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Review Questions

e Suppose a pipeline of 5 stage. What’s the ideal speedup?
5. serial: inst retires every 5 cycles; pipeline: inst retires every cycle
* Why impossible to reach ideal speedup for pipelining?
No perfect stage splitting; pipe overhead; hazards and deps ...

* Techniques to improve ILP?
Branch prediction; loop unrolling; dynamic scheduling; VLIW ...

* SIMD?

Single instruction, multiple data

* SIMD vs. SIMT?

Threads to execute scalar operations.

e CPU vs. GPU?

ILP vs. DLP; Few vs. lots of cores; O3 vs. |O; complex vs. simple
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GPU Programming Model[Zm &R

* GPU is viewed as a compute device that
- |s a coprocessor to CPU (host)
— Has its own main memory called device memory
— Runs many threads in parallel

* Data-parallel parts of an application are executed on the
device as kernels, which run in parallel on many threads

e CPU thread vs. GPU thread

— GPU threads are very lightweight
— A few vs. thousands for full efficiency

Application Code
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Thread Organization[Z 24147

* A kernel is executed as a grid of
thread blocks

e A thread block is a batch of

. Host Device
threads that can cooperate with m—
each other by g IO [
- . . 0,0
- Synchronizing their execution : ;ml
— Efficiently sharing data through o
low-latency shared memory
l,:"'(irlq,'é
Kernel —)
2
* The grid and its associated Block (1, 1)
blocks are just organizational

constructs

— The threads are the things that do
the work
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GPU Programming Choices[4#f& ik #]

* CUDA - Compute Unified Device Architecture RVIDIA.
- Developed by Nvidia — proprietary CUDA
— First serious GPGPU language/environment
* OpenCL — Open Computing Language
— From makers of OpenGL

— Wide industry support: AMD, Apple, Qualcomm,
Nvidia (begrudgingly), etc

* HIP - Heterogeneous-compute Interface for Portability

- Owned by AMD

— A C++ runtime APl and kernel language that allows developers
to create portable applications that can run on AMD’s

accelerators as well as CUDA devices
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HIP

* |s open-source

* Provides an API for an application to leverage GPU
acceleration for both AMD and Nvidia devices

 Syntactically similar to CUDA. Most CUDA API calls can be
converted in place: cuda --hipify--> hip

e Supports a strong subset of CUDA runtime functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h” #include “hcc.h”

hipcc

Nvidia GPU AMD GPU ﬂ |
UL g




Example: Putting Together

#include “hip/hip_runtime.h”

int main() {
int N = 1000;
size_t Nbytes
double *h_a
double *d_a

NULL;

= N*sizeof(double);

(double*) malloc(Nbytes);

//host memory

HIP_CHECK(hipMalloc(&d_a, Nbytes));

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice));

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.Xx;
if (i<N) {
d_a[i] *= 2.0;

//copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), @, ©, N, d_a); //Launch kernel
HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost))

free(h_a);
HIP_CHECK(hipFree(d_a));

(B)Tux %
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//free host memory

//free device memory

#define HIP_CHECK(command) {

hipError_t status = command;

std::cerr << “Error: HIP reports ”
<< hipGetErrorString(status)
<< std::endl;

std::abort(); } }

\
\
if (status!=hipSuccess) { X
\
\
\




Map Kernel to Hardware[g

* Blocks are dynamically scheduled onto compute units

(CUS) SM for Nvidia
— All threads in a block execute on the same CU

— Threads in block share LDS memory and L1 cache

e Blocks are further divided into wavefronts
— A group of 32 or 64 threads warp for Nvidia
— Wavefronts execute on SIMD units

CUDA thread CUDA core SIMD lane
3 » [ (streaming processor)
CUDA streaming

CUDA thread block Multiprocessorsv)  COmpute unit

CUDA-capable GPU GPU

CUDA kernel grid
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Nvidia SM
e e Ao

Thread CUDA core Streaming processor / SIMD lane
Warp/wavefront SM sub-partition SIMD unit
Block/workgroup SM Compute unit

All threads GPU device GPU device

MIO Datapath MIO Scheduler
(648/clk) (1 warp Inst /2 clk)

( Scheduler

L1 Cache LDS
SIMDO SIMD1 SIMD2
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CPU-GPU

* CPU communicates kernels to GPUs via PCle
- Kernel code object is filled into a dispatch packet

- Next, the packet is placed into a queue, which is allocated by
runtime and associated with a GPU

- The GPU is then signaled to process packets from the queue
- When kernel is finished, CPU is notified with an interrupt

GPU

v

CPU

GPU Driver I | )

( Command Queues (in user-visible mem))
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GPU Structure

* Command processor (CP)
— Forefront hardware component of a GPU to receive kernels

* Shader processor inputs (SPI)
— Receives WGs from the CP | Blocks/CTAs for Nvidia

* Compute unit (CU) | sm for Nvidia
- Fundamental compute component

() GPU
é > Command Processor )
= CU0 CUO
2 cu1l cul
CPU z . SPI SPI .
2 : (SEO) (SE1) :
9 C : :
% .
E cuU0 cuo
2 9o SPI SPI cul
£ : (SE3) (SE2) :
= . .
S CU15 CU15
_/

12 Dhig:




Compute Unit
 Scheduler[i#E]

- Manage the wavefronts execution among the SIMDs

* Compute[itH]
— SIMD: for vector processing (a.k.a., vector units, VALUS)[ 7] &=
yn
o Is of 16 lanes in GCN, thus simultaneously executing a single operation
among 16 threads

o Has its own PC and instruction buffer (IB) for 10 WFs

— Scalar unit[#r = #.Jt]
o Shared by all threads in each WF, accessed on a per-WF level
o Used for control flow, pointer arithmetic, loading a common value, etc.

T Scheduler 1
L1 Cache LDS
SIMDO SIVID1 SIVD2 SIMD3

(e | ] ] | ],
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Compute Unit (cont.)

* GPRs[i H] % 17 4]
— VGPR: vector general purpose register file

o 4x 64KB (256KB total)

o A maximum of 256 total registers per SIMD lane — each register is 64x 4-
byte entries

— SGPR: scalar general purpose register file
o 12.5KB per CU

* L1 cache: 16KB[—ZZZ1F]

* LDS: local data share (or, shared memory)[ i FIL =147 #]
— Enables data share between threads of a block

T Scheduler 1)
(s | | ] | ],
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GPU Memory Hierarchy[f£#E %)

* CU internal memories: registers, caches, ...
 Shared L2, off-chip HBM/GDDR
* RDNA fundamentally reorganizes the architecture
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https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

Memory Hierarchy

* Register: per-thread, deallocate when the thread done
e Cache: instruction, data, RO constant, RO texture
* Global memory: per-GPU, shared across kernels

* Shared memory (SMEM): per-block, deallocate when the
block done (and re-allocated to other blocks)

e Constant memory (CMEM): part of device memory, use
dedicated per-SM constant cache; shared across kernels

Global Memory (DRAM) |

SM-0 SM-1 SM-N l T Private to Every SM | {
| 0 o= soes oo svam oo ove st i S sel segn oSSl W NGRS
| Registers l I Registers | e I Registers I Ll I Private to Every P g Block | |
) T ) ) (1! i 64 KiB Regist ) L2 KiB Lo instruction cache] | | |
| [ |
|_|_1J| SMEM | L1 |L1|| SMEM I 1] e e o s fron o ol |
|| |
,r 3
|l {128 KiB L1 data cache/Shared memory] [2 KiB L1 constant cache] |
| | T |
|| [ >64 KiB L1.5 constant cache/128 KiB L1 instruction cache J |
¢ T Ea=t,
| L2 | | |
I ' [ 6144 KiB L2 data cache/L2 constant cache/L2 instruction cache ] { TLB ] t
|
| |
| |
| |
| |




V100 Memory Hierarchy[f#fi = %)

* 80 SMs
— Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
— Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
— Per SM: 64K 32-bit Register File, 128KB SMEM+L1

* 6MB L2 cache, 16GB 900GB/s HBM2
—Shared by all SMs
— For comparison: 20MB RF, 10MB SMEM+L1

SM-0 SM-1 SM-N

| Registers | | Registers | Registers l

. o 00 t t
I—Lf_ll SMEM F_;rll SMEM | ||_1| SMEM l

| L2 |

i

[ Global Memory (DRAM) ]
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SMEM & CMEM

* SMEM benefits compared to DRAM:
— 20-40x lower latency
- ~15x higher bandwidth
— Access granularity: 4B vs. 32B
e Constant memory (CMEM):
— Total constant data size limited to 64KB
— Throughput: 4B/clock per SM

— Can be used directly in arithmetic insts (saving regs)

SM-0 SM-1 SM-N

I Registers | | Registers | Registers I

T3 °*°
L1 ” SMEM L1 SMEM |L1 SMEM ] 14 TB/S

| L2 | 2.5 TB/s Read, 1.6 TB/s Write

1
Global Memory (DRAM) | 900 GB/s ) !IE L




Resource Limits[# 5 R i)

* Threads[Z:FE]
- Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)
o Up to 1024 threads/TB

o TBs should be of at least 2 warps rid
( Registe rS[—%_‘:ﬁ%%] I ¢Shared mem%ry | | ¢Sh:ared memc%ry l
— Max: 64K regs/TB, 255 regs/thread | g | T ST i
(| Per SM total 64K regs |Registers| lRegz sssss | [Regiszers] IRegi sssss |
o If exceeding 255 regs, then spilling happens ' ) — :
¢ Memory[ﬁ/ﬁ/%] Constant memory

- Max 96KB SMEM per SM (default 48KB)

* 100% occupancy[£i##k]
— 2048 threads/SM, 64K regs/SM —> 32 regs/thread (128B)
— 2048 threads/SM, 96KB smem/SM - 32B/thread

J iv&mﬁ]sﬁ 19 ﬂ’ ‘IE i




Memory Space Specitiers[##i% = a4 &)

* Variable memory space specifiers denote the memory
location on the device of a variable

e device_:declares a variable that resides on the
device, by default
— Resides in global memory space
— Has the lifetime of the CUDA context in which it is created

— Is accessible from all the threads within the grid and from the
host through the runtime library

e constant__: declares a variable that resides in constant
memory space

— Optionally used together with __device

e shared_:declares a variable that resides in shared
memory space
— Has the lifetime of the block,

*— Is only accessible from all the threads within the block
(&) T mX %

‘IEJ(
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#variable-memory-space-specifiers 44



https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Memory Space Specifiers (cont.)

* managed__:declares a variable that can be referenced
from both device and host code
— optionally used together with __ device
— Has the lifetime of an application

* An automatic variable declared in device code without
any of the _device , shared and constant
specifiers generally resides in a register

- However in some cases the compiler might choose to place it in
local memory, which can hurt performance

__device__int globalVar; global grid application
__shared__ int sharedVar; shared block  block
__constant___ int constantVar; constant grid application
int localVar; register thread thread

(&) ¥ % int localArray[10]; local thread thread 1L g
44




Local Memory['AHh’ 4 77]

* Name refers to memory where registers and other
thread-data is spilled
— Usually when one runs out of SM resources
— “Local” because each thread has its own private area

* Use case 1: register spilling[ & 77 2% 15 H]
- Fermi hardware limit is 63 registers per thread (255 now)

— Programmer can specify lower registers/thread limits:
o To increase occupancy (hnumber of concurrently running threads)

o -maxrregcount option to nvcc, _ launch_bounds__ () qualifier in the
code

- LMEM is used if the source code exceeds register limit

e Use case 2: arrays declared inside kernels, if compiler
can’t resolve indexing[#% e& %t N %4

— Registers aren’t indexable, so have to be placed in LMEM

‘I Jl
https://developer.download.nvidia.com/CUDA/training/register spilling.pdf »y !E =



https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Local Memory (cont.)

* LMEM is not really a memory
— Bytes are actually stored in global memory

— Differences from global memory:
o Addressing is resolved by the compiler
o Stores are cached in L1

* LMEM could hurt performance in two ways:

— Increased memory traffic
— Increased instruction count

* Spilling/LMEM usage isn’t always bad
- LMEM bytes can get contained within L1
o Avoids memory traffic increase

— Additional instructions don’t matter much if code is not
instruction-throughput limited

23
https://developer.download.nvidia.com/CUDA/training/register spilling.pdf
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Shared Memory[“3: =" 7745

* A per-block, software managed cache or scratchpad

— Programmer can modify variable declarations with __shared
to make this variable resident in shared memory

— Compiler creates a copy of the variable for each block

o Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

o This provides an excellent means by which threads within a block can
communicate and collaborate on computations

e CUDA L1 cache and SMEM are unified

* A mechanism is needed to synchronize between threads

— Thread A writes a value to shared memory and we want thread
B to do something with this value

— We can’t have thread B start its work until we know the write
from thread A is complete

‘I J
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf HHG‘



http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)

* One can specify synchronization points
in the kernel by calling __ syncthreads()

 syncthreads() acts as a barrier at
which all threads in the block must
wait before any is allowed to proceed

— Guarantees that every thread in the block

has completed instructions prior to the
__syncthreads() before the hardware will
execute the next inst on any thread

— When the first thread executes the first
instruction after __syncthreads(), every
other thread in the block has also
finished executing up to the
__syncthreads()

Active

Waiting‘t

Barrier

Time

25
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf
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http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Example

__global__ void reverse(double *d_a) {
__shared__ double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;
s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.
//something is missing here..
__syncthreads();

d_a[tid] = s_a[255-tid]; //write out array in reverse order

)

int main() {

hipLaunchKernelGGL (reverse, dim3(1), dim3(256), @, ©, d_a); //Launch kernel

» X ﬂ o
@) uk 2 B
j:m.mmgg; https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD GPU HIP training 20190906.pdf N 1
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Part-1V: GPU System
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CUDA

* During regular execution, a CUDA application process will

be launched by the user

* The application communicates directly with the CUDA

user-mode driver, and potentially with the CUDA runtime

library
| Host ’
Application
User ‘ L} |
~ CUDALibraries Ei
v ' +
: CUDA Runtime
| i 4
|
I CUDA Driver
Device
28 I ‘iﬂq
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Concurrency[3: k]

. %PU is mainly known for its data-level parallelism[%#& 2%
F17]
— Thousands of cores, with thousands of outstanding threads

- Simultaneously computing the same function on lots of data
elements

e Still need task-level parallelism[{F4% %% 3471
— GPU is underutilized by a single application process
- Doing two or more completely different tasks in parallel
- Similar to the task parallelism that is found in multithreaded

CPU applications T
* Techniques sl
— Multi-process service (MPS) g
— Streams — | o

2 3 ,
" Block (1, 1)

29
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GPU Context| EFx]

* A GPU program starts by creating a context
— Either explicitly using the driver APl or implicitly using the
runtime API, for a specific GPU

* The context encapsulates all the hardware resources
necessary for the program to be able to manage memory
and launch work on that GPU

e Each process has a unique context[M:—]
— Only a single context can be active on a device at a time

— Multiple processes (e.g. MPI) on a single GPU could not operate
concurrently

‘I Jl
https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service Overview.pdf HHE“
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MPS[£ #E 72 Ak 5% ]

* MPS: multiple-process service, a software layer that sits
between the driver and your application
— Routes all CUDA calls through a single context
- Multiple processes can execute concurrently

* Allows multiple processes to share a single GPU context,
to utilize Hyper-Q capabilities
- Hardware feature to construct multiple connections to GPU
- Hyper-Q allows kernels to be processed concurrently on the

same GPU &9 q p T ? ?
3 1,, __[_ g
CUDA MULTI-PROCESS SERVICE ] (_jcuoa muun rocessservce contror, )
e

CPU Processes
GPU Execution

CPU Processes " i \

~, GPU Execution

| ‘ ‘ ‘ | ‘ ( VOLTA MULTI-PROCESS SERVICE |
= e e e e e
15y, V| O S | [ [ & ==
o e e e = il 5% = 50 ¢ Al
e N ! e ) e I 2 N I = ]
===t Mn]i=) | == |
1GP100 ——

& J/ e

Volta GV100
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Hyper-Qi#g i\ 3]

* GPU's with Hyper-Q have a concurrent scheduler to
schedule work from work queues belonging to a single
CUDA context

* Work launched to the compute engine from work queues
belonging to the same CUDA context can execute
concurrently on the GPU

NVIDIA HYPER-Q

FERMI KEPLER
1 MPI* TASKAT ATIME 32 SIMULTANEOQUS MP1 TASKS
Al 4 'l'
:.I"':"
et T\ : -
H re < 1T iy
- — —4- T HHT
. — (T I 58 B\ :
—Ti / T H
ner — ,’\/ Inue
er J;’/
N .;1-.-){/
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Code Example

cudaMalloc ( &dev1, size ) ;
double* host1 = (double*) malloc ( &host1, size ) ;

cudaMemcpy ( dev1, host1, size, H2D

Completely synchronous

cudaMemcpy ( host4, dev4, size, D2H)

cudaMalloc ( &dev1, size ) ;
( &host1, size ) ;

cudaMemcpyAsync ( dev1, host1, size, H2D,

kernel2 <<< grid, block, 0,

kernel3 <<< grid, block, 0, yne Potentially overlapped
cudaMemcpyAs ( host4, dev4, size, D2H, :

some_CPU_method ();

NG
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf »y !E =
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Stream il

* All work on the GPU is launched either explicitly into a
CUDA stream, or implicitly using a default stream

* A stream is a software abstraction that represents a
sequence of commands to be executed in order
- May be a mix of kernels, copies, and other commands

e CUDA streams are aliased onto one or more ‘work
queues’ on the GPU by the driver

- Work queues are hardware resources that represent an in-order
sequence of the subset of commands in a stream

Stream 2

XY 2 ~ X--Y--Z
MPS Client/
Process 2 Stream 1

X, = Y' oy Z, xl_Y)_Zn

Stream 2 Multiple Hardware Work Queues/Channel "E
‘ 4
PIW”



Synchronous/Asynchronous|@: /5 4]

* All GPU API calls are either synchronous or asynchronous
w.r.t the host
- Synchronous: enqueue work and wait for completion
— Asynchronous: enqueue work and return immediately
- a.k.a., blocking vs. non-blocking|[BH & /- BH 2]

* The kernel launch function, , IS non-
blocking for the host

— After sending instructions/data, the host continues immediately
while the device executes the kernel

- If you know the kernel will take some time, this is a good area
to do some work on the host

cudaMemcpy ( dev1, host1, size, H2D ) ;
Potentially kernel2 <<< grid, block >>> ( ..., dev2, ... );

Overlap kernel3 <<< grid, block >>> ( ..., dev3, ... );

cudaMemcpy ( host4, dev4, size, D2H ) ; D *.Ei
NCE:




Synchronous/Asynchronous(cont.)

* However, is blocking

— The data pointed to in the arguments can be accessed/modified
after the function returns

* The non-blocking version is

— Like , this function takes an argument of
type hipStream _t
— It is not safe to access/modify the arguments of
without some sort of synchronization.

cudaMemcpyAsync ( dev1, host1, size, H2D, )

. kernel2 <<< grid, block, 0, >>> ( ....,dev2, ... ):
Potentially | e e ) >>> (..., devs, ... );
) ;

overlap cudaMemcpyAsync ( host4, dev4, size, D2H,
some_CPU_method ();

h;‘ﬂi




Streams[£ i)

* A stream is a queue of device work
— Host places work in the queue and continues on immediately
— Device schedules work from streams when resources are free

e Operations are placed within a stream
- e.g. Kernel launches, memory copies

e Default stream
- Unless otherwise specified all calls are placed into a default
stream (“Stream 0” or “NULL stream”)

o Stream O has special sync rules: synchronous with all streams
o Operations in stream 0 cannot overlap other streams

hipLaunchKernelGGL (myKernell, dim3(1), dim3(256), 0,| 9, |256, d_al);
hipLaunchKernelGGL (myKernel2, dim3(1), dim3(256), ©,| 0, |256, d a2);
hipLaunchKernelGGL (myKernel3, dim3(1), dim3(256), 0,] 9, [256, d_a3);
hipLaunchKernelGGL (myKernel4, dim3(1), dim3(256), 0,| 9, ]256, d_a4);

NULL Stream myKernell  myKernel2  myKernel3  myKernel4

@) Tk oz 37 | | ﬂ@
ST son wrsn o3PS ://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdfyy §
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Streams (cont.)

* Operations within the same stream are ordered (FIFO)
and cannot overlap

* Operations in different streams are unordered and can
overlap

NULL Stream myKernell  myKernel2  myKernel3  myKernel4

hipLaunchKernelGGL (myKernell, dim3(1), dim3(256), ©,] streaml,| 256, d_al);
hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), O, stream2,|256, d_a2);
hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), ©,] stream3,| 256, d_a3);
hipLaunchKernelGGL(myKerneld4, dim3(1), dim3(256), 0, stream4d,| 256, d _a4);
NULL Stream

Stream1 myKernell

Stream?2 myKernel2

Stream3 myKernel3

Stream4 myKernel4

AR * K
(& | J‘ ’5 3 8
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Example

- Enqueue an event into stream, whose state is set to occurred
when reaching the front of the stream

— The stream cannot proceed until the event occurs

cudaEvent _t event;
cudaEventCreate (&event); // create event

cudaMemcpyAsync ( d_in, in, size, H2D, stream1 ); // 1) H2D copy of new input
cudaEventRecord (event, stream1); // record event

cudaMemcpyAsync ( out, d_out, size, D2H, stream?2 ); // 2) D2H copy of previous result

cudaStreamWaitEvent ( stream2, event ); // wait for event in stream1
kernel <<<, , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2

asynchronousCPUmethod ( ... ) I/l Async GPU method
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Task Graph[{£4E)

 CPU launches each kernel to GPU
— When kernel runtime is short, execution time is dominated by
CPU launch cost
* CUDA graph launch submits all work at once, reducing
CPU cost

— A sequence of operations, connected by dependencies

Launch A || Launch B || Launch C || Launch D || Launch E CPU
Time
Launch
sl | > B » C » D el E GPU
Time
—>
. 1 time
s ~— >
:ggg’hr—- Launch Graph E time saved

4
>
w
O
o
m
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Example

 Capture CUDA stream work into a graph[3£ T-iit4

Ll
(P
[ =)

// Start by initiating stream capture

cudaStreamBeginCapture(&streaml);

// Build stream work as usual
A<<< ..., streaml >>>();
cudaEventRecord(el, streaml);
B<<< «ooy; Streaml >>>();
cudaStreamWaitEvent(stream2, el);
Cc<< ..., stream2 >>>();

cudakEventRecord(e2, stream2);

cudaStreamWaitEvent(streaml, e2);

D<<< ..., streaml >>>(); stream stream2 graph

// Now convert the stream to a graph

cudaStreamEndCapture(streaml, &graph);

o
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Example (cont.)

* Create graphs directly[ B #:# 2]

I

- Map graph-based workflows directly into CUDA

(o —

Graph from

framework

F b X %

SUN YAT-SEN UNIVERSITY

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);
cudaGraphAddNode(graph, kernel b, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel c, { kernel_a }, ...);
cudaGraphAddNode (graph, kernel_d, { kernel_b, kernel c },

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);
// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

42
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Address Coalescing &3]

* Threads in a block are computed a warp at a time (32
threads)

 Global data is read or written in as few transactions as

possible by combining memory access requests into a
single transaction

— This is referred to the device coalescing mem stores and reads

* Every successive 128 bytes can be accessed by a warp (or
32 single precision words)

* Not in successive 128 bytes; more data to read

128 256 257
Address _ 128 256 Address ___

Thread ID o : : ' 31 ThreadID o ' 31
NG sov var-sex utveRsiTy https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf »r I
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Unified Memory[%— W 7#]

* Classical model[£& HiLAE 7]

— Allocate memory on host

— Allocate memory on device

— Copy data from host to device
— Operate on the GPU data

— Copy data back to host

* Unified memory model[4t— 4]
— Allocate memory
— Operate on data on GPU

* Unified Memory is a single memory
address space accessible from any
processor in a system

— cudaMalloc() =2 cudaMallocManaged()
— on-demand page migration
44
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Traditional Developer View

Developer View With
Unified Memory
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Example

int N = 1<<20;
float *x, *y;

// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N*sizeof(float));
cudaMallocManaged(&y, N*sizeof(float));

// initialize x and y arrays on the host
for (int i = 0; i < N: i++) {

x[1] = 1.0f;

vidi] = 2.0f;

// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;

add<<<numBlocks, blockSize>>>(N, x, y);

45




Divergence[4r ]

* Within a block of threads, the threads are executes in
groups of 32 called a warp

— All threads in a warp do the same thing at the same time

* What happens if different threads in a warp need to do
different things?

— A logical predicate and two predicated instructions = serialized

* Branch divergence is a major cause for performance degr
adation in GPGPUs

if ( threadIdx.x < 16 ) -

{ . p = (threadldx.x < 16);
y if (p) ... A ...
e if (Ip) ... B ... ‘
B \\
|

Dhige



Divergence (cont.)

* Pre-Volta GPUs use a single PC shared amongst all 32
threads of a warp, combined with an active mask that
specifies which threads of the warp are active at any
given time

— Leaves threads that are not executing a branch inactive

* Since Volta, each thread features its own PC, which allows
threads of the same warp to execute different branches
of a divergent section simultaneously

Pre-Volta

canier o [N NN AN NN RN NARRRNRNAANY

and Stack (S)
32 thread warp

35595359559555995559550556985648

32 thread warp with independent scheduling u ,GL{
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf N
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Two-phase Execution[p ]

* Compilation workflow

— Source code =2 virtual
instruction (PTX or HSAIL)

— Virtual inst = real inst (SASS
or GCN)

* .cu: CUDA source file,
containing host code and
device functions

* .ptx: PTX intermediate
assembly file

* .cubin: CUDA device code
binary file (CUBIN) for a
single GPU architecture

48

real sm architecture

virtual compute architecture

X.cu (device code)
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Stage 1
' (PTX Generation) :
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(Cubin Generation)

X.cubin
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Multi-chip Module

* Aggregating multiple GPU modules within a single
package, as opposed to a single monolithic die.

* AMD: Chiplet GPUs

- MI200: 220 compute units, 14K streaming cores
- MI1100: 120 compute units, 7680 streaming cores

* Nvidia: Multi-Chip-Module (MCM) GPUs
- Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
— A100: 128 SMs, 8192 CUDA cores

' | | SYSH/O
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GPU GPU
Module ' Module

Stacked
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L : ! ’ MCM L
A= S GPU
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' GPU - GPU
Package Module Module
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High-speed Links[mi#i% ]

* GPUs are of high compute capability, being bottlenecked
on data movement

* High-speed interconnect to achieve significantly higher
data movement
— Nvidia: NVLink
— AMD: Infinity Fabric
- Intel: Compute eXpress Link (CXL)

PCle
16 GB/s

CPU-GPU Systems Connected NVLink Enables Fast Unified Memory Access
via PCl-e between CPU & GPU Memories

X
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Summary of DLP/GPU 4]

* Data level parallelism

— SIMD: operates on multiple data with on single instruction
o AVX-512 on Intel CPU is the typical example

— SIMT: consists of multiple scalar threads executing in a SIMD
manner
o GPU is the example with threads executing the same instruction

* GPU hardware and thread organization

— Device = SM - SIMD/Partition = Core ¥ 4 l "
— Grid = Block = Warp = Thread T - N
+ GPU programming 55550 BB

— Streams to support concurrency
— Memory hierarchy and usage (thread, cache/smem, global)
— Advanced topics: virtualization, profiling/tuning, divergence, etc
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