electrons

 Microarchitecture (p-arch)[#Ze 4]

— Specific implementation of an ISA
o Implementation of the ISA under specific design constraints and goals

— Not visible to the software
[ e R T SR
H-arch
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ISA vs. u-arch (cont.)

* Implementation (p-arch) can be various as long as it
satisfies the specification (ISA)

— Add instruction vs. Adder implementation

o Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

— x86 ISA has many implementations: 286, 386, 486, Pentium,

Pentium Pro, Pentium 4, Core, ...

* p-arch usually changes faster than ISA
- Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many p-archs
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What Makes a Good ISA?

* Programmability[A] 4 FE 1]

— Easy to express programs efficiently?

* Implementability[ 7] S 4]
— Easy to design high-performance implementations?

— More recently
o Easy to design low-power implementations?
o Easy to design high-reliability implementations?
o Easy to design low-cost implementations?

e Compatibility[3f 75 14]
— Easy to maintain programmability (implementability) as
languages and programs (technology) evolves?

- x86 (IA32) generations: 8086, 286, 386, 486, Pentium,
Pentiumll, Pentiumlll, Pentium4, Core?2...
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Existing ISAS

 RISC: reduced-instruction set computer[f & {5 2 %E]
— Coined by Patterson in early 80’s
— RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
— Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

* CISC: complex-instruction set computer[& 44454 4]
— Term didn’t exist before “RISC”
— Examples: x86, VAX, Motorola 68000, etc.
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Performance Argument[#: 48]

* Performance equation:
— (instructions/program) * (cycles/instruction) * (seconds/cycle)

* CISC

— Reduce “instructions/program” with “complex” instructions
o But tends to increase CPI or clock period

— Easy for assembly-level programmers, good code density

- ldea: give programmers powerful insts, fewer insts to complete
the work

* RISC

— Improve “cycles/instruction” with many single-cycle instructions

— Increases “instruction/program”, but hopefully not as much
o Help from smart compiler
- |dea: compose simple insts to get complex results

CISC Assembly: RISC Assembly:

IMULX, Y LOAD A, X
LOAD B, Y

S\ PROD A, B ‘
:‘ ivﬂmﬁnﬁ 1 1 STORE x’ A w ' ‘IE i




CISC vs. RISC

* Instructions[{§4]: multi-cycle complex vs. single-cycle
reduced

* Addressing modes[F- LA 3]: many vs. few

* Encoding[Z%f4]: many formats and lengths vs. fixed-length
instruction format

* Performance[%§E]: hand assemble to get good
performance vs. reliance on compiler optimizations

* Registers[# f725]: few vs. many (compilers are better at
using them)

* Code size[ftiLK/M]: small vs. large
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CISC vs. RISC (cont.)

e The war started in mid 1980’s

— CISC won the high-end commercial war (1990s to today)
o Compatibility a stronger force than anyone (but Intel) thought

- RISC won the embedded computing war

* CISC: winner on revenue[ i fEY 2]

— X86 was the first 16-bit microprocessor
o No competing choices = historical inertia and “financial feedback”

- Moore’s law was the helper
o Most engineering problems can be solved with more transistors

* RISC: winner on volume[ 7t 5]
— First ARM chip in mid-1980s = 150 billion chips
- Low-power and embedded devices (e.g., cellphones)

(3R ¢
(B) 7 WL
\% ) L
avus/  SUN YAT-SEN UNIVERSITY ‘ (A




x86 =2 ARM =2 RISC-V[#t:47 o (735 %)

* But now, things are changing ...
— Fugaku: ARM-based supercomputer (Top2)
— Apple: ARM-based M1/2 chip
— Amazon: AWS Graviton processor

e RISC-V: a freely licensed open standard (Linux in hw)

— Builds on 30 years of experience with RISC architecture, “cleans
up” most of the short-term inclusions and omissions
o Leading to an arch that is easier and more efficient to implement
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What is RISC-V?

e Fifth generation of RISC design from UC Berkeley[ 5 F1.4]
* A high-quality, license-free, royalty-free RISC ISA[ H H]
* Experiencing rapid uptake in both industry and academia

PRI & JE]
* Supported by growing shared software ecosystem[*E#5]

* Appropriate for all levels of computing system, from
microcontrollers to supercomputers[i¥id]

— 32-bit, 64-bit, and 128-bit variants @ 0RAPER s T DEVER e
A\ Mellanox BB Microsoft WM ~ . SKY SVI cortus
® : : m’-cron SAMSUNG SiFive ., Rambus™™
Standard maintained by g GO@g,e ey S 9
_ . _ . P RISC Foundation: 65+ Members
non-profit RISC-V Foundation A4 o b i IS
G @smco" BLATTICE WS ) runtime Yantmcro  @dosi
: A RISC ? capoos DHE s u" RiNAMc Tperas
https://riscv.org/ ‘ ad & @ —" S
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https://riscv.org/

RISC-V (cont.)

* The free and open RISC instruction set architecture

- Enabling a new era of processor innovation through open
standard collaboration[1]Ji& K]

— RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

What’s Different About RISC-V?

(“RISC Five’, fifth UC Berkeley RIS
« Free and Open FREE . Slmple Elegant

o Anyone can use 25 years later, learn
o More competition

= More innovation
o Pick ISA, then vendor

. For Cloud & Edge

%3 from 1st gen RISCs*

Axs. O Farsimpler than ARM and x86
w J o Can add custom instructions

\ o Input from software/architecture
o From large to tiny Y. experts BEFORE finalize ISA
computers S, Community designeq

o RISC-V Foundation =
« Secure/Trustworthy @ owns RISC-V ISA % .
(0] DeS|gn own secure core @
o Open cores = no secrets oY .

16




The RISC-V Architecture[ze#

* 32, 64-bit general purpose registers (GPRs)
— called x0, ..., x31 (x0 is hardwired to the value 0)

» 32, 64-bit floating point registers - FPRs (each can hold a
32-bit single precision or a 64-bit double precision value)
- called 1O, 1, ..., f31

» A few special purpose registers (example: floating point
status)

* Byte addressable memories with 64-bit addresses
e 32-bit instructions

* Only immediate and displacement addressing modes (12-
bit field)

Data transfer operations: Id, lw, b, |h, flw, sd, sw, sb, sh, fsw, ...

Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, ...

Control operations: beq, bne, blt, jal, jalr, ...
*mxg Floating point operations: fadd, fsub, fmult, fsqrt, ...

440 B



RISC-V Instructions[#s 4

* All RISC-V instructions are 32 bits long, have 6 formats
— R-type: instructions using register-register
- |-type: instructions with immediates, loads
— S-type: store instructions
- B-type: branch instructions (beq, bge)
— U-type: instructions with upper immediates
- J-type: jump instructions (jal)

31 25 24 20 19 15 14 12 11 76 0
funct? rs2 rsl funct3 rd opcode R
imm|[11:0] rsl funct3 rd opcode |
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode S
imm[12[10:5] rs2 rsl funct3 | imm[4:1|11] opcode B
imm|[31:12] rd opcode U
imm[20[10:1|11] imm[19:12] rd opcode

18 ’iﬂq
https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf 4



Example

31 25 24 20 19 15 14 1211 76 0
funct7 rs2 rsl funct3 rd opcode

* Fields of R-type
— opcode: partially specifies what instruction it is

— funct7+funct3: combined with opcode, these two fields
describe what operation to perform

- rsl (source register #1): specifies register of first operand
- rs2: specifies second register operand

- rd (destination register): specifies register which will receive
result of computation

o Each register field holds a 5-bit unsigned integer (0-31) corresponding to
a register number (x0-x31)

e add x18,x19,x10

0000000 rs2 rsl 000 rd 0110011

add rs2=10 rsl=19 add rd=18 Reg-Reg OP
19
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Executing an Instruction[#47#§4]

* Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

— Get the instruction[#:E$5 4]

o add x18,x19,x10 Program counter
— What instruction is it?[#:/E £

- add l Next instruction
— Gather data read[##:1E%k] FCiCh

o R[x19], R[x10] Decode
— Perform operation[#1F] ¢

o calc R[x19]+R[x10] Fxeaye
— Store result[45 ] Ri'uh

o save into x18

20 IR

https://inst.eecs.berkeley.edu/~cs61c/resources/sul8_lec/Lecturell.pdf




Executing an Instruction[#47#§4]

* Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

— Get the instruction[#:E$5 4]

Program counter

—What instruction is it ?[#/EfF]

|
: o add i l Next instruction
—iGather data read[#:1E%L] I\\ FCiCh
' @ R[x19], R[x10] 7Y Decode
- Perform operation[E:/E] "~ |
o calc R[x19]+R[x10] Execule
— Store result[45 1] Ri'uh

o save into x18

20 wi@i
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Five-Stage Execution(§C.1)[5Hr B AT

* Instruction fetch (IF)[H($541/(IM: instruction memory)

— Fetch the next instruction from memory (and update PC to the
next sequential instruction)

* Instruction decode (ID)[/#15]/(REG: register fetch)

— Decode the inst and read the registers corresponding to register
source specifiers

» Execution/effective address (EX)[#171/(ALU)

— Operate on the operands prepared in the prior cycle

* Memory access (MEM)[Vi#%]/(DM: data memory)
— Load: read using the effective address
— Store: write to memory ) —
Decode <

* Write-back (WB)[[5 5]/(REG) - P

— Writes the result into the register Execute =
CPU Main memo ry (RAM)

‘ ' ‘| J‘
(2 £ ‘l’
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Examples

» Arithmetic/logic instructions: R-type rd, rs1, rs2
— |IF: fetch instruction
— ID: read registers rs1 and rs2
— EX: compute result (use ALU)
- WB: write to register rd

 Load instructions: lw rd, c(rs1)

— |IF: fetch instruction

— ID: read register rs1

— EX: use ALU to compute memory address = content of rs1 + ¢
- MEM: read from memory

- WB: write to register rd

e Store instructions: sw rs2, c(rs1)
— |F: fetch instruction
— |ID: read registers rs1 and rs2
— EX: use ALU to compute memory address = content of rs1 + ¢
— WB: write value of rs2 to memory at address rs1+c




Why Five Stages?

* Could we have a different number of stages?
- Yes, and other architectures do

* So why does RISC-V have five if instructions tend to idle
for at least one stage?

— The five stages are the union of all the operations needed by all
the instructions

— There is one instruction that uses all five stages: load (Iw/Ib)

R-type rd, rsi, rs2 lw rd, c(rs1)
IF: fetch instruction IF: fetch instruction
ID: read registers rs1 and rs2 ID: read register rsl
EX: compute result (use ALU) EX: use ALU to compute address =rsl1 + ¢
WB: write to register rd MEM: read from memory

WB: write to register rd

ﬂn‘ﬂi




Pipelining[#4- /K]

* Pipelining: an implementation technique whereby
multiple instructions are overlapped in execution
— Just like an assembly line

— Takes advantage of parallelism that exists among the actions
needed to execute an instruction

— Pipelining is the key technique to make fast processors

Stage ( Stage :( Stage
1 A 2 A 3

Instr. No. Pipeline Stage
1 F | ID | EX [MEM wB
2 IF | ID | EX [MEM| WB
3 IF [ ID | EX [MEM| WB
4 IF | ID | EX [MEM
5 IF | ID | EX
g;"c‘;'; 1|2(3|a|5|6]|7




Visualize Pipelining[#x?]

Cycle 1 Cycle 2 Cycle 3 Cycle4  Cycleb Cycle6  Cycle 7 Cycle 8

add $4, $5, $6 | M —H—REG -—4%_._ DM [— WB
and $1, $2, $3 IM =_ REG =_‘B—-— DM =— WB
Iw $3, 300($0) IM | REG —‘%_.— DM ;— WB
sub $7, $8, $9 IM : REG : B I DM —»|:|—- WB

IM (Fetch) ID (Reg) EX (ALU) DM (memory) WB

Cycle 1 | add $4, $5, $6 |

Cycle 2 | and $1, 52, $3 \\ add $4,95,96 |
N\ NN

Cycle 3 | Iw $3, 300($0) \U and $1, $2, $3 [ add $4, $5, $6 N

N N
Cycle 4 | subs7, 58,59\ [N w$3,300(80) ~ [ and$1,82,63 ([ add 84,85, 6
N\ N\ NG

0 \ J. A |
\ N / ;Tv:::mﬁ % 25 v"lﬂi




Pipelining Effects[#i &

* If stages are perfectly balanced, then the time per inst on

the pipelined processor (assuming ideal conditions)
Time per instruction on unpipelined machine

Number of pipe stages

e Speedup from pipelining equals the number of stages

- An assembly pipeline with n stages can ideally produce cars n
times fast

— Instruction exit: every n cycles vs. every single cycle

* Pipelining reduces the avg execution time per inst
— Baseline of multi clock cycles/inst: pipelining reduces CPI

— Baseline of single clock cycle/inst: pipelining decreases the
clock cycle time

(3R ¢
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Pipelining Effects (cont.)

* Pipelining exploits parallelism among the insts[F17]
- Not visible to the programmer

* Pipelining improves instruction throughput rather
instruction latency[#2 & & ]
— Goal is to make programs, not individual insts, go faster

- Single instruction latency
o Doesn’t really matter, billions of insts in a program
o Difficult to reduce anyway
- In fact, pipelining usually slightly increases the execution time
of each inst

Cycle 1 Cycle 2 Cycle 3 Cycle4  Cycle5 Cycle 6 Cycle 7 Cycle 8

add $4,$5,96 | m | I ‘B_'

REG
o

]

— s o}

sub $7, $8, $9 REG —BH ’. Viﬁl
| " “
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Performance Issues in Pipelining|fal ]

* Impossible to reach the ideal speedup (= n stages)

— Usually, the stages will not be perfectly balanced[Ff A~ Fj]
o The clock can run no faster than the time needed for the slowest
pipeline stage
— Furthermore, pipelining does involve some overhead[#i4MT4H]
o Pipeline register delay + clock skew[i} &1

Example: one unpipelined processor has 1ns clock cycle and
instructions are ALUs (4 cycles, 40%), branches (4 cycles, 20%),
memory (5 cycles, 40%). Suppose that pipelining the processor

adds 0.2ns overhead to the clock. How much pipelining speedup?
- Unpipelined processor, avg inst exe time = clock cycle x avg CPl = 1 ns x (40%x4 +

20%x4 + 40%x5) = 4.4ns
- Pipelined processor, avg inst exe time=1+0.2ns=1.2 ns

(3R ¢
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Dependences and Hazards[{&#i 1§ &

* Dependence[{kii]: relationship between two insts
— Data: two insts use same storage location
— Control: one inst affects whether another executes at all
- Not a bad thing, programs would be boring without them

- Enforced by making older inst go before younger one
o Happens naturally in single-/multi-cycle designs
o But notin a pipeline

* Hazard[E [5;]: dependence & possibility of wrong inst
order
— Effects of wrong inst order cannot be externally visible
o Stall: for order by keeping younger inst in same stage
— Hazards are a bad thing: stalls reduce performance

‘IEJ(
https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/04 pipeline.pdf 44



Pipeline Hazards (§C.2) ik &K

* Hazards prevent next instruction from executing during its

designated clock cycle[#it5$447]
— Hazards reduce the performance from the ideal speedup gained

by pipelining
 Three classes of hazards

— Structural hazards[45#4]: HW cannot support some combination
of instructions

- Data hazards[%#z]: An instruction depends on result of prior
instruction still in the pipeline

— Control hazards[#=il]: Pipelining of branches & other
instructions stall the pipeline until the hazard bubbles in the

pipeline

( )
(B) T X 2 g
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Instruction-Level Parallelism(§3.1)

* [LP: overlap execution of instructions[{& % 2 F:17]

— Overlap among instructions[E 2]
o Pipelining or multiple instruction execution

- Fine-grained parallelism[4H¥i ]
o In contrast to process-/task/thread-level parallelism (coarse-grained)
* Pipelining: exploits ILP by executing several instructions
“in parallel”
— Overlaps execution of different instructions

— Execute all steps in the execution cycle simultaneously, but on
different instructions

* Pipeline CPI = Ideal pipeline CPI + stalls due to hazards
— Structural stalls + Data hazard stalls + Control stalls

slﬂl
https://courses.cs.washington.edu/courses/cse471/09sp/lectures/pipeliningBasics.pdf 44



Instruction-Level Parallelism(cont.)

» Approaches to exploit ILP[F]H /%]

— Rely on hardware to help discover and exploit the parallelism
dynamically

- Rely on software technology to find parallelism, statically at
compile-time

* What determines the degree of ILP?[F1TE]

- Dependences: property of the program
- Hazards: property of the pipeline (or the architecture)

* ILP challenge: overcoming data and control dependencies

h;’@i




Techniques to Improve ILP

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls 2
Simple branch scheduling and prediction Control hazard stalls C2
Basic compiler pipeline scheduling Data hazard stalls C2 32
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences Ci
Loop unrolling Control hazard stalls 3.2
Advanced branch prediction Control stalls 3.3
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 3.4
antidependences
Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory
[ssuing multiple instructions per cycle Ideal CPI R
Compiler dependence analysis, software pipelining,  Ideal CPI, data hazard stalls H.2, H.3
trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

(O *
() F b X %
SUN YAT-SEN UNIVERSITY
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Types of Dependences[#&i#is#)

* True data dependences: may cause RAW hazards[##]

— Instruction Q uses data produced by instruction P or by an
instruction which is data dependent on P

— Easy to determine for registers but hard to determine for
memory locations since addresses are computed dynamically
o Example: is 100(R1) the same location as 200(R2)?

* Name dependences: two instructions use the same name
but do not exchange data (no data dependency)[44 F]

— Anti-dependence[ ¢ fkii]: instruction P reads from a register (or
memory) followed by instruction Q writing to that register (or
memory). May cause WAR hazards

— Output dependence(i H {&#5i]: instructions P and Q write to the
same location. May cause WAW hazards.

A‘l« =t \ ¥
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Example

Loop:

fld

fadd.d

fsd

fld

fadd.d

fsd

addi

bne

f0, O(x1)
f4, fO, 2
f4, 0(x1)
f0, -8(x1)
f4, fO, 2
f4, -8(x1)
x1, x1, #-16

x1, x0, loop

* Data dependence
- RAW: read after write

* Anti-dependence
- WAR: write after read

* Output dependence
- WAW: write after write

J

/
¥
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Example

Loop:

fld

fadd.d

fsd

fld

fadd.d

fsd

addi

bne

f0, 0(x1)
f4, 10, f2
f4, 0(x1)
f0, -8(x1)
114, fo, f2
f4, -8(x1)

x1, x1, #-16

x1, x0, loop

* Data dependence
- RAW: read after write

* Anti-dependence
- WAR: write after read

* Output dependence
- WAW: write after write

J

/
¥
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Example

Loop:  fld f0, 0(x1) * Data dependence
— RAW: read after write

* Anti-dependence J
fsd f4, 0(x1) — WAR: write after read

fl f0, -8(x1 * Qutput dependence )
~ WAW: write after write *

fadd.d f4, f0, f2

fadd.d 114, fo, f2
fsd f4, -8(x1)
addi x1, x1, #-16

bne x1, x0, loop

A‘a« =t \ ¥ '
Y o (N MY
\ P & » ~
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Example

loop: fid  fooxt) +  * Datadependence
\ — RAW: read after write
fadd.d f4, o, 2 I\ .
1y * Anti-dependence J
fsd f4, 0(x1) ,' ‘l — WAR: write after read
fid  fo,8pa) p | ° Outputdependence L7
7 - WAW: write after write

fadd.d 114, fo, f2«=
fsd f4, -8(x1)
addi x1, x1, #-16

bne x1, x0, loop

[ ~‘y * 3 ¥
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Example

loop: fid  fooxt) +  * Datadependence
\ — RAW: read after write
fadd.d f4, o, 2 I\ .
1y * Anti-dependence J
fsd f4, 0(x1) ,' ‘l — WAR: write after read
fid @0 sy p | ° Output dependence L7
7 - WAW: write after write

fadd.d f140, f0, f2 «=
fsd f4, -8(x1)
addi x1, x1, #-16

bne x1, x0, loop

[ ~‘y * 3 ¥
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Register Renaming[&E Ay ]

Loop: fld f0, 0(x1) N * How to remove name
\ dependences?
|
FRELE (e i) 172 1y - Rename the dependent
fed £ 0(x1) ’| || uses of fO and f4
I
fld f8) -8(x1 ,
/

fadd.d fl90, 8, f2 «=
fsd 9, -8(x1)
addi x1, x1, #-16

bne x1, x0, loop

[ A‘y * 3 ¥
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Register Renaming[&E Ay ]

Loop: fld f0, 0(x1) * How to remove name
dependences?
fadd.d 4, 10, 12 - Rename the dependent
uses of fO and f4

fsd f4, 0(x1)
fld 8, -8(x1)
fadd.d fl90, 18,12
fsd f9, -8(x1)
addi x1, x1, #-16

bne x1, x0, loop

A‘l* * \ ¥
(< El ‘l’ IR J
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Register Renaming[&E Ay ]

Loop: fld f0, 0(x1) * How to remove name
X dependences?
fadd.d 4, 10, 12 - Rename the dependent
X uses of fO and f4

fsd f4, 0(x1)
fld 8, -8(x1) X
fadd.d fl90, 18,12

fsd 19, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

[ A‘y * 3 ¥
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Control Dependences[# &k i]

* Determine the order of instructions with respect to
branches[FHX} 53 > 14582 i 7]
if P1then S1; S1iscontrol dependent on P1 and
if P2then S2; S2is control dependent on P2 (and P1 ??)

* An instruction that is control dependent on P cannot be
moved to a place where it is no longer control dependent
on P, and visa-versa[AsA] #3h]

Example 2:
Example 1: add x1, x2, x3
add x1, x2, x3 beq x12, x0, skip
beq x4, x0,L sub x4, x5, x6
sub x1, x5, x6 add x5, x4, x9
L: ... skip:
or X7, X1, x8 or X7, X8, x9
or” depends on the execution flow possible to move “sub” before

"beq” (if x4 is not used after skip)




Branch Prediction(§3.3) 4 3 i)

* Branches hurt pipeline performance
— Branch hazards and stalls

e Static branch prediction[&# 72 32 Hl]
— The default is to assume that branches are not taken
- May have a design which predicts that branches are taken

 Reasonable to assume that[{x %] add  x1,x2, x3
— Forward branches are often not taken beq x4, 0, L
( sub x1, x5, x6
— Backward branches are often taken L: ...
* More predictors based on branch orx7, x1, x8
directions add x1,x2, x3

predicting the probability of branching E;q Z'zxi'oxzkip

— Dynamic predictors rely on the history to sub x4, X5, x6
_ . predict the future branch direction

— Profiling is the standard technique for éSkip:

ﬂn‘ﬂi



Dynamic Branch Prediction(§C2.7)[3h %]

* Performance depends on the accuracy of prediction and
the cost of miss-prediction[{4: Rz H]

* The simplest branch prediction scheme: Branch
Prediction Buffer[ /)32 Fiiil| 2217

- 1-bit table (cache) indexed by some bits of the address of the
branch instructions (can be accessed in decode stage) ->

hashing[+g4 it R AR B

— Record whether or not the branch was taken last time — may
have collision[{4%]

- Will cause two miss-predictions in a loop (at start and end of

loop)
g Taken Not taken
- PN Not taken
PO indexind I Predict taken Predict untaken
/ — 1 0
taken/not -take — < k
= o Taken b




Performance[4:gg]

* Miss prediction rate for three different predictors

80/0 e e e e e s i e e e S S e S s s s 2 e e e

Conditional branch misprediction rate

0%

3
Local 2-bit predictors

60/o - e e e e e e e e e e e e e e e e e e e ee e e e e e s s e e es e e es e e ke e me s e ee s sme s emeas e emas e aeane

I
Correlating predictors

A

Tournament predictors

0

I I I | I | I I | | I

I | I | I

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Total predictor size

40
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Branch Target Buffers(§3.9)[ H k=X

* To increase instruction fetch bandwidth
— Store the address of the branch’s target, in addition to the prediction

I PC of instruction to fetch
Look up Predicted PC

No: instruction is not
= predicted to be a taken
branch; proceed normally

Yes: then instruction is taken branch and predicted
PC should be used as the next PC

e Can determine the target address while fetching the branch
instruction

- How do you even know that the instruction is a branch?
— Can’t afford to use wrong branch address due to collision -- why?

Al QE | f (
(&) Tax2 41 UNGJ‘




Branch Prediction & Pipelining

e Assuming that branch condition and target are resolved in ID
stage

Send PC to memory and
branch-target buffer

Mispredicted branch,
n kill fetched instruction;
restart fetch at other continue execution
target; delete entry

EX

* A similar chart may be drawn if branch condition/target are
resolved in EX

42 IR




Instruction Scheduling[#& 4

e Scheduling: act of finding independent instructions
— Static: done at compile time by the compiler (sw)

— Dynamic: done at runtime by the processor (hw)
o Scoreboard, Tomasulo’s algorithm, Reorder Buffer (ROB)

Static Scheduling Dynamic Scheduling

Application Application
0S 0S
Compiler Firmware Compiler Firmware
—
CPU 1/0 CPU 1/0

Memory Memory

Digital Circuits Digital Circuits

Gates & Transistors Gates & Transistors

[
https://acg.cis.upenn.edu/milom/mini-cour§&-March-2013/lectures/08 scheduling.pdf ﬂ’ ‘IE A
http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
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Compiler Technigues to Expose ILP

* Scheduling[ifJF]

— To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be
overlapped in the pipeline[E Z]

— To avoid a pipeline stall, the execution of a dependent inst must
be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[/) %]

* A compiler’s ability to perform the scheduling depends on
— Amount of ILP in the program[f& /5514
— Latencies of the functional units in the pipeline[f# 445 ]

* Compiler can increase the amount of availablility of ILP by
transforming loops[fa ¥ #]

h;’@i



Loop Dependences(§3.2) (B #i]

* [B1There is a loop carried
for (i=999; i >= 0; i = i-1) dependence since the
x[i+1] = x[i] + y[il; statement in an iteration
depends on an earlier iteration

for (i=999; i >=0;i=i-1)  [t]There is no loop carried
x[i] = x[i] +s; dependence

* The iterations of a loop can be executed in parallel if
there is no loop carried dependence

( )
(B) T X 2 g
&/ SUN YAT-SEN UNIVERSITY »y ‘




Example: Loop Transformation[#& 5 4% #)

Loop: fld fo, 0(x1) //fO=array element
for (i=999; i >= 0; i = i-1) fadd.d f4,f0,f2  //add scalarin f2
fsd f4, 0(x1) //store result
addi x1,x1,-8 //decrement pointer
//8 bytes (per DW)
bne  x1, x2, Loop//branch x1 I=x2

X[i] = x[i] + s;

* Assume the latencies of FP operations
— 3 cycles if an FP ALU op follows and depends on an FP ALU op
— 2 cycles if an FP store follows and depends on an FP ALU op
— 1 cycle is an FP ALU op follows and depends on an FP load
— 1 cycle if a branch follows and depends on on Integer ALU op

AR [2

g@ 9 b U L, B
\ ) y
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&

Basic Scheduling|fai i,

* Re-order the statements
— Actual work: load, add and store
- loop overhead: addi, bne, two stalls

cycle cycle
Loop: fld fo, O(x1) 1 Loop: fld fo, O(x1) 1
stall 2 addi x1,x1,-8 2
fadd.d f4, f0, f2 3 fadd.d f4, f0, {2 3
stall 4 stall 4
stall 5 stall 5
fsd f4, 0(x1) 6 fsd f4, 8(x1) 6
addi x1,x1,-8 7 bne  x1, x2, loop 7

stall 8

7 clock cycles per iteration
bne x1, x2, loop 9

9 clock cycles per iteration

h;’@i




Loop Unrolling[#&F & T

* Simply replicates the loop body multiple times, adjusting
the loop termination code[ & fill-> & %]
— Increases the number of insts relative to the branch and
overhead insts[3% G #3524k
- Eliminates branches, thus allowing insts from different iterations
to be scheduled together[# %4> 52, JL [ %]

Loop: fld fo, 0(x1) Loop: fld fo, 0(x1)
fadd.d f4, f0, f2 fld f6, -8(x1)
fsd f4, 0(x1) fld fo, -16(x1)
fld f6, -8(x1) fld f14, -24(x1)
fadd.d f8, f6, f2 fadd.d f4, f0, f2
fsd f8, -8(x1) fadd.d f8, 6, f2 A total of 14 clock cycles
fid f0, -16(x1) fadd.d f12, f0, f2 (3.5 cycles per iter)
fadd.d 12, fO, f2 fadd.d f16, f14, 2
fsd f12, -16(x1) fsd f4, 0(x1)
fld f14, -24(x1) fsd f8, -8(x1)
fadd.d f16, f14, {2 fsd f12, -16(x1)
fsd f16, -24(x1) fsd f16, -24(x1)
addi  x1, x1, -32 addi  x1, x1, -32

bne  x1,x2, loop bne  x1,x2, loop ,,;‘Ei




Unrolling Limitations[FR i)

* The gains from loop unrolling are

limited by
. Loop: fld
— A decrease in the amount of fld
overhead amortized with each unroll fld
. . . fld
o Unrolled 4 times = 8 times: % cycle/iter fadd.d
- % cycle/iter fadd.d
— Growth in code size caused by ]‘:aggj
. d .
unrolling fsd
o May increase in the inst cache miss rate fsd
) ) . fsd
o May bring register pressure (more live e
vaIues) addi
— Compiler limitations bne

o Sophisticated transformations increases
the compiler complexity

fO, O(x1)

f6, -8(x1)
fo, -16(x1)
f14, -24(x1)
f4, fO, f2

f8, f6, f2
f12, fo, f2
fie, f14, f2
f4, 0(x1)

f8, -8(x1)
f12, -16(x1)
f16, -24(x1)
x1, x1, -32
x1, x2, loop

h;’@i



Paper: Loop Rerolling

pre
.Ltmp32364: ‘
movss (%rdx,%rcx,4), Sxmm2
movss x4 (%rdx,%srcx,4) , sxmm3 |
cvtss2sd %sxmm2, Sxmm2
movl (%rax,%rcx,4), %esi
mulsd (%rbx,%rsi,8), %xXmm2
movl 0x4(%rax,%rcx,4), sesi
cvtss2sd %xmm3, Sexmm3
mulsd (%rbx,%rsi,8),  %xmm3
subsd Fxmm2 , Ssxmm1
subsd %xXmm3, Ssxmml ]
addq $0x2, %rex
cmpq %rex, %rbp
jne .Ltmp32364

.

exit

backedge

pre
.Ltmp32364: ‘
movss (%rdx,%rcx,4),
< cvtss2sd %sxmm2, %xmm2
loop rerolling | movt  (%rax,%rcx,4),  %esi
mulsd (%rbx,%rsi,8),
subsd %XxXmm2,
addq $0x1,
cmpq %rex,
jne .Ltmp32364
exit backedge

LLVM & BOLT

RolIBin

Disassembl

g (1)2101 ¥ Loop-locator

3 0L CFG

5 construction Iter-prober

- Profile data T

5 ) ‘[ analysis ]‘ Inst-assigner

5 Code-transformer
optional Profiler|

Section
readjustment

- BIN

Binary
rewriting
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Code size is an i g concern on d

systems, ranging from embedded devices to cloud servers.
To address the issue, lowering memory occupancy has be-
come a pnonly in dcvelopmg and dcploymg applications,
and have been
proposed to rcduct gram footp i However, prior arts
are generally dcahng with source codes or intermediate rep-
resentations, and thus are very limited in scope in real sce-
narios where only binary files are commonly provlded To
fill the gap, this paper p a novel cod

tion Rol1Bin to reroll loops at binary level. RollBtn first
locates the unrolled loops in binary files, and then probes
to decide the unrolling factor by identifying regular mem-
ory address patterns. To reconstruct the iterations, we pro-
pose a customized data dependency analysis that tackles the
chauenges brought by shuffled mslmcuons and loop-carry

P

ACM Reference Format:

Tianao Ge, Zewei Mo, Kan W, Xianwei Zhang, and Yutong Lu.
2022. RollBin: Reducing Code-Size via Loop Rerolling at Binary
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1 Introduction

In the past decades, comp prog; have been conti

ously gaining new features and growing in size and complex-
ity, which together drive the non-stop need for higher com-
puting horscpower and Iarger memory capamly [2,14]. As
such, for and ly utiliz-

dencies. Next, the are rolled up ing lhe precious resources, especmlly lhe memory space and
lhrough instruction removal and update, which are g lly "d‘:"':g 8 p lon
reverting the normal unrolling procedure. The ev i all g from servers to embedded

on standard SPEC2006/2017 and MiBench demonstrate that
Rol1Bin effectively shrinks code size by 1.7% and 2.2% on
average (up to 7.8%), which respectively outperforms the
state-of-the-arts by 31% and 38%. In addition, the use cases

realistic applicati ifest thatRol1Bin

of
can b= applicable in practices.

CCS Concepts: « Software and its engineering — Com-
pilers.

s)’slems For embedded and lnlemet»of ~Things (IoT) devices,
code volume is an overwhelming concern, as it directly im-
pacts the chip area and cost, and further influences the overall
performance and power [29, 42]. On larger machines, such
as desktops, servers and whereas memory
capacity is typically much less hmllu‘L code size is nonethe-
less critical for instruction cache (I-cache) performance [43].
Recently, there has been an increasing trend toward unifying
libraries, tools, and frameworks to support cross-architecture

[6, 20], including servers and edge devices, which
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powerfu.l servers to constrained dcvnces

Classical techniques, including variable-length instruc-
tion ding [16, 30], code compression [25, 44], and ISA
modification [45], are designed to reduce the size of code.
Program footprint can also be lessened by compiler-based
similar code merging [34] and dead-code eliminating [21, 26].




Dynamically Scheduled Pipelines (§3.4)

* Key idea: allow instructions behind stall to proceed

fdiv FO, F2, F4
fadd F10, FO, F8 > RAW -> Stall

fsub F12, F8, F14 __, No dependency

— Enables out-of-order (000, O3) execution
o Can lead to O3 completion

* Hardware rearranges instruction stream to reduce stalls

Instruction streams 1-wide 2-wide 1-wide 2-wide

A . Load |6[R2] In-Order In-Order Out-of-Order Out-of-Order
= Loa
B:R3 =(R)+ R4 g ® @ @ ®©
C:R6 = Load 8[R9] : 3 § g
DRS= R2- 4 EO §= % e
E:R7 = Load 20[R5) | Execute 3 i3 =3 =} ©
FRD=R4- | - § @ ®F E
G:BEQRA#0 Z é e @ ®
4 © ® 5 cycl
¢ Dependency graph cycles
: @ 06 ©
=) ® © 7 cycles
C 8 cycles

10 cycles

\ iﬁi
http://camelab. org/uploads/Ma|n/IectureO8 scoreboard.pdf Py
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Out-of-order[ELFHAT)

* How can O3 achieve performance benefits?
- Hardware rearranges instruction stream to reduce stalls

* Any problems of 037

— Hazards! Especially for register dependencies

* How does the O3 work?
- Step1l: fetch many instructions into instruction window
- Step2: rename regs. to avoid false deps. (WAW and WAR)

— Step3: execute instructions as soon as dependencies (registers
and memorv) are known

Dynamic Renamed Dynamically
Instruction Instruction Scheduled
Stream Stream Instructions

Static —
Program

f
Out-of-order = | L
» !G z

http://camelab.org/uploads/l\-/lgin/IectureOS—scoreboard.pdf

! |
|
|
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O3 Pipeline
* Split the ID stage into

:::lesupeatCh DSUB R4, R1, RS I h I I

* Instructions wait in a queue and may move to the EX

stage (issued) out of order
— A new kind of structural hazard : Instruction buffer is full

Dispatch: Accumulate
decoded instrs in buffer Issue: Buffer sends instrs

in-order regfile  down rest of pipeline out-
of-order

| B jJ
P
‘I@» Decode g Execute £ Mem

o3 D

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf

o
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Scoreboard[id /3R]

e Using Scoreboard (§C.7):
— Dates to the first supercomputer, the CDC 6600 in 1963

* To track the flow of the instrs, register, and function units
— Check which Datapath components are using / can be used

— Find out which instruction could be executed without hazards
N

WE|

)
-
)

HOME ] GUEST

TMEQUTS  QUARTER | e

:DOWN i :YDS.TOGO BALLON -i |

rrrrr

o [
http://cameIab.org/uploads/ﬁlﬂin/IectureOS—scoreboard.pdf u' !lﬂti
https://sportspectator.com/fancentral/football/scoreboard.html
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A Scoreboard Architecture

* Int unit
, FP mult.
Register
file ; FP mult.
1 FPadd 7
H ....... > DiV. ...........
eS| E

TFID Wait queue [*""" ’
* The scoreboard is responsible for instruction issue and

execution, including hazard detection. It is also controlling the
writing of the results

* The “scoreboard” consists of 3 tables to keep track of
execution progress and the associated intelligence to
determine when to dispatch instructions

* One entry (buffer) in the “wait queue” is associated with each
functional unit

55 i
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Scoreboard Information

* Three main components/tables

— Instruction status
o Which step the instruction is in

— Functional unit status
o Which state the FU is in

— Register result status
o Which FU will write registers

Scoreboard

Insn Status Reg Status

dst srcl src?2 DR ESA B | Op| dst]|srcl]src2] Q1] Q2| R1| R2
F6 34+ R2
F2 45+ R3

MULTD FO F2 F4
SUBD F8 F6 F2
DIVD F10 FO Fé6 D
ADDD F6 F8 F2

56 I ’;GQ
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Status Tables

* Instruction status[#g4Ik#&]: which of 4 steps the inst is in

- D: Issue

— S: Read operands

— X: Execute stage completion
— W: Write result to registers

* Functional Unit (FU) Status[iz & 550k 3S]: indicates the state
of the FU

— 9 fields for each FU
o B:indicates whether the unit is busy or not
Op: operation to perform in the unit (e.g., + or -)
dst/Fi: destination register
srcl,src2/Fj, Fk: source-register numbers
Qj, Qk: functional units producing source registers srcl, src2
o Rj, Rk: flags being set when src1/src2 is ready

* Register Result Status[#7 77 #2545 FLRA]: indicates which FU will
write each register, if one exits

_.— Blank when no pending instructions will write that register .

http://camelab.org/uploads/Main/lecture08-scoreboard.pdf
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Scoreboard Workflow

Issue: decode insts and check for structural, WAW hazards

— Wait conditions: (1) the required FU is free; (2) no other inst writes to the
same register dst. (to avoid WAW)

Read operands: only if no RAW hazard
— Wait conditions: all source operands are ready

Execution: operate on operands
- When execution terminates, notify the scoreboard

Write result: write reg and update scb
— Wait condition: no other inst/FU is going to read the register dst. of the inst

MEMQRY
1 Registers
Inst $
I l Write Back
Inst Buffer

http://c Struct || WAW
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Scoreboard Example
 when “fld F6, 34(R2)” is writing

Instruction Issue Read op. Exec. Completed  Write result ;
fld  F6, 34(R2) X X X X  done
Instructioné fid F2, 45(R3) X X X
status :fmuld FO, F2, F4 X
: fsub,d F8,F6, F2 X
ffdivd  F10, FO, F12 X
 fadd.d F6, F8, F2 f ot
:Unit  Busy Op Fi Fj Fk Qj Qk Rj Rk
 Integer Yes Load F2  R3 Yes
Func.unit; Multt ~ Yes Mult FO  F2  F4  Int No  Yes
status SMuItZ No
Add Yes Sub F8 F6 F2 Int. Yes No
dividke Yes Div  F10 F0O  F12 Mult1 No  Yes
Register : FO F2 F4 F6 F8 F10 F12 .. F30 i
status TFinc U Mt Int Add  Div :
o2 IR

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf
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Scoreboard Example (cont.)
 when “fld F2, 45(R3)” is writing

Instruction Issue Read op. Exec. Completed  Write result ¢
: fid F6, 34(R2) X X X X  done
£ fid :

- 15(R3) X X X X
Instruction :
status  fmuld Y@ - X
fsub,d F8, F8 @ X
: fdivd  F10, FO, F12 X
R S : Not
: fadd.d F6, F8, F2 :in
£ Unit Busy Op Fi Fj Fk Qj Qk R Rk
Integer Yes Load F2 R3 Yes
Func. unit§ Mult1 Yes  Mult FO F2 F4 Yes Yes
status i mult2  No
iAdd Yes Sub F8 F6  F2 Yes  Yes
divide  Yes Div F10 FO F12  Mult1 No Yes
Register FO 2 F4 F6 F8 F10 F12 F30
stalus :Fync.U  Multt! ) Add  Div :
o0 D

https://people.cs.pitt.edu/~melhem/courses/2410p/ch3-3.pdf
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Scoreboard Example (cont.)

* 3 cycles after “fsub.d” finished writing

Instruction Issue Read op. Exec. Completed  Write result
fid  F6,34(R2) X X X X
Instruction ; 19 F2, 45(R3) X X X X
status fmul.d FO, F2, F4 X X X
 fsub,d F8, F6, F2 X X X X
i fdivd  F10, FO, F12 X
! fadd.d F6, F8, F2 X X X
iUnit  Busy Op Fi Fj Fk Qj Qk Rj Rk
i Integer  No
Func.unit i Mult! ~ Yes Mult FO  F2  F4 Yes  Yes
status i mMuit2  No
Add Yes add F4 F8 F2 Yes Yes
divide Yes  Div F10 FO F12  Mult1 No Yes
Register FO F2 F4 F6 F8 F10  F12 F30
stalus TR0 Muitt Add C 3 Div :

61 | ‘iﬂi
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Summary of Scoreboard

* Basic idea
- Use scoreboard to track data dep. through register

* Main points of design
— Instructions are sent to FU unit if there is no outstanding name
dependence

- RAW data dependence is tracked and enforced by scoreboard

— Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

— Pipeline stalls if any name dependence (WAR or WAW) is
detected

62 u‘;;‘ﬁf
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Summary of Scoreboard

* Basic idea
— Use scoreboard to track data dep. through register
* Main points of design

— Instructions are sent to FU unit if there is no outstanding name
dependence

— RAW data dependence is tracked and enforced by scoreboard

How? Just stall the insts until the RAW hazard can be addressed.

— Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

— Pipeline stalls if any name dependence (WAR or WAW) is
detected
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Summary of Scoreboard

* Basic idea
— Use scoreboard to track data dep. through register

* Main points of design
— Instructions are sent to FU unit if there is no outstanding name
dependence

- RAW data dependence is tracked and enforced by scoreboard

How? Just stall the insts until the RAW hazard can be addressed.

— Register values are passed through the register file; a child
instruction starts execution after the last parent finishes
execution

— Pipeline stalls if any name dependence (WAR or WAW) is
detected

How? Just recognize the false dependencies as a hazard and stall.

uld{r 8
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Tomasulo Algorithm

* Key idea: remove dependencies with..

- 1) HW register renaming
o What compiler cannot do

- 2) Data forwarding

fid F6, 34(R2) fid F6, 34(R2)

fid F2,45(R3) hw register  fid F2, 45(R3)
fmul.d  FO,F2,F4 '€N@MINE. fmuld  FO, F2, F4
fsub.d  F8, F6, F2 fsub.d  F8, fld#1, F2
fdivd  F10, FO, F6 fdivd  F10, FO, fld#1
fadd.d F6, F8, F2 fadd.d F6, F8, F2

o3 Dhig:
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Tomasulo Algorithm

* Key idea: remove dependencies with..

- 1) HW register renaming
o What compiler cannot do

- 2) Data forwarding

fid F6, 34(R2)
hw register ~ fld F2, 45(R3)
renaming fmul.d FO, F2, F4

fsub.d  F8, fld#1, F2
fdiv.d F10, FO, fld#1
fadd.d F6, F8, F2

o3 Dhig:
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Tomasulo Algorithm

* Key idea: remove dependencies with..

- 1) HW register renaming
o What compiler cannot do

- 2) Data forwarding

fd F6, 34(R2)

\
hw register  fld FZ):4\5(R3)
renaming fmul.d  FO, RZ\ F4

fsub.d  FS, fld#l\ F2
fdiv.d F1p/ Fo, fld#l
fadd.d F6 F8 F2

63 D

http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf



http://camelab.org/uploads/Main/lecture09-Tomasulo.pdf

Tomasulo Organization

e Control & buffers are distributed with Function Units (FU)
- FU buffers called “Reservation Stations (RS)”; have pending ops
— Registers in instructions replaced by values or pointers to RS

 Load and Store treated as FUs with RSs as well

e Results to FU from RS, not through registers, over
Common Data Bus (CDB) that broadcasts results to all FUs

MEMORY

FP Op Queue FP Registers [

v
Load Buffers | Store Buffers
Storel
Load1 Add1 Multl
Load? Add2 Store2
Mult2
Load3 Add3 Store3
¢ FP adders I [ FP multipliers | I
Common Dafa Bus (CDB) \ ’jﬁ
Wyt

Nntp://Camelab.org/uplioads/iviain/iecturevy-1o0masulo.pdar
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Three Stages of Tomasulo

* Stage-1: Issue

* Get an instruction from FP Op Queue

— If the reservation station is free (no structural hazard), the
control issues such instruction and sends corresponding
operands (renames registers)

o Register are renamed in this step, eliminating WAR and WAW hazards

[MEMORY

ils F6, 34(R2)
fld F2, 45(R3)
fmul.d  FO, F2, F4
v
fsub.d F8, F6, F2 Load Buffers
Loadl
fdiv.d F10, FO, F6 Load2
Load3
fadd.d  F6, F8, F2 l

FP Op Queue

FP Registers

Add3

Mult2

Storel
Store2
Store3

Common DzIa Bus (CDB)

Store Buffers
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Three Stages of Tomasulo (cont.)

* Stage-2: Execute

* Operate on operands (EX)
— When both operands are ready, it executes; otherwise, it checks
up the CDB for results

o Instructions are delayed here until all of their operands are available,
eliminating RAW hazards

[MEMORY |

fid F6, 34(R2) r— — 5
fid F2, 45(R3)
fmul.d  FO, F2, F4
fsub.d  F8, F6, F2 B : e

Loadl [fld F6,34(R2) | Addl EEVEEZ: A INE-ELP:

fdiv.d F10, FO, F6  ad2)|fid_F2,45(R3) | Add2 [CLERAZATE

Load3 Add3

fadd.d F6, F8, F2 l

Store2
Store3

(\VTi#A fdiv F10, FO, F6

FP adders FP multipliers

Common DzIa Bus (CDB)
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Three Stages of Tomasulo (cont.)

e Stage-3: Write result

* Finish execution:
— ALU operations results are written back to registers and store
operations are written back to memory

o If the result is available, write it on the CDB and from there into the
registers and any reservation stations waiting for this result

[MEMORY |

fid F6, 34(R2) r— — 5
fid F2, 45(R3)
fmul.d  FO, F2, F4
fsub.d  F8, F6, F2 B : e

Loadl | fld F6, 34(R2) I\l fsub F8, F6, Load2

fdiv.d F10, FO, F6  ad2)|fid_F2,45(R3) | Add2 [CLERAZATE

Load3 Add3

fadd.d F6, F8, F2 l

Store2
Store3

(\VTi#A fdiv F10, FO, F6

FP adders FP multipliers

Common DzIa Bus (CDB)

o7 Dhig:
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Simple Tomasulo Data Structures

* Three main components

— Instruction status

— Reservation stations (Load buffer & FU buffer)
o Scheduling: waiting operands
o Register renaming: remove false dep.

— Register result status

Scoreboard
FU Status
p| dst|srclfsrc2] Q1| Q2| R1| R2

Reg Status
EU

Tomasulo Reg Status
RS (Load buffer) 0 0 D FU
D \ Add | 1| V2| Q1| Q2
L
J
D U
=19

D » ¢ U

DDLU ’:

Dy
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Reorder Buffer[&EH: 72247

* In the Tomasulo architecture, instructions complete in an
out-of-order
— Exceptions are non-trivial to handle
— Branch misprediction is also difficult to recover from

* Reorder Buffer (ROB) enables to finish instructions in the
program order
— And, allows to free RS earlier
— ROB holds the result of inst between completion and commit

* Key idea of ROB: execute the insts in out of program
order, but make outside world can “believe” it’s in-order

- Solution: Re-Order Buffer+ Architected Register File
o ROB: keep the temporal results (executed in out-of-order)
o ARF: keep the final results (illusion of in-order execution)

(3R ¢
(B) 7 WL
\% ) L
avus/  SUN YAT-SEN UNIVERSITY ‘ (A
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Tomasulo w/ ROB Organization

e Re-Order

ouffer is based on Tomasulo

 Just renamed FP register to ARF (Architected Register File)

e Add Re-Order buffer for out-of-order results
— Buffer is managed with two pointers (head & tail)

* RAT (Register Alias Table) keeps the register renaming info

ARF RAT Reorder Buffer
FP Op Queue 4= Head

\ <= Tail

\

h 4

Multl

Mult2

v v
| FP adders |I | FP multipliers |
! X

Common Data Bus (CDB) \ Viﬁ;
Pra e -

Nnup.//edineidp LOM8/Uuplodus yALVAE-111) /Jlecuure iy -TOR. PUl
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Reorder Buffer Procedure[id#£]

* [ssue

— Allocate reservation station(RS) and Reorder Buffer(ROB), read
available operands

* Execute
- Begin execution when operand values are available

* Write Result
— Write result and ROB tag on CDB

* Commit
— When ROB reaches head, update register

- When a mispredicted branch reaches head of ROB, discard all
entries

[ ~‘y * | ¥
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Another ILP

Internal of operation principle of
ILP-processors

Pipelined Parallel
operation operation

EX, EX, EX,

Instr —
EX, EX, EX,

| !

Pipelined Orthogonal Superscalar /
M
processors Design VLIW
/2 Dhge
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Multiple Issue[£ %k &t

* To achieve CPl < 1, need to complete multiple instructions
per clock

* Solutions:
— Statically scheduled superscalar processors
- VLIW (very long instruction word) processors
— Dynamically scheduled superscalar processors

Common Issue Hazard Distinguishing
name structure  detection Scheduling characteristic Examples
Superscalar ~ Dynamic Hardware  Static In-order execution Mosty in the embedded
(static) space: MIPS and ARM,
including the Cortex-AS3
Superscalar Dynamic Hardware  Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculaton
Superscalar Dynamic Hardware  Dynamic with  Out-of-order execution Intel Core 13, 15, i7; AMD
(speculative) speculation with speculation Phenom: IBM Power 7
VLIW/LIW  Static Primanly  Static All hazards determined Most examples are in signal
software and indicated by compiler  processing, such as the Tl
(often implicidy) Céx
EPIC Prnimanly Primanly  Mostly static All hazards determined Itanium
static software and indicated explicitly

Fu X B

SUN YAT-SEN UNIVERSITY

by the compiler
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Superscalarjitr&]

e Superscalar architectures allow several instructions to be
issued and completed per clock cycle

* A superscalar architecture consists of a number of
pipelines that are working in parallel (N-way Superscalar)
— Can issue up to N instructions per cycle

e Superscalarity is Important

— |ldeal case of N-way Super-scalar Fetch | Decode | Inst
o All instructions were independent Fetch | Decode | Inst
o Speedup is “N” (Superscalarity) Fetch : Decode : 1L
- What if all instructions are dependent?
o No speed up, super-scalar brings nothmg

o (Just similar to pipelining) Fetch | Decode | Inst
Fetch | Decode Inst
Fetch | Decode Inst

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
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