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Review Questions
• Suppose a pipeline of 5 stage. What’s the ideal speedup?

• Why impossible to reach ideal speedup for pipelining?

• Techniques to improve ILP?

• SIMD?

• SIMD vs. SIMT?

• CPU vs. GPU?
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No perfect stage splitting; pipe overhead; hazards and deps …

Single instruction, multiple data

Threads to execute scalar operations.

5. serial: inst retires every 5 cycles; pipeline: inst retires every cycle

Branch prediction; loop unrolling; dynamic scheduling; VLIW …

ILP vs. DLP; Few vs. lots of cores; O3 vs. IO; complex vs. simple
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Part-III: GPU Arch



GPU Programming Model[编程模型]

• GPU is viewed as a compute device that
− Is a coprocessor to CPU (host)
− Has its own main memory called device memory
− Runs many threads in parallel

• Data-parallel parts of an application are executed on the 
device as kernels, which run in parallel on many threads
• CPU thread vs. GPU thread

− GPU threads are very lightweight
− A few vs. thousands for full efficiency
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Thread Organization[线程组织]

• A kernel is executed as a grid of 
thread blocks
• A thread block is a batch of 

threads that can cooperate with 
each other by

− Synchronizing their execution
− Efficiently sharing data through 

low-latency shared memory

• The grid and its associated 
blocks are just organizational 
constructs

− The threads are the things that do 
the work
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GPU Programming Choices[编程选择]

• CUDA – Compute Unified Device Architecture
− Developed by Nvidia – proprietary
− First serious GPGPU language/environment

• OpenCL – Open Computing Language
− From makers of OpenGL
− Wide industry support: AMD, Apple, Qualcomm,                    

Nvidia (begrudgingly), etc

• HIP - Heterogeneous-compute Interface for Portability
− Owned by AMD
− A C++ runtime API and kernel language that allows developers 

to create portable applications that can run on AMD’s 
accelerators as well as CUDA devices
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HIP
• Is open-source
• Provides an API for an application to leverage GPU 

acceleration for both AMD and Nvidia devices
• Syntactically similar to CUDA. Most CUDA API calls can be 

converted in place: cuda --hipify--> hip
• Supports a strong subset of CUDA runtime functionality
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Example: Putting Together

8



Map Kernel to Hardware[映射]

• Blocks are dynamically scheduled onto compute units 
(CUs)

− All threads in a block execute on the same CU
− Threads in block share LDS memory and L1 cache

• Blocks are further divided into wavefronts
− A group of 32 or 64 threads
− Wavefronts execute on SIMD units
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SM for Nvidia

warp for Nvidia

SIMD lane
(streaming processor)

Compute unit

GPU



Nvidia SM
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Level Nvidia AMD

Thread CUDA core Streaming processor / SIMD lane

Warp/wavefront SM sub-partition SIMD unit

Block/workgroup SM Compute unit

All threads GPU device GPU device



CPU-GPU
• CPU communicates kernels to GPUs via PCIe

− Kernel code object is filled into a dispatch packet
− Next, the packet is placed into a queue, which is allocated by 

runtime and associated with a GPU
− The GPU is then signaled to process packets from the queue
− When kernel is finished, CPU is notified with an interrupt
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GPU Structure
• Command processor (CP)

− Forefront hardware component of a GPU to receive kernels

• Shader processor inputs (SPI)
− Receives WGs from the CP

• Compute unit (CU)
− Fundamental compute component
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Compute Unit
• Scheduler[调度]

− Manage the wavefronts execution among the SIMDs

• Compute[计算]
− SIMD: for vector processing (a.k.a., vector units, VALUs)[向量单
元]

p Is of 16 lanes in GCN, thus simultaneously executing a single operation 
among 16 threads

p Has its own PC and instruction buffer (IB) for 10 WFs
− Scalar unit[标量单元]

p Shared by all threads in each WF, accessed on a per-WF level
p Used for control flow, pointer arithmetic, loading a common value, etc.
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Compute Unit (cont.)
• GPRs[通用寄存器]

− VGPR: vector general purpose register file
p 4x 64KB (256KB total)
p A maximum of 256 total registers per SIMD lane – each register is 64x 4-

byte entries 
− SGPR: scalar general purpose register file

p 12.5KB per CU

• L1 cache: 16KB[一级缓存]

• LDS: local data share (or, shared memory)[片上共享存储]
− Enables data share between threads of a block
− LDS
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GPU Memory Hierarchy[存储层级]
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https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

• CU internal memories: registers, caches, …
• Shared L2, off-chip HBM/GDDR
• RDNA fundamentally reorganizes the architecture

https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf


Memory Hierarchy
• Register: per-thread, deallocate when the thread done
• Cache: instruction, data, RO constant, RO texture
• Global memory: per-GPU, shared across kernels
• Shared memory (SMEM): per-block, deallocate when the 

block done (and re-allocated to other blocks)
• Constant memory (CMEM): part of device memory, use 

dedicated per-SM constant cache; shared across kernels
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LDS for AMD GPU



V100 Memory Hierarchy[存储层级]

• 80 SMs
− Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
− Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
− Per SM: 64K 32-bit Register File, 128KB SMEM+L1

• 6MB L2 cache, 16GB 900GB/s HBM2
− Shared by all SMs
− For comparison: 20MB RF, 10MB SMEM+L1
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SMEM & CMEM
• SMEM benefits compared to DRAM:

− 20-40x lower latency
− ~15x higher bandwidth
− Access granularity: 4B vs. 32B

• Constant memory (CMEM):
− Total constant data size limited to 64KB
− Throughput: 4B/clock per SM
− Can be used directly in arithmetic insts (saving regs)
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14 TB/s

2.5 TB/s Read, 1.6 TB/s Write

900 GB/s



Resource Limits[资源限制]

• Threads[线程]
− Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)

p Up to 1024 threads/TB
p TBs should be of at least 2 warps

• Registers[寄存器]
− Max: 64K regs/TB, 255 regs/thread

p Per SM: total 64K regs
p If exceeding 255 regs, then spilling happens

• Memory[存储]
− Max 96KB SMEM per SM (default 48KB)

• 100% occupancy[若满载]
− 2048 threads/SM, 64K regs/SM  à 32 regs/thread (128B)
− 2048 threads/SM, 96KB smem/SM à 32B/thread
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Memory Space Specifiers[存储空间指定]
• Variable memory space specifiers denote the memory 

location on the device of a variable
• __device__: declares a variable that resides on the 

device, by default
− Resides in global memory space
− Has the lifetime of the CUDA context in which it is created
− Is accessible from all the threads within the grid and from the 

host through the runtime library
• __constant__: declares a variable that resides in constant 

memory space
− Optionally used together with __device__

• __shared__: declares a variable that resides in shared 
memory space

− Has the lifetime of the block,
− Is only accessible from all the threads within the block
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#variable-memory-space-specifiers

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Memory Space Specifiers (cont.)
• __managed__: declares a variable that can be referenced 

from both device and host code
− optionally used together with __device__
− Has the lifetime of an application

• An automatic variable declared in device code without 
any of the __device__, __shared__ and __constant__ 
specifiers generally resides in a register

− However in some cases the compiler might choose to place it in 
local memory, which can hurt performance
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Variable declaration Memory Scope Lifetime

__device__ int globalVar; global grid application

__shared__ int sharedVar; shared block block

__constant__ int constantVar; constant grid application

int localVar; register thread thread

int localArray[10]; local thread thread



Local Memory[’本地’内存]

• Name refers to memory where registers and other 
thread-data is spilled

− Usually when one runs out of SM resources
− “Local” because each thread has its own private area 

• Use case 1: register spilling[寄存器溢出]
− Fermi hardware limit is 63 registers per thread (255 now)
− Programmer can specify lower registers/thread limits:

p To increase occupancy (number of concurrently running threads) 
p -maxrregcount option to nvcc, __launch_bounds__() qualifier in the 

code 
− LMEM is used if the source code exceeds register limit 

• Use case 2: arrays declared inside kernels, if compiler 
can’t resolve indexing[核函数内数组]

− Registers aren’t indexable, so have to be placed in LMEM 
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https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf


Local Memory (cont.)
• LMEM is not really a memory

− Bytes are actually stored in global memory
− Differences from global memory:

p Addressing is resolved by the compiler
p Stores are cached in L1

• LMEM could hurt performance in two ways:
− Increased memory traffic
− Increased instruction count 

• Spilling/LMEM usage isn’t always bad 
− LMEM bytes can get contained within L1

p Avoids memory traffic increase
− Additional instructions don’t matter much if code is not 

instruction-throughput limited 
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https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf


Shared Memory[“共享”存储]

• A per-block, software managed cache or scratchpad
− Programmer can modify variable declarations with __shared__ 

to make this variable resident in shared memory
− Compiler creates a copy of the variable for each block

p Every thread in that block shares the memory, but threads cannot see 
or modify the copy of this variable that is seen within other blocks

p This provides an excellent means by which threads within a block can 
communicate and collaborate on computations

• CUDA L1 cache and SMEM are unified
− cudaDeviceSetCacheConfig(enum cudaFuncCache)

• A mechanism is needed to synchronize between threads
− Thread A writes a value to shared memory and we want thread 

B to do something with this value
− We can’t have thread B start its work until we know the write 

from thread A is complete
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf


Shared Memory (cont.)
• One can specify synchronization points 

in the kernel by calling __syncthreads()
• __syncthreads() acts as a barrier at 

which all threads in the block must 
wait before any is allowed to proceed

− Guarantees that every thread in the block 
has completed instructions prior to the 
__syncthreads() before the hardware will 
execute the next inst on any thread

− When the first thread executes the first 
instruction after __syncthreads(), every 
other thread in the block has also 
finished executing up to the 
__syncthreads()
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Time 

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf


Example
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https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf
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Part-IV: GPU System



CUDA
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https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

• During regular execution, a CUDA application process will 
be launched by the user
• The application communicates directly with the CUDA 

user-mode driver, and potentially with the CUDA runtime
library

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html


Concurrency[并发]

• GPU is mainly known for its data-level parallelism[数据级
并行]

− Thousands of cores, with thousands of outstanding threads
− Simultaneously computing the same function on lots of data 

elements
• Still need task-level parallelism[任务级并行]

− GPU is underutilized by a single application process 
− Doing two or more completely different tasks in parallel
− Similar to the task parallelism that is found in multithreaded 

CPU applications
• Techniques

− Multi-process service (MPS)
− Streams
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf


GPU Context[上下文]

• A GPU program starts by creating a context
− Either explicitly using the driver API or implicitly using the 

runtime API, for a specific GPU 

• The context encapsulates all the hardware resources 
necessary for the program to be able to manage memory 
and launch work on that GPU

• Each process has a unique context[唯一]
− Only a single context can be active on a device at a time
− Multiple processes (e.g. MPI) on a single GPU could not operate 

concurrently

30
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf


MPS[多进程服务]

• MPS: multiple-process service, a software layer that sits 
between the driver and your application

− Routes all CUDA calls through a single context
− Multiple processes can execute concurrently

• Allows multiple processes to share a single GPU context, 
to utilize Hyper-Q capabilities

− Hardware feature to construct multiple connections to GPU
− Hyper-Q allows kernels to be processed concurrently on the 

same GPU 
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https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf


Hyper-Q[超队列]

• GPU's with Hyper-Q have a concurrent scheduler to 
schedule work from work queues belonging to a single 
CUDA context
• Work launched to the compute engine from work queues 

belonging to the same CUDA context can execute 
concurrently on the GPU
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Code Example
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Completely synchronous

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Potentially overlapped

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf


Stream[流]

• All work on the GPU is launched either explicitly into a 
CUDA stream, or implicitly using a default stream
• A stream is a software abstraction that represents a 

sequence of commands to be executed in order
− May be a mix of kernels, copies, and other commands

• CUDA streams are aliased onto one or more ‘work 
queues’ on the GPU by the driver

− Work queues are hardware resources that represent an in-order 
sequence of the subset of commands in a stream
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Synchronous/Asynchronous[同步/异步]

• All GPU API calls are either synchronous or asynchronous 
w.r.t the host

− Synchronous: enqueue work and wait for completion
− Asynchronous: enqueue work and return immediately
− a.k.a., blocking vs. non-blocking[阻塞/非阻塞]

• The kernel launch function, hipLaunchKernelGGL, is non-
blocking for the host

− After sending instructions/data, the host continues immediately 
while the device executes the kernel

− If you know the kernel will take some time, this is a good area 
to do some work on the host 

35

Potentially
overlap



Synchronous/Asynchronous(cont.)
• However, hipMemcpy is blocking

− The data pointed to in the arguments can be accessed/modified 
after the function returns

• The non-blocking version is hipMemcpyAsync
− hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, 

stream);
− Like hipLaunchKernelGGL, this function takes an argument of 

type hipStream_t
− It is not safe to access/modify the arguments of 

hipMemcpyAsync without some sort of synchronization. 
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Potentially
overlap



Streams[多流]

• A stream is a queue of device work
− Host places work in the queue and continues on immediately
− Device schedules work from streams when resources are free

• Operations are placed within a stream
− e.g. Kernel launches, memory copies

• Default stream
− Unless otherwise specified all calls are placed into a default 

stream (“Stream 0” or “NULL stream”)
p Stream 0 has special sync rules: synchronous with all streams
p Operations in stream 0 cannot overlap other streams
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https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf


Streams (cont.)
• Operations within the same stream are ordered (FIFO) 

and cannot overlap
• Operations in different streams are unordered and can 

overlap
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Example
• cudaEventRecord(&event, stream)

− Enqueue an event into stream, whose state is set to occurred 
when reaching the front of the stream

• cudaStreamWaitEvent(stream, event)
− The stream cannot proceed until the event occurs
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https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf


Task Graph[任务图]

• CPU launches each kernel to GPU
− When kernel runtime is short, execution time is dominated by 

CPU launch cost

• CUDA graph launch submits all work at once, reducing 
CPU cost

− A sequence of operations, connected by dependencies
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https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf


Example
• Capture CUDA stream work into a graph[基于流构建]
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https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf


Example (cont.)
• Create graphs directly[直接构建]

− Map graph-based workflows directly into CUDA
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Address Coalescing[地址合并]

• Threads in a block are computed a warp at a time (32 
threads)
• Global data is read or written in as few transactions as 

possible by combining memory access requests into a 
single transaction

− This is referred to the device coalescing mem stores and reads

• Every successive 128 bytes can be accessed by a warp (or 
32 single precision words)
• Not in successive 128 bytes; more data to read
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https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf


Unified Memory[统一内存]

• Classical model[经典模型]
− Allocate memory on host
− Allocate memory on device
− Copy data from host to device
− Operate on the GPU data
− Copy data back to host

• Unified memory model[统一模型]
− Allocate memory
− Operate on data on GPU

• Unified Memory is a single memory 
address space accessible from any 
processor in a system

− cudaMalloc() à cudaMallocManaged()
− on-demand page migration
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https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Example
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Divergence[分支]

• Within a block of threads, the threads are executes in 
groups of 32 called a warp

− All threads in a warp do the same thing at the same time

• What happens if different threads in a warp need to do 
different things?

− A logical predicate and two predicated instructions à serialized

• Branch divergence is a major cause for performance degr
adation in GPGPUs
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p = (threadIdx.x < 16);
if (p) … A …
if (!p) … B …



Divergence (cont.)
• Pre-Volta GPUs use a single PC shared amongst all 32 

threads of a warp, combined with an active mask that 
specifies which threads of the warp are active at any 
given time

− Leaves threads that are not executing a branch inactive 

• Since Volta, each thread features its own PC, which allows 
threads of the same warp to execute different branches 
of a divergent section simultaneously 

47
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf


Two-phase Execution[两段式]

• Compilation workflow
− Source code à virtual 

instruction (PTX or HSAIL)
− Virtual inst à real inst (SASS 

or GCN)

• .cu: CUDA source file, 
containing host code and 
device functions
• .ptx: PTX intermediate 

assembly file
• .cubin: CUDA device code 

binary file (CUBIN) for a 
single GPU architecture
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main() {
…
for(i=0;i<N;++i) {
}
…

}

IL 
(HSAIL, 

PTX)
ISACompiler Finalizer



Multi-chip Module
• Aggregating multiple GPU modules within a single 

package, as opposed to a single monolithic die.
• AMD: Chiplet GPUs

− MI200: 220 compute units, 14K streaming cores
− MI100: 120 compute units, 7680 streaming cores

• Nvidia: Multi-Chip-Module (MCM) GPUs
− Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
− A100: 128 SMs, 8192 CUDA cores
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High-speed Links[高速连接]

• GPUs are of high compute capability, being bottlenecked 
on data movement
• High-speed interconnect to achieve significantly higher 

data movement
− Nvidia: NVLink
− AMD: Infinity Fabric
− Intel: Compute eXpress Link (CXL)
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Summary of DLP/GPU[总结]

• Data level parallelism
− SIMD: operates on multiple data with on single instruction

p AVX-512 on Intel CPU is the typical example
− SIMT: consists of multiple scalar threads executing in a SIMD 

manner
p GPU is the example with threads executing the same instruction

• GPU hardware and thread organization
− Device à SM à SIMD/Partition à Core
− Grid à Block à Warp à Thread

• GPU programming
− Streams to support concurrency
− Memory hierarchy and usage (thread, cache/smem, global)
− Advanced topics: virtualization, profiling/tuning, divergence, etc
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